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Change of variables is the most powerful tool for calculating multidimen-
sional integrals. Two kinds of differentiation are instrumental: of mappings
(treated in Sections 2–5) and of set functions (treated here).

8a What is the problem

The area of a disk {(x, y) : x2 + y2 ≤ 1} ⊂ R2 may be calculated by iterated
integral, ∫ 1

−1
dx

∫ √1−x2
−
√
1−x2

dy =

∫ 1

−1
2
√

1− x2 dx = . . .

or alternatively, in polar coordinates,∫ 1

0

r dr

∫ 2π

0

dϕ =

∫ 1

0

2πr dr = π ;

the latter way is much easier! Note “rdr” rather than “dr” (otherwise we
would get 2π instead of π).

Why the factor r? In analogy to the one-dimensional theory we may
expect something like dxdy

dr dϕ
; is it r? Well, basically, it is r because an in-

finitesimal rectangle [r, r+dr]× [ϕ, ϕ+dϕ] of area dr ·dϕ on the (r, ϕ)-plane
corresponds to an infinitesimal rectangle or area dr · rdϕ on the (x, y)-plane.

dr

rdφ
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The factor r is nothing but | detT | of Sect. 6n, where T is the linear approx-
imation to the nonlinear mapping (r, ϕ) 7→ (x, y) = (r cosϕ, r sinϕ) near a
point (r, ϕ).

Thus, we need a generalization of Theorem 6n1 (the linear transforma-
tion) to nonlinear transformations. Naturally, the nonlinear case needs more
effort.

8a1 Definition. A diffeomorphism1 between open sets U, V ⊂ Rn is an
invertible mapping ϕ : U → V such that both ϕ and ϕ−1 are continuously
differentiable.

By the inverse function theorem 4c5, a homeomorphism ϕ : U → V is a
diffeomorphism if and only if ϕ is continuously differentiable and (Dϕ)x is an
invertible operator for all x ∈ U (equivalently, the Jacobian det(Dϕ)x does
not vanish on U).

And do not forget: in contrast to dimension one, the condition det(Dϕ)x 6=
0 does not guarantee that ϕ is one-to-one (as noted in 4b).

8a2 Proposition. Let U, V ⊂ Rn be open sets, ϕ : U → V a diffeomorphism,
and E ⊂ U . Then the following two conditions are equivalent.

(a) E is Jordan measurable and contained in a compact subset of U ;
(b) ϕ(E) is Jordan measurable and contained in a compact subset of V .

8a3 Definition. A function f : E → R on a Jordan measurable set E ⊂ Rn

is integrable (on E) if the function x 7→

{
f(x) if x ∈ E,
0 otherwise

is integrable

on Rn. And in this case the integral of the latter function (over Rn) is
∫
E
f .

8a4 Exercise. (a) Let E1 ⊂ E2 be Jordan measurable, and f : E2 → R
integrable; then f |E1 is integrable.

(b) Let E1, E2 be Jordan measurable, and f : E1 ∪ E2 → R; if f |E1 , f |E2

are integrable then f is integrable.
Prove it.

8a5 Theorem. Let U, V ⊂ Rn be open sets, ϕ : U → V a diffeomorphism,
E ⊂ U a Jordan measurable set contained in a compact subset of U , and
f : ϕ(E)→ R an integrable function. Then f ◦ ϕ : E → R is integrable, and∫

ϕ(E)

f =

∫
E

(f ◦ ϕ)| detDϕ| .

1Namely, C1 diffeomorphism.
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On the other hand, it can happen that an open set is not Jordan mea-
surable (even if bounded); worse, it can happen that U ⊂ R2 is a disk but
V = ϕ(U) is open, bounded but not Jordan measurable.1

8a6 Corollary. If, in addition, U and V are Jordan measurable and Dϕ
is bounded on U then integrability of f : V → R implies integrability of
(f ◦ ϕ)| detDϕ| : U → R, and∫

V

f =

∫
U

(f ◦ ϕ)| detDϕ| .

The proofs, given in Sect. 8h, are based on a transition from set functions
to (ordinary) functions, inverse to integration. (Basically, we’ll prove that
| detDϕ| is the derivative of the set function E 7→ v(ϕ(E)).) This form of
differentiation, introduced and examined in 8c–8e, may be partially new to
you even in dimension one.

8b Examples and exercises

In this section we take for granted Proposition 8a2, Theorem 8a5 and Corol-
lary 8a6 (to be proved later).

8b1 Exercise. (spherical coordinates in R3)
Consider the mapping Ψ : R3 → R3, Ψ(r, ϕ, θ) = (r cosϕ sin θ, r sinϕ sin θ,

r cos θ).
(a) Draw the images of the planes r = const, ϕ = const, θ = const, and

of the lines (ϕ, θ) = const, (r, θ) = const, (r, ϕ) = const.
(b) Show that Ψ is surjective but not injective.
(c) Show that | detDΨ| = r2 sin θ. Find the points (r, ϕ, θ), where the

operator DΨ is invertible.
(d) Let V = (0,∞)× (−π, π)× (0, π). Prove that Ψ|V is injective. Find

U = Ψ(V ).

8b2 Exercise. Compute the integral
∫∫∫

x2+y2+(z−2)2≤1
dxdydz

x2+y2+z2
.

Answer: π
(
2− 3

2
log 3

)
.2

8b3 Exercise. Compute the integral
∫∫

dxdy
(1+x2+y2)2

over one loop of the lem-

niscate (x2 + y2)2 = x2 − y2.3

1The Riemann mapping theorem is instrumental. See Sect. 18.8 “Change of variables”
in book: D.J.H. Garling, “A course in mathematical analysis”, vol. 2 (2014).

2Hint: 1 < r < 3; cos θ > r2+3
4r .

3Hints: use polar coordinates; −π4 < ϕ < π
4 ; 0 < r <

√
cos 2ϕ; 1 + cos 2ϕ = 2 cos2 ϕ;∫

dϕ
cos2 ϕ = tanϕ.
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8b4 Exercise. Compute the integral over the four-dimensional unit ball:∫∫∫∫
x2+y2+u2+v2≤1 e

x2+y2−u2−v2 dxdydudv.1

8b5 Exercise. Compute the integral
∫∫∫
|xyz| dxdydz over the ellipsoid

{x2/a2 + y2/b2 + z2/c2 ≤ 1}.
Answer: a2b2c2

6
.2

8b6 Exercise. Find the volume cut off from the unit ball by the plane
lx+my + nz = p.3

The mean (value) of an integrable function f on a Jordan measurable set
E ⊂ Rn of non-zero volume is (by definition)

1

v(E)

∫
E

f .

The centroid4 of E is the point CE ∈ Rn such that for every linear (or
affine) f : Rn → R the mean of f on E is equal to f(CE). That is,

CE =
1

v(E)

(∫
E

x1 dx, . . . ,

∫
E

xn dx

)
,

which is often abbreviated to CE = 1
v(E)

∫
E
x dx.

8b7 Exercise. Find the centroids of the following bodies in R3:
(a) The cone built over the unit disk, the height of the cone is h.
(b) The tetrahedron bounded by the three coordinate planes and the

plane x
a

+ y
b

+ z
c

= 1.
(c) The hemispherical shell {a2 ≤ x2 + y2 + z2 ≤ b2, z ≥ 0}.
(d) The octant of the ellipsoid {x2/a2 + y2/b2 + z2/c2 ≤ 1, x, y, z ≥ 0}.

The solid torus in R3 with minor radius r and major radius R (for 0 <
r < R <∞) is the set

Ω̃ = {(x, y, z) :
(√

x2 + y2 −R
)
2 + z2 ≤ r2} ⊂ R3

generated by rotating the disk

Ω = {(x, z) : (x−R)2 + z2 ≤ r2} ⊂ R2

1Hint: The integral equals
∫∫
x2+y2≤1 e

x2+y2
(∫∫

u2+v2≤1−(x2+y2)
e−(u

2+v2) dudv
)

dxdy.

Now use the polar coordinates.
2Hint: 6e14 can help.
3Hint: 6m4 can help.
4In other words, the barycenter of (the uniform distribution on) E.
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on the (x, z) plane (with the center (R, 0) and radius r) about the z axis.

Interestingly, the volume 2π2Rr2 of Ω̃ is equal to the area πr2 of Ω multiplied
by the distance 2πR traveled by the center of Ω. (Thus, it is also equal to
the volume of the cylinder {(x, y, z) : (x, z) ∈ Ω, y ∈ [0, 2πR].) Moreover,
this is a special case of a general property of all solids of revolution.

8b8 Proposition. (The second Pappus’s centroid theorem)1 2 Let Ω ⊂
(0,∞)×R ⊂ R2 be a Jordan measurable set and Ω̃ = {(x, y, z) :

(√
x2 + y2, z

)
∈

Ω} ⊂ R3. Then Ω̃ is Jordan measurable, and

v3(Ω̃) = v2(Ω) · 2πxCE
;

here CE = (xCE
, yCE

, zCE
) is the centroid of E.

8b9 Exercise. Prove Prop. 8b8.3

8c Differentiating set functions

As was noted in the end of Sect. 6a, in dimension one an (ordinary) function
F̃ : R → R leads to a set function F : [s, t) 7→ F̃ (t) − F̃ (s); clearly, F
is additive: F ([r, s)) + F ([s, t)) = F ([r, t)). Moreover, every additive set
function F defined on one-dimensional boxes corresponds to some F̃ (unique
up to adding a constant); namely, F̃ (t) = F ([0, t)).

If F̃ is differentiable, F̃ ′ = f , then F and f are related by

F ([t− ε, t))
ε

→ f(t) ,
F ([t, t+ ε))

ε
→ f(t) as ε→ 0 + .

1Pappus of Alexandria (≈ 0290–0350) was one of the last great Greek mathematicians
of Antiquity.

2The first Pappus’s centroid theorem, about the surface area, has to wait for Analysis
4.

3Hint: use cylindrical coordinates: Ψ(r, ϕ, z) = (r cosϕ, r sinϕ, z).
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Equivalently,

(8c1)
F ([t− ε1, t+ ε2))

ε1 + ε2
→ f(t) as ε1, ε2 → 0 + .

And if f is integrable on [s, t] then1

F ([s, t)) =

∫
[s,t]

f .

In dimension 2 a similar construction exists, but is more cumbersome and
less useful:

F ([s1, t1)× [s2, t2)) = F̃ (t1, t2)− F̃ (t1, s2)− F̃ (s1, t2) + F̃ (s1, s2) ;

F̃ (s, t) = F ([0, s)× [0, t)) ;

this time F̃ is unique up to adding ϕ(t1) + ψ(t2). In higher dimensions F̃ is
even less useful; we do not need it. Instead, we generalize (8c1) as follows.

First, we define an additive box function.

8c2 Definition. An additive box function F (in dimension n) is a real-valued
function on the set of all boxes (in Rn) such that

F (B) =
∑
C∈P

F (C)

whenever P is a partition of a box B.

Second, we define the aspect ratio α(B) of a box B = [s1, t1] × · · · ×
[sn, tn] ⊂ Rn by2

α(B) =
max(t1 − s1, . . . , tn − sn)

min(t1 − s1, . . . , tn − sn)
.

Clearly, α(B) = 1 if and only if B is a cube.
Third, we define the derivative of an additive box function F at a point

x as the limit of the ratio F (B)
v(B)

as B tends to x in the following sense:

(8c3) B 3 x ; v(B)→ 0 ; α(B)→ 1 .

1Can you prove it (a) for continuous f , (b) in general? Try 6b1 in concert with the
mean value theorem. Anyway, it is the one-dimensional case of (8e4).

2It appears that “thin” boxes (of large aspect ratio) are dangerous to the main argument
of the proof (see 8h1); this is why we need to control the aspect ratio.
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Symbolically,

F ′(x) = lim
B→x

F (B)

v(B)
.

It means: for every ε > 0 there exists δ > 0 such that
∣∣F (B)
v(B)
− F ′(x)

∣∣ ≤ ε for

every box B satisfying B 3 x, vol(B) ≤ δ and α(B) ≤ 1 + δ.
If this limit exists we say that F is differentiable at x (or on Rn, if the

limit exists for all x; or on a given box, etc).
In dimension one, F is differentiable if and only if F̃ is, and F ′ = F̃ ′.
In general the limit need not exist, and we introduce the lower and upper

derivatives,

∗F
′(x) = lim inf

B→x

F (B)

v(B)
, ∗F ′(x) = lim sup

B→x

F (B)

v(B)
.

8d Derivative of integral

Every locally integrable1 function f : Rn → R leads to an additive box
function F : B 7→

∫
B
f (as was seen in Sect. 6j).

Can we restore f from F? Surely not, since F is insensitive to a change
of f on a set of volume zero (by 6g1). However, the equivalence class of f
can be restored, as we’ll see soon.

We say that two functions f, g are equivalent, if
∗∫
B
|f − g| = 0 for every

box B.
If two continuous functions are equivalent then they are equal (think,

why).

8d1 Proposition. If F : B 7→
∫
B
f for a locally integrable function f :

Rn → R, then the three functions ∗F
′, f , ∗F ′ are (pairwise) equivalent.

Proof. Given a box B, we use Lipschitz functions f−L , f
+
L : B → R (intro-

duced in Sect. 6i) and their limits f−∞, f
+
∞ : B → R;2

f−L (x) ↑ f−∞(x) , f+
L (x) ↓ f+

∞(x) as L→∞ .

Clearly, f−∞ ≤ f ≤ f+
∞. We know that

∫
B
f−L ↑

∫
B
f and

∫
B
f+
L ↓

∫
B
f as

L→∞. Thus,

∗∫
B

|f − f+
∞| =

∗∫
B

(f+
∞ − f) ≤ lim

L

∗∫
B

(f+
L − f) = 0 ,

1That is, integrable on every box.
2In fact, f−∞(x) = lim infx1→x f(x1) and f+∞(x) = lim supx1→x f(x1), but we do not

need it.
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therefore f and f+
∞ are equivalent. Similarly, f and f−∞ are equivalent. On

the other hand,
F (B)

v(B)
=

1

v(B)

∫
B

f ≤ sup
B
f ,

therefore
∗F ′(x) = lim sup

B→x

F (B)

v(B)
≤ lim sup

B→x
sup
B
f+
L = f+

L (x)

for all L, which shows that ∗F ′ ≤ f+
∞. Similarly, ∗F

′ ≥ f−∞. We see that
f−∞ ≤ ∗F

′ ≤ ∗F ′ ≤ f+
∞ and f−∞, f, f

+
∞ are equivalent, therefore all these

functions are equivalent.

8e Integral of derivative

8e1 Proposition. (a) If an additive box function F is differentiable on a
box B then

v(B) inf
x∈B

F ′(x) ≤ F (B) ≤ v(B) sup
x∈B

F ′(x) .

(b) For every additive box function F ,

v(B) inf
x∈B

∗F
′(x) ≤ F (B) ≤ v(B) sup

x∈B

∗F ′(x) .

8e2 Lemma. For every partition P of a box B and every additive box
function F ,

min
C∈P

F (C)

v(C)
≤ F (B)

v(B)
≤ max

C∈P

F (C)

v(C)
.

Proof. Denoting a = minC∈P
F (C)
v(C)

and b = maxC∈P
F (C)
v(C)

we have av(C) ≤
F (C) ≤ bv(C) for all C ∈ P ; the sum over C gives av(B) ≤ F (B) ≤
bv(B).

8e3 Lemma. For every box B and every ε > 0 there exists a partition P of
B such that v(C) ≤ ε and α(C) ≤ 1 + ε for all C ∈ P .

Proof. Given B = [s1, t1]× · · · × [sn, tn], for arbitrary natural number K we
define natural numbers k1, . . . , kn by

k1 − 1

K
≤ t1 − s1 <

k1
K
, . . . ,

kn − 1

K
≤ tn − sn <

kn
K
,

divide [s1, t1] into k1 equal intervals, . . . , [sn, tn] into kn equal intervals,
and accordingly, B into k1 . . . kn equal boxes, each C ∈ P being a shift
of [0, t1−s1

k1
]× · · · × [0, tn−sn

kn
]. For arbitrary i, j ∈ {1, . . . , n} we have

ti−si
ki

tj−sj
kj

=
(ti − si)kj
ki(tj − sj)

≤ kikj
ki(kj − 1)

=
kj

kj − 1
= 1+

1

kj − 1
≤ 1+

1

K(tj − sj)− 1
,
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thus,

α(C) ≤ 1 +
1

K min(t1 − s1, . . . , tn − sn)− 1
→ 0 as K →∞ .

Also,

v(C) =
t1 − s1
k1

. . .
tn − sn
kn

≤ 1

Kn
→ 0 as K →∞ .

It remains to take K large enough.

Proof of Prop. 8e1. Item (a) is a special case of (b); we’ll prove (b).
Lemma 8e3 (with ε = 1) gives a partition P1 of B such that v(C) ≤ 1 and

α(C) ≤ 1+1 for all C ∈ P1. Lemma 8e2 gives C1 ∈ P1 such that F (C1)
v(C1)

≥ F (B)
v(B)

.

We repeat the process for C1 (in place ofB) and ε = 1/2 and get C2 ⊂ C1 such

that v(C2) ≤ 1/2, α(C2) ≤ 1 + 1/2 and F (C2)
v(C2)

≥ F (C1)
v(C1)

≥ F (B)
v(B)

. Continuing

this way we get boxes B ⊃ C1 ⊃ C2 ⊃ . . . , v(Ck) → 0, α(Ck) → 1, and
F (Ck)
v(Ck)

≥ F (B)
v(B)

for all k. The intersection of all Ck is {x} for some x ∈ B,

and Ck → x in the sense of (8c3). Thus, ∗F ′(x) ≥ lim supk
F (Ck)
v(Ck)

≥ F (B)
v(B)

,

and therefore F (B) ≤ v(B) supx∈B
∗F ′(x). The other inequality is proved

similarly (or alternatively, turn to (−F )).

Combining 8e1(a) and 6b1 we get

(8e4) F (B) =

∫
B

F ′

whenever F ′ exists and is integrable on B. Here is a more general result.

8e5 Exercise. Prove that

∗

∫
B
∗F
′ ≤ F (B) ≤

∗∫
B

∗F ′

for every box B and additive box function F such that ∗F
′ and ∗F ′ are

bounded on B.

If ∗

∫
B ∗F

′ =
∗∫
B
∗F ′ then ∗F

′ and ∗F ′ are integrable and moreover, every
function sandwiched between them is integrable (with the same integral).1

In this case it is convenient to interpret F ′ as any such function and write

F (B) =

∫
B

F ′

even though F may be non-differentiable at some points. (You surely know
one-dimensional examples!) However, the equality ∗

∫
B ∗F

′ =
∗∫
B
∗F ′ may

fail; here is a counterexample.

1A similar situation appeared in Sect. 7d.
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8e6 Example. There exists a nonnegative box function F (in one dimension)
such that ∗

∫
[0,1] ∗F

′ <
∗∫

[0,1]
∗F ′.

We choose disjoint intervals [sk, tk] ⊂ [0, 1], whose union is dense on [0, 1],
such that

∑
k(tk − sk) = a ∈ (0, 1), define F by1

F ([s, t]) =
∑
k

length
(
[sk, tk] ∩ [s, t]

)
,

and observe that F ([0, 1]) = a, 0 ≤ ∗F ′ ≤ ∗F ′ ≤ 1 and

F ′(x) = 1 for all x ∈
⋃
k

(sk, tk)

(think, why). Thus,
∗∫

[0,1]
∗F ′ = 1 (since the integrand is 1 on a dense set).

However, ∗
∫
[0,1] ∗F

′ ≤ F ([0, 1]) = a < 1.2

8f Set function induced by mapping

Consider a mapping ϕ : Rm → Rn such that the inverse image ϕ−1(B) of
every box B is a bounded set. (An example: ϕ : R2 → R, ϕ(x, y) = x2 + y2.)
It leads to a pair of box functions F∗ ≤ F ∗ (in dimension n),

(8f1) F∗(B) = v∗(ϕ
−1(B◦)) , F ∗(B) = v∗(ϕ−1(B)) ,

generally not additive but rather superadditive and subadditive: for every
partition P of a box B,

F∗(B) ≥
∑
C∈P

F∗(C) , F ∗(B) ≤
∑
C∈P

F ∗(C) ,

which follows from (6f3), (6f4) and the fact that ϕ−1(C◦1) ∩ ϕ−1(C◦2) =
ϕ−1(C◦1 ∩ C◦2) = ∅ when C◦1 ∩ C◦2 = ∅.

If F∗(B) = F ∗(B) then ϕ−1(B) is Jordan measurable, and ϕ−1(∂B) is
of volume zero; if this happens for all B then the box function F (B) =
v(ϕ−1(B)) is additive. A useful sufficient condition is given below in terms
of functions J−, J+ defined by

(8f2) J−(x) = lim inf
B→x

F∗(B)

v(B)
, J+(x) = lim sup

B→x

F ∗(B)

v(B)
.

1Equivalently, F ([s, t]) = v∗(A ∩ [s, t]) where A = ∪k[sk, tk].
2In fact, F ′ is Lebesgue integrable, and its integral is equal to a.
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8f3 Proposition. If J−, J+ are locally integrable and equivalent then

F∗(B) = F ∗(B) =

∫
B

J− =

∫
B

J+

for every box B.

In this case1

(8f4) v
(
ϕ−1(B)

)
=

∫
B

J

where J is any function equivalent to J−, J+.

8f5 Exercise. Prove existence of J and calculate it for ϕ : R2 → R defined
by (a) ϕ(x, y) = x2 + y2; (b) ϕ(x, y) =

√
x2 + y2; (c) ϕ(x, y) = |x| + |y|,

taking for granted that the area of a disk is πr2.

8f6 Exercise. Prove existence of J and calculate it for ϕ : R3 → R2 defined
by ϕ(x, y, z) =

(√
x2 + y2, z

)
, taking for granted Prop. 8b8.

We generalize 8e2, 8e1, 8e4.

8f7 Exercise. For every partition P of a box B,

min
C∈P

F∗(C)

v(C)
≤ F∗(B)

v(B)
≤ F ∗(B)

v(B)
≤ max

C∈P

F ∗(C)

v(C)
.

Prove it.

8f8 Exercise.

v(B) inf
x∈B

J−(x) ≤ F∗(B) ≤ F ∗(B) ≤ v(B) sup
x∈B

J+(x) .

Prove it.

8f9 Exercise.

∗

∫
B

J− ≤ F∗(B) ≤ F ∗(B) ≤
∗∫
B

J+ .

Prove it.2

Prop. 8f3 follows immediately.

1Can this happen when m < n? If you are intrigued, try the inverse to the mapping of
6g11.

2Curiously, the left-hand and the right-hand sides differ thrice: ∗
∫

,
∗∫

; lim inf, lim sup;
v∗, v

∗.
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8f10 Remark. Similar statements hold for a mapping defined on a subset
of Rm (rather than the whole Rm). If ϕ : A→ Rn for a given A ⊂ Rm then
ϕ−1(B) ⊂ A for every B, but nothing changes in (8f1), (8f2) and Prop. 8f3.

8f11 Remark. If J−, J+ are integrable and equivalent on a given box B
(and not necessarily on every box) then v(ϕ−1(C)) =

∫
C
J for every box

C ⊂ B.

8f12 Exercise. Calculate J for the projection mapping ϕ(x, y) = x (a)
from the disk A = {(x, y) : x2 + y2 ≤ 1} ⊂ R2 to R; (b) from the annulus
A = {(x, y) : 1 ≤ x2 + y2 ≤ 4} ⊂ R2 to R. Is J (locally) integrable?

8f13 Exercise. Calculate J for the mapping ϕ(x) = sinx from the interval
[0, 10π] ⊂ R to R. Is J (locally) integrable?

8g Change of variable in general

8g1 Proposition. If ϕ : Rm → Rn is such that1 J−, J+ are locally integrable
and equivalent then for every integrable f : Rn → R the function f◦ϕ : Rm →
R is integrable and ∫

Rm

f ◦ ϕ =

∫
Rn

fJ .

Proof. First, the claim holds when f = 1lB is the indicator of a box, since∫
Rn

fJ =

∫
B

J
(8f4)
= v(ϕ−1(B)) =

∫
Rm

1lϕ−1(B) =

∫
Rm

f ◦ ϕ .

Second, by linearity in f the claim holds whenever f is a step function
(on some box, and 0 outside).

Third, given f integrable on a box B (and 0 outside), we consider arbi-
trary step functions g, h on B such that g ≤ f ≤ h. We have g ◦ϕ ≤ f ◦ϕ ≤
h ◦ ϕ and

∫
Rm g ◦ ϕ =

∫
B
gJ ,

∫
Rm h ◦ ϕ =

∫
B
hJ , thus,∫

B

gJ ≤
∗

∫
Rm

f ◦ ϕ ≤
∗∫
Rm

f ◦ ϕ ≤
∫
B

hJ ,

∫
B

gJ ≤
∫
B

fJ ≤
∫
B

hJ .

We take M such that |J(·)| ≤M on B and get∫
B

hJ −
∫
B

gJ =

∫
B

(h− g)J ≤M

∫
B

(h− g) ;

thus, integrability of f implies integrability of f ◦ ϕ and the needed equality
for the integrals.

1We still assume that the inverse image of a box is bounded.
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8g2 Corollary. If ϕ : Rm → Rn is such that J−, J+ are locally integrable
and equivalent then:

(a) for every Jordan measurable set E ⊂ Rn the set ϕ−1(E) ⊂ Rm is
Jordan measurable;

(b) for every integrable f : E → R the function f ◦ ϕ is integrable on
ϕ−1(E), and ∫

ϕ−1(E)

f ◦ ϕ =

∫
E

fJ .

Proof. (a) apply 8g1 to f = 1lE; (b) apply 8g1 to f1lE.

8g3 Remark. If ϕ : A → Rn is such that J−, J+ are integrable and equiv-
alent on a given box B (and not necessarily on every box) then for every
integrable f : B → R the function f ◦ ϕ is integrable on ϕ−1(B), and∫

ϕ−1(B)

f ◦ ϕ =

∫
B

fJ .

Also, 8g2 holds for E ⊂ B.

8g4 Exercise. (a) Prove that
∫
x2+y2≤1 f

(√
x2 + y2

)
dxdy = 2π

∫
[0,1]

f(r)r dr

for every integrable f : [0, 1]→ R;
(b) calculate

∫
x2+y2≤1 e−(x

2+y2)/2 dxdy. (Could you do it by iterated inte-

grals?)

8h Change of variable for a diffeomorphism

8h1 Proposition. Let U, V ⊂ Rn be open sets and ϕ : V → U a diffeomor-
phism, then1

J−(x) = J+(x) = | det(Dψ)x|
for all x ∈ U ; here ψ = ϕ−1 : U → V .

Proof. Let x0 ∈ U . Denote T = (Dψ)x0 . By Theorem 6n1, v(T (E)) =
| detT |v(E) for every Jordan measurable E ⊂ Rn. Note that ϕ−1(E) = ψ(E).
It is sufficient to prove that

v∗(ψ(B◦))

v(T (B))
→ 1 ,

v∗(ψ(B))

v(T (B))
→ 1 as B → x .

Similarly to Sections 3e, 4c we may assume that x0 = 0, ψ(x0) = 0 and
T = id; also, for every ε > 0 we have a neighborhood Uε of 0 such that

(1− ε)|x1 − x2| ≤ |y1 − y2| ≤ (1 + ε)|x1 − x2|
1detDψ is called the Jacobian of ψ and often denoted by Jψ.
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whenever x1, x2 ∈ Uε and y1 = ψ(x1), y2 = ψ(x2). Here | · | is the Euclidean
norm; but we can get the same (taking a smaller neighborhood if needed) for
an equivalent norm:

(1− ε)‖x1 − x2‖ ≤ ‖y1 − y2‖ ≤ (1 + ε)‖x1 − x2‖

where
‖x‖ = max(|x1|, . . . , |xn|) for x = (x1, . . . , xn) .

That is, {x : ‖x‖ ≤ r} = [−r, r]n is a cube.
We may assume that B ⊂ Uε and α(B) ≤ 1 + ε. Denoting the center of

B by xB we have

‖x− xB‖ ≤ rB =⇒ x ∈ B =⇒ ‖x− xB‖ ≤ (1 + ε)rB

for some rB > 0. It is sufficient to prove that

(1− ε)2(B − xB) ⊂ ψ(B)− yB ⊂ (1 + ε)2(B − xB)

(where yB = ψ(xB)), since this implies (1−ε)2nv(B) ≤ v∗(ψ(B)) ≤ v∗(ψ(B)) ≤
(1 + ε)2nv(B).

On one hand, ψ(B)− yB ⊂ (1 + ε)2(B − xB) since

x ∈ B =⇒ ‖ψ(x)− yB‖ ≤ (1 + ε)‖x− xB‖ ≤ (1 + ε)2rB =⇒
=⇒ ψ(x)− yB ∈ (1 + ε)2(B − xB) .

On the other hand, (1− ε)2(B − xB) ⊂ ψ(B)− yB since

y − yB ∈ (1− ε)2(B − xB) =⇒

=⇒ ‖ϕ(y)− xB‖ ≤
1

1− ε
‖y − yB‖ ≤ (1− ε)(1 + ε)rB ≤ rB =⇒

=⇒ ϕ(y) ∈ B =⇒ y − yB ∈ ψ(B)− yB .

We see that J−, J+ are integrable and equivalent (moreover, equal and
continuous) on every box B ⊂ U . According to 8g2 (and 8g3), for every
Jordan measurable E ⊂ B and integrable f : E → R,

ψ(E) is Jordan measurable,(8h2)

f ◦ ϕ is integrable on ψ(E), and

∫
ψ(E)

f ◦ ϕ =

∫
E

f | detDψ| .(8h3)

Given a compact subset K ⊂ U , we generally cannot cover K by a single
box B ⊂ U , but we can cover it by a finite collection of such boxes.
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8h4 Lemma. If U ⊂ Rn is open and K ⊂ U is compact then K ⊂ B1 ∪
· · · ∪Bk ⊂ U for some boxes B1, . . . , Bk (and some k).

Proof. The number ε = infx∈K dist(x,Rn \ U) is not 0, since the function
x 7→ dist(x,Rn \U) is continuous (moreover, Lip(1)) on K. For δ = ε

2
√
n

each

δ-pixel (recall the end of Sect. 6k) intersecting K is contained in U .

8h5 Corollary. ψ(E) is Jordan measurable whenever E ⊂ U is a Jordan
measurable set contained in a compact subset of U .

Proof. E ⊂ B1 ∪ · · · ∪ Bk; sets ψ(E ∩ Bi) are Jordan measurable by (8h2);
their union ψ(E) is thus Jordan measurable.

Proposition 8a2 follows immediately. Theorem 8a5 needs a bit more ef-
fort.

Given A = B1 ∪ · · · ∪ Bk and f : A → R, can we represent it as f =
f1 + · · ·+ fk where each fi vanishes outside Bi? Yes, we can; such technique
is called “partition of unity” and will be used repeatedly in Analysis 4. This
time its use is quite trivial, and could be avoided easily, but I do not want
to miss a good opportunity to get acquainted with it.

We define functions ρ1, . . . , ρk : A→ [0, 1] by1

ρi(x) =

{
1

1lB1
(x)+···+1lBk

(x)
if x ∈ Bi,

0 otherwise.

Clearly, ρ1 + · · ·+ ρk = 1 on A, each ρi vanishes outside Bi and is integrable
on Bi (just because it is a step function).

Given an integrable f : A→ R, we introduce f1 = fρ1, . . . , fk = fρk; by
(8h3),

∫
ψ(Bi)

fi ◦ ϕ =
∫
Bi
fi| detDψ|, that is,

∫
ψ(A)

fi ◦ ϕ =
∫
A
fi| detDψ|; the

sum over i = 1, . . . , k gives
∫
ψ(A)

f ◦ ϕ =
∫
A
f | detDψ|. Applying it to f1lE

for a Jordan measurable E ⊂ A we get∫
ψ(E)

f ◦ ϕ =

∫
E

f | detDψ|

for integrable f : E → R.

In order to get Theorem 8a5 it remains to change notation. First, denote
g = f ◦ ϕ, then f = g ◦ ψ, and

∫
ψ(E)

g =
∫
E

(g ◦ ψ)| detDψ|. Second, rename

g into f and ψ into ϕ.

1Do you want to propose a simpler construction of ρ1, . . . , ρk? Well, you can; but let
me exercise the construction that will be reused in less trivial situations in Analysis 4. I
intentionally work with arbitrary (not just almost disjoint) boxes.
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Proof of Corollary 8a6. Given δ > 0, 6k11 gives us a compact Jordan mea-
surable set E1 ⊂ U such that v(U \ E1) ≤ δ. Similarly, compact F1 ⊂ V ,
v(V \ F1) ≤ δ. By 8a2, ϕ(E1) and ϕ−1(F1) are Jordan measurable. Intro-
ducing E = E1 ∪ ϕ−1(F1) and F = F1 ∪ ϕ(E1) we see that the sets E ⊂ U
and F ⊂ V are compact, Jordan measurable, v(U \ E) ≤ δ, v(V \ F ) ≤ δ
and F = ϕ(E). By 8a5,

∫
F
f =

∫
E

(f ◦ ϕ)| detDϕ|.
The inequality∫

U\E
(f ◦ ϕ)| detDϕ| ≤ (sup

V
|f |)(sup

U
| detDϕ|)δ

shows that the function (f ◦ ϕ)| detDϕ| on U is approximated by integrable
functions (f◦ϕ)| detDϕ|1lE. By Prop. 6d15, the function (f◦ϕ)| detDϕ| is in-
tegrable on U , and

∫
U

(f ◦ϕ)| detDϕ| is approximated by
∫
E

(f ◦ϕ)| detDϕ| =∫
F
f . Also

∫
V
f is approximated by

∫
F
f . In the limit we get

∫
V
f =∫

U
(f ◦ ϕ)| detDϕ|.
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