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Jordan measure and Riemann integral are generalized to unbounded sets
and functions via limiting procedures.

9a What is the problem

The n-dimensional unit ball in the lp metric,

E = {(x1, . . . , xn) : |x1|p + · · ·+ |xn|p ≤ 1} ,

is a Jordan measurable set, and its volume is a Riemann integral,

v(E) =

∫
Rn

1lE ,

of a bounded function with bounded support. In Sect. 9j we’ll calculate it:

v(E) =
2nΓn

(
1
p

)
pnΓ
(
n
p

+ 1
)

where Γ is a function defined by

Γ(s) =

∫ ∞
0

ts−1e−t dt for s > 0 ;
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here the integrand has no bounded support; and for s = 1
p
< 1 it is also un-

bounded (near 0). Thus we need a more general, so-called improper integral,
even for calculating the volume of a bounded body!

In relatively simple cases the improper integral may be treated via ad hoc
limiting procedure adapted to the given function; for example,∫ ∞

0

ts−1e−t dt = lim
k

∫ k

1/k

ts−1e−t dt .

In more complicated cases it is better to have a theory able to integrate rather
general functions on rather general n-dimensional sets. Different functions
may tend to infinity on different subsets (points, lines, surfaces), and still, we
expect

∫
(f+g) =

∫
f+
∫
g (linearity) to hold, as well as change of variables,

iterated integral etc.1

9b Improper Jordan measure

9b1 Lemma. v∗(A) = sup{v(E) : Jordan E ⊂ A} for all bounded A ⊂ Rn.

Proof. Clearly, v∗(A) ≥ supE v(E); we have to prove that v∗(A) ≤ supE v(E).
We have

v∗(A)
6f1
=
∗

∫
Rn

1lA
6e4
=
∗

∫
B

1lA
(6g7)
= sup

h≤1lA

∫
B

h

where h runs over step functions on B. The set E = {x ∈ B : h(x) > 0} ⊂ A
is Jordan (just a finite union of boxes), and

∫
B
h ≤ v(E) (since h ≤ 1lE), thus

v∗(A) ≤ supE v(E).

We extend the inner Jordan measure v∗ (defined in 6f1 for bounded sets)
to unbounded sets X ⊂ Rn:

(9b2) v∗(X) = sup{v(E) : Jordan E ⊂ X} ∈ [0,∞] .

9b3 Exercise.

v∗(X) = lim
r→∞

v∗(Xr) for all X ⊂ Rn ,

where Xr = {x ∈ X : |x| ≤ r}.
Prove it.

1Additional literature (for especially interested):
M. Pascu (2006) “On the definition of multidimensional generalized Riemann integral”,
Bul. Univ. Petrol LVIII:2, 9–16.
(Research level) D. Maharam (1988) “Jordan fields and improper integrals”, J. Math.
Anal. Appl. 133, 163–194.
Z. Kánnai (2008) “Uniform convergence for convexification of dominated pointwise con-
vergent continuous functions”, arXiv:0809.0393.

http://bmif.unde.ro/docs/20062/2%20PascuM.pdf
http://www.sciencedirect.com/science/article/pii/0022247X88903733
http://arxiv.org/abs/0809.0393
http://arxiv.org/abs/0809.0393
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9b4 Definition. A set A ⊂ Rn is locally Jordan measurable if A ∩ E is
Jordan measurable for all Jordan measurable E ⊂ Rn.

9b5 Exercise. A set A ⊂ Rn is locally Jordan measurable if and only if Ar
is Jordan measurable for all r.

Prove it.

9b6 Lemma. Locally Jordan measurable sets are an algebra of sets (in Rn).
That is, ∅, Rn \A, A∩B (and therefore also Rn, A∪B and A\B) are locally
Jordan measurable whenever A,B are.

Proof. For every Jordan measurable E the sets ∅ ∩ E = ∅, (Rn \ A) ∩ E =
E \ (A∩E) and (A∩B)∩E = (A∩E)∩ (B ∩E) are Jordan measurable by
6j4.

Generally, v∗ is not additive (even for bounded sets) but superadditive:

(9b7) v∗(A ]B) ≥ v∗(A) + v∗(B)

for all A,B ∈ Rn, A∩B = ∅ (since v∗(A]B) ≥ v(E ]F ) = v(E) + v(F ) for
all Jordan E ⊂ A, F ⊂ B).

9b8 Lemma. The restriction of v∗ to the algebra of locally Jordan sets is
additive.

Proof. Let A,B be locally Jordan sets, and A ∩B = ∅. We have

v∗(A)
9b3
= lim

r→∞
v∗(Ar) = lim

r→∞
v(Ar) .

The same holds for B and A]B. It remains to take the limit in v(Ar]Br) =
v(Ar) + v(Br).

For a locally Jordan A, v∗(A) may be called the volume of A.

9b9 Definition. A locally volume zero set is a locally Jordan measurable
set Z ⊂ Rn such that v∗(Z) = 0.

By 9b3 and 9b5,

(9b10) Z is locally volume zero ⇐⇒ ∀r
(
Zr is volume zero

)
.

Here is a generalization of 6k4.

9b11 Lemma. A set A ⊂ Rn is locally Jordan measurable if and only if its
boundary is locally volume zero.
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Proof. By 9b5, (9b10) and 6k4 it is sufficient to prove that

∀r
(
∂(Ar) is volume zero

)
⇐⇒ ∀r

(
(∂A)r is volume zero

)
.

On one hand, (∂A)r ⊂ ∂(As) for r < s. On the other hand, ∂(Ar) ⊂
(∂A)r ∪ {x : |x| = r}. (Alternatively: (∂Ar)∆(∂A)r ⊂ {x : |x| = r}.)

Similarly to 9b4, for arbitrary X ⊂ Rn, a set A ⊂ X is called locally Jor-
dan measurable in X if A∩E is Jordan measurable for all Jordan measurable
E ⊂ X. (Note that X is locally Jordan in X, even if not in Rn.) If A is
locally Jordan in Rn then A ∩X is locally Jordan in X.1 More generally, if
X ⊂ Y ⊂ Rn and A ⊂ Y is locally Jordan in Y then A∩X is locally Jordan
in X.

Similarly to 9b6, sets locally Jordan in X are an algebra of sets (in X).
That is, ∅, X \A, A∩B (and therefore also X, A∪B and A \B) are locally
Jordan measurable in X whenever A,B are. (Prove it.)

Similarly to 9b8, the restriction of v∗ to this algebra of sets is additive
(and may be called the volume in X). However, the proof is different, since
Ar are now irrelevant.

9b12 Lemma. The restriction of v∗ to the algebra of sets locally Jordan in
X is additive.

Proof. Let A,B be locally Jordan in X, and A ∩ B = ∅. By (9b7) it is
sufficient to prove that v∗(A]B) ≤ v∗(A)+v∗(B). Let E ⊂ A]B be Jordan,
then v(E) = v

(
(E∩A)](E∩B)

)
= v(E∩A)+v(E∩B) ≤ v∗(A)+v∗(B).

Similarly to 9b9, a set of locally volume zero in X is a locally Jordan in
X set Z ⊂ X such that v∗(Z) = 0.

A counterpart of 9b11 holds but also needs a different proof.

9b13 Lemma. A set A ⊂ X is locally Jordan in X if and only if ∂A∩X is
locally volume zero in X.

Proof. By 9b11 it is sufficient to prove that

v∗
(
∂(A ∩ E)

)
= 0 ⇐⇒ v∗(∂A ∩ E) = 0

for every Jordan E ⊂ X. To this end it is sufficient to check that(
∂(A ∩ E)

)
∆(∂A ∩ E) ⊂ ∂E for all A,E ⊂ Rn .

1Do such A ∩X exhaust all sets locally Jordan in X? Generally, not (try X = R \Q).
For an open X, I do not know. (I guess, not.)
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In other words, that ∂(A ∩ E) ∩ U = (∂A ∩ E) ∩ U both for U = E◦ and
for U = (Rn \ E)◦. The latter case is trivial: ∅ = ∅. Let U = E◦. We note
that “boundary” is a local notion: A∩U = B ∩U implies ∂A∩U = ∂B ∩U
(given that U is open). We have (A∩E)∩U = A∩U , thus ∂(A∩E)∩U =
∂A ∩ U = (∂A ∩ E) ∩ U .

In particular, for A = X we have

(9b14) ∂X ∩X is locally volume zero in X

for all X ⊂ Rn. (Even if ∂X = Rn.) Throwing away this set we get X \
(X ∩ ∂X) = X◦. It means that, without loss of generality, we may restrict
ourselves to open sets G ⊂ Rn (rather than arbitrary sets X ⊂ Rn), sets
locally Jordan in G, and their volumes in G. Similarly to 6k1,

(9b15) v∗(X
◦) = v∗(X) .

And do not forget that an open set need not be Jordan (even if bounded and
diffeomorphic to a disk, as noted in Sect. 8a), nor locally Jordan.

9c Monotone convergence of volumes

Given sets X,X1, X2, . . . we write Xi ↑ X when X1 ⊂ X2 ⊂ . . . and ∪iXi =
X. Similarly, we write Xi ↓ X when X1 ⊃ X2 ⊃ . . . and ∩iXi = X.

9c1 Theorem. (Monotone convergence theorem for volumes) Let X ⊂ Rn,
sets Ai ⊂ X be locally Jordan in X, and Ai ↑ X, then

v∗(Ai) ↑ v∗(X) as i→∞ .

9c2 Remark. By 6k11, for every Jordan set E,

v(E) = sup
K⊂E

v(K)

where K runs over compact Jordan sets (moreover, closed pixelated sets
suffice). Thus, (9b2) is equivalent to

v∗(A) = sup{v(K) : compact Jordan K ⊂ A} ∈ [0,∞] .

9c3 Lemma. If Xi ⊂ Rn, Xi ↓ ∅ and v∗(X1) < ∞, then v∗(Xi) ↓ 0 as
i→∞.
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Proof. Assume the contrary: v∗(Xi) ↓ 2ε for some ε > 0. For each i there
exists a compact Jordan set Ki ⊂ Xi such that v(Ki) ≥ v∗(Xi) − 2−iε. By
compactness there exists m such that K1 ∩ · · · ∩ Km = ∅. We have Km =
(Km\K1)∪· · ·∪(Km\Km−1), thus v(Km) ≤ v(Km\K1)+· · ·+v(Km\Km−1).

For each i = 1, . . . ,m− 1 we have

Ki ] (Km \Ki) = Ki ∪Km ⊂ Xi ∪Xm = Xi ;

v(Ki) + v(Km \Ki) ≤ v∗(Xi) ;

v(Km \Ki) ≤ v∗(Xi)− v(Ki) ≤ 2−iε ;

v(Km) ≤
m−1∑
i=1

2−iε < ε .

On the other hand, v(Km) ≥ v∗(Xm)−2−mε > 2ε−ε = ε; a contradiction.

9c4 Lemma. Let E ⊂ Rn be a Jordan set, f : E → R a bounded function,
and h : E → R an integrable function. Then

∗

∫
E

(f + h) =
∗

∫
E

f +

∫
E

h ,
∗∫
E

(f + h) =
∗∫
E

f +

∫
E

h .

Proof. On one hand,
∗∫

(f +h) ≤ ∗
∫
f +

∗∫
h =

∗∫
f +

∫
h. On the other hand,

∗∫
f =

∗∫(
(f +h)+(−h)

)
≤ ∗
∫

(f +h)+
∫

(−h), that is,
∗∫

(f +h) ≥ ∗
∫
f +

∫
h,

which proves the second relation. For the first, change the sign.

9c5 Lemma. Let E ⊂ Rn be a Jordan set, f, g : E → R bounded functions
such that f + g is integrable. Then

∗

∫
E

f +
∗∫
E

g =

∫
E

(f + g) =
∗∫
E

f +
∗

∫
E

g .

Proof.
∗∫
f =

∗∫(
(−g) + (f + g)

)
=
∗∫

(−g) +
∫

(f + g) =
∫

(f + g)− ∗
∫
g.

9c6 Corollary. Let E ⊂ Rn be a Jordan set, then

v∗(X) + v∗(E \X) = v(E)

for all subsets X ⊂ E.

Proof. 1lX + 1lE\X = 1lE; apply 9c5.

9c7 Lemma. If Xi ↑ X then v∗(X) ≤ limi v
∗(Xi) for bounded Xi ⊂ Rn.

Proof. By (9b2) it is sufficient to prove that v(E) ≤ limi v
∗(Xi) for all Jordan

E ⊂ X. We have X \Xi ↓ ∅, thus E \Xi ↓ ∅. By 9c3, v∗(E \Xi) ↓ 0. By 9c6,
v(E) = v∗(E ∩Xi) + v∗(E \Xi) ≤ v∗(Xi) + v∗(E \Xi)→ limi v

∗(Xi).
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Proof of Theorem 9c1. Denote V = limi v∗(Ai). Clearly, v∗(X) ≥ V ; we
have to prove that v∗(X) ≤ V , that is, v(E) ≤ V for all Jordan E ⊂ X.

Lemma 9c7 applied to Jordan sets E∩Ai ↑ E gives v(E) ≤ limi v(E∩Ai);
and v(E ∩ Ai) ≤ v∗(Ai) ≤ V .

9c8 Corollary. For all Jordan sets E1, E2, · · · ∈ Rn,

v∗(E1 ∪ E2 ∪ . . . ) ≤ v(E1) + v(E2) + . . .

Proof. v∗(E1 ∪ E2 ∪ . . . ) = limi v(E1 ∪ · · · ∪ Ei) ≤ v(E1) + v(E2) + . . .

9c9 Corollary. If ai ∈ R, εi > 0 satisfy
∑

i εi < 1 then there exists t ∈ (0, 1)
such that ∀i t /∈ [ai, ai + εi]. Moreover, there exist uncountably many such t.

9c10 Example. (A simple fact about Diophantine approximation) Uncount-

ably many real numbers x do not admit rational approximations x ≈ p

q

satisfying
∣∣∣x− p

q

∣∣∣ < 1

4q3
.

Indeed, for a given q the set

Aq =

{
x ∈ (0, 1) : ∃p

∣∣∣x− p

q

∣∣∣ < 1

4q3

}
consists of intervals of total length 1

2q2
(namely, q − 1 intervals of length 1

2q3

and two intervals of length 1
4q3

). Thus,
∑

q v1(Aq) =
∑

q
1

2q2
= 1

2
· π2

6
< 1.

Do not think that v∗(A1 ∪ A2 ∪ . . . ) = limi v∗(Ai) for arbitrary
A1 ⊂ A2 ⊂ . . .

9c11 Example. It can happen that Xi ↑ R and v∗(Xi) = 0 for all i.
Define Xi as consisting of all rational numbers with denominators at most

i and all irrational numbers. Then Xi has no interior points, thus v∗(Xi) = 0.
However, Xi ↑ R.

9d Improper integral

9d1 Lemma. A bounded function f : Rn → [0,∞) with bounded support
is integrable if and only if the set E = {(x, t) : 0 < t < f(x)} is Jordan
measurable. In this case

∫
Rn f = v(E).

Proof. If f is integrable then the set is Jordan, and the equality holds, ac-
cording to 6h1, 6h2 (and 6j4).

If E is Jordan then f is integrable by Th. 7d1, since f(x) =
∫
R 1lE(x, t) dt.
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We generalize integrability and integral as follows.

9d2 Definition. (a) A function f : Rn → R is Jordan measurable if the set

{(x, t) : x ∈ Rn, t ∈ R, t < f(x)}

is locally Jordan measurable in Rn+1.
(b) A Jordan measurable function f : Rn → R is integrable if

v∗
(
{(x, t) : 0 < t < f(x)}

)
<∞ and v∗

(
{(x, t) : f(x) < t < 0}

)
<∞ .

In this case its improper integral is∫
Rn
f = v∗

(
{(x, t) : 0 < t < f(x)}

)
− v∗

(
{(x, t) : f(x) < t < 0}

)
.

9d3 Remark. If f is Jordan measurable then the boundary of the set {(x, t) :
t < f(x)} is locally volume zero by 9b11, thus the graph {(x, t) : t = f(x)}
is locally volume zero (being a part of the boundary); by 9b6, sets {(x, t) :
t ≤ f(x)}, {(x, t) : t > f(x)}, {(x, t) : t ≥ f(x)} are locally Jordan; also sets
{(x, t) : 0 < t < f(x)} and {(x, t) : f(x) < t < 0} are locally Jordan, since
Rn × (0,∞) and Rn × (−∞, 0) are.

9d4 Remark. It may happen that v∗
(
{(x, t) : 0 < t < f(x)}

)
= ∞ and

v∗
(
{(x, t) : f(x) < t < 0}

)
< ∞. Then f is not integrable, and one says

that its improper integral is +∞ (= +∞− real). Similarly, real−∞ = −∞.
However, ∞−∞ is undefined.

9d5 Remark. In other words,∫
Rn
f =

∫
Rn

max(f, 0)−
∫
Rn

max(−f, 0) .

9d6 Remark. If a Jordan measurable function is bounded, with bounded
support, then 9d2(b) is satisfied, since the sets {(x, t) : 0 < t < f(x)} and
{(x, t) : f(x) < t < 0} are bounded. In this case the improper integral is
equal to the proper integral by 9d1 and 9d5.

Similarly to 6j5, given an integrable f : Rn → R and a locally Jordan
A ⊂ Rn, we define

(9d7)

∫
A

f =

∫
Rn
f · 1lA =

= v∗
(
{(x, t) : x ∈ A, 0 < t < f(x)}

)
− v∗

(
{(x, t) : x ∈ A, f(x) < t < 0}

)
,
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taking into account that A× R is locally Jordan in Rn+1 (recall 7d4).
Similarly to (6j6), using 9b8 we see that the improper integral is an

additive set function,

(9d8)

∫
A]B

f =

∫
A

f +

∫
B

f .

By Theorem 9c1,

(9d9)

∫
A

f = lim
i

∫
Ai

f

whenever A and Ai are locally Jordan sets such that Ai ↑ A (since in this
case Ai × R ↑ A× R).

In practice one often chooses bounded sets Ai such that f is bounded on
each Ai; this way an improper integral becomes the limit of proper integrals.
Alternatively,

(9d10)

∫
A

f = lim
i

∫
Ai

fi where fi(x) =


−i if f(x) ≤ −i,
f(x) if − i ≤ f(x) ≤ i,

i if i ≤ f(x)

(since Ai × [−i, i] ↑ A× R).

9d11 Proposition.
∫
Rn(f + g) =

∫
Rn f +

∫
Rn g for all Jordan measurable

f, g : Rn → [0,∞).

Proof. By (9d9) it is sufficient to prove that
∫
E

(f+g) =
∫
E
f+
∫
E
g for every

Jordan E ⊂ Rn.
On one hand, fi + gi ≤ (f + g)2i; using linearity of proper integral,∫

E
fi+

∫
E
gi =

∫
E

(fi+gi) ≤
∫
E

(f +g)2i, which gives
∫
E
f +

∫
E
g ≤

∫
E

(f +g).
On the other hand, (f + g)i ≤ fi + gi, thus

∫
E

(f + g)i ≤
∫
E
fi +

∫
E
gi,

which gives
∫
E

(f + g) ≤
∫
E
f +

∫
E
g.

9d12 Theorem. If f, g : Rn → R are integrable then f + g is integrable and∫
Rn

(f + g) =

∫
Rn
f +

∫
Rn
g .

Proof. First, max(f + g, 0) ≤ max(f, 0) + max(g, 0); by 9d11,
∫

max(f +
g, 0) ≤

∫
max(f, 0) +

∫
max(g, 0) < ∞. Similarly,

∫
max(−f − g, 0) < ∞.

Thus, f + g is integrable.
Second, f = max(f, 0) − max(−f, 0) and g = max(g, 0) − max(−g, 0),

thus f + g =
(
max(f, 0) + max(g, 0)

)
−
(
max(−f, 0) + max(−g, 0)

)
, but
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also f + g = max(f + g, 0) − max(−f − g, 0), therefore max(f + g, 0) +
max(−f, 0)+max(−g, 0) = max(f, 0)+max(g, 0)+max(−f−g, 0). By 9d11,∫

max(f+g, 0)+
∫

max(−f, 0)+
∫

max(−g, 0) =
∫

max(f, 0)+
∫

max(g, 0)+∫
max(−f−g, 0). Using 9d5,

∫
(f+g) =

∫
max(f+g, 0)−

∫
max(−f−g, 0) =∫

max(f, 0)−
∫

max(−f, 0) +
∫

max(g, 0)−
∫

max(−g, 0) =
∫
f +

∫
g.

Similarly to 9d2, for arbitrary X ⊂ Rn, a function f : X → R is called
Jordan measurable on X if the set {(x, t) : x ∈ X, t ∈ R, t < f(x)} is locally
Jordan measurable in X × R; and then the integral is defined by
(9d13)∫
X

f = v∗
(
{(x, t) : x ∈ X, 0 < t < f(x)}

)
−v∗

(
{(x, t) : x ∈ X, f(x) < t < 0}

)
(be it a number, +∞, −∞ or ∞ −∞). Similarly to 9d7, 9d8, a function
f integrable on X leads to an additive set function on the algebra of sets
locally Jordan in X. And again, (9b14) shows that only the interior of X
is relevant. Theorem 9d12 and Prop. 9d11 generalize readily to functions
X → R.

If X is locally Jordan in Rn then
∫
X
f defined by (9d13) is the same as∫

X
f defined by (9d7), that is,

∫
Rn f · 1lX . But be warned: if X is not locally

Jordan in Rn then
∫
Rn f · 1lX is not defined even for f = 1l; note also that the

set function X 7→
∫
X
f is generally not additive; in particular,

∫
X

1l = v∗(X).

9e Examples: Poisson formula; inequalities

9e1 Example (Poisson). Consider the integral∫∫
R2

e−(x2+y2) dxdy .

On one hand we may exhaust the plane R2 by the discs Ak = {(x, y) :
x2 + y2 < k2}. In this case,∫∫

Ak

e−(x2+y2) dxdy =

∫ 2π

0

dθ

∫ k

0

e−r
2

r dr = π(1− e−k2)→ π .

On the other hand, consider the exhaustion by the squares Bk = {(x, y) :
max(|x|, |y|) < k}. We get1

∫∫
Bk

e−(x2+y2) dxdy =

(∫ k

−k
e−x

2

dx

)(∫ k

−k
e−y

2

dy

)
→
(∫ ∞

−∞
e−x

2

dx

)2

.

1Recall 7b5, 7d3.
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Juxtaposing the answers, we obtain the celebrated Poisson formula:∫ ∞
−∞

e−x
2

dx =
√
π

The corresponding n-dimensional integral:

(9e2)

∫
Rn

e−〈Ax,x〉 dx =
πn/2√
detA

for every positive symmetric n× n matrix A.
First, observe that

(9e3)

∫
Rn

e−|x|
2

dx =

(∫ ∞
−∞

e−t
2

dt

)n
= πn/2 .

Also observe that

(9e4)

∫ ∞
−∞

e−at
2

dt =

√
π

a
.

If the matrix of A is diagonal, then (9e2) follows from (9e4). In general
we diagonalize it by choosing an orthonormal basis appropriately.

9e5 Example. Given α > 0, we consider f(x) = |x|−α for x ∈ Rn \ {0}.
First, let U = {x ∈ Rn : 0 < |x| < 1}. We split the punctured ball

into the layers Ck = {x : 2−k < |x| ≤ 21−k}, k ≥ 1. If x ∈ Ck then
the integrand is between 2α(k−1) and 2αk. Also, v(Ck) = 2−nkv(C1). Hence
the integral

∫
0<|x|<1

dx
|x|α converges or diverges simultaneously with the series∑

k≥1 2(α−n)k. We see that the integral converges if α < n and diverges
otherwise.

Second, let U = {x ∈ Rn : |x| > 1}. We use a similar decomposition into
the layers {2k ≤ |x| < 2k+1} and obtain the series

∑
k≥1 2(n−α)k. Hence, the

second integral converges iff α > n.
Thus,

∫
Rn\{0} f =∞ for all α ∈ (0,∞).

9e6 Example. Given α > 0, we consider the function f : (x, y) 7→ (1− x2 − y2)−α

on the disk U = {(x, y) : x2 + y2 < 1}. We take some εk ↓ 0 and exhaust U
by Gk = {(x, y) : x2 + y2 < (1− εk)2}. We have∫

Gk

f =

∫∫
x2+y2<(1−εk)2

dxdy

(1− x2 − y2)α
=

∫ 2π

0

dθ

∫ 1−εk

0

rdr

(1− r2)α
=

= 2π · 1

2

∫ 1−εk

0

ds

(1− s)α
= π

∫ 1

εk

dt

tα
→ π

1− α
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if α < 1, otherwise ∞. Thus,∫∫
x2+y2<1

dxdy

(1− x2 − y2)α
=

{
π

1−α for α ∈ (0, 1),

∞ for α ∈ [1,∞).

9e7 Exercise. Compute the integral
∫
Q
dx
|x| where Q = (0, 1)2 is the unit

square in R2.
Hint:

∫
dϕ

cosϕ
=
∫

d sinϕ
1−sin2 ϕ

.

9e8 Exercise. Compute
∫∫

R2 |ax+ by|e−(x2+y2)/2 dxdy.
Hint: choose a convenient orthonormal basis.

9e9 Exercise. Compute
∫
Rn |〈x, a〉|

pe−|x|
2

dx for a ∈ Rn and p ∈ (−1,∞).
Hint: choose a convenient orthonormal basis.

9e10 Exercise. Prove that
∫
R3

dξ
|x−ξ|2|y−ξ|2 = c

|x−y| for some constant c ∈
(0,∞).
Hint: a linear change of variables.

9e11 Exercise. For which values of p and q does the integral
∫∫
|x|+|y|>1

dxdy
|x|p+|y|q

converge?

9e12 Exercise. Find the sign of the integral
∫∫

max(|x|,|y|)<1
ln(x2 + y2) dxdy.

Hint:
∫ 1/ cosϕ

0
r ln r dr < 0 for ϕ ∈ [0, π/4].

9e13 Exercise. Whether the integrals
∫∫

R2
dxdy

1+x10y10
and

∫∫
R2 e−(x+y)4 dxdy

converge or diverge?

Some inequalities

Here are the integral versions of the classical inequalities of Cauchy-
Schwarz,1 2 Hölder3 4 and Minkowski.5 6

By L̃p(U) we denote7 (for a given open set U ⊂ Rn and a number p ∈
[1,∞)) the set of all functions f Jordan measurable on U , satisfying

∫
U
|f |p <

∞. For such f we define

‖f‖p =

(∫
U

|f |p
)1/p

.

1|a1b1 + · · ·+ anbn| ≤
√
|a1|2 + · · ·+ |an|2

√
|b1|2 + · · ·+ |bn|2, that is, |〈a, b〉| ≤ |a||b|.

2See also 6d16 (and 6d17(b)).
3|a1b1 + · · ·+ anbn| ≤ (|a1|p + · · ·+ |an|p)1/p(|b1|q + · · ·+ |bn|q)1/q.
4See also (3i2).
5(|a1 + b1|p + · · ·+ |an + bn|p)1/p ≤ (|a1|p + · · ·+ |an|p)1/p + (|b1|p + · · ·+ |bn|p)1/p.
6See also 1e15.
7The widely used notation Lp is reserved for the corresponding notion in the framework

of Lebesgue integration.
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9e14 Claim (Cauchy-Schwarz). Suppose f, g ∈ L̃2(U). Then fg ∈ L̃1(U)
and

∣∣ ∫
U
fg
∣∣ ≤ ‖f‖2‖g‖2.

9e15 Claim (Hölder). More generally, fg ∈ L̃1(U) and
∣∣ ∫

U
fg
∣∣ ≤ ‖f‖p‖g‖q

whenever f ∈ L̃p(U), g ∈ L̃q(U), 1
p

+ 1
q

= 1.

9e16 Claim (Minkowski). If f, g ∈ L̃p(U) then f+g ∈ L̃p(U) and ‖f+g‖p ≤
‖f‖p + ‖g‖p.

9e17 Exercise. Prove 9e15.
Hint: use the inequality ab ≤ ap

p
+ bq

q
for a, b ∈ [0,∞).

9e18 Exercise. Prove 9e16.
Hint: start with |a + b|p ≤ |a||a + b|p−1 + |b||a + b|p−1, then use Hölder’s
inequality.
Or, alternatively: if ‖f‖p ≤ 1 and ‖g‖p ≤ 1 then ‖cf + (1− c)g‖p ≤ 1 for all
c ∈ [0, 1], since the function t 7→ |t|p is convex.
Still another approach: ‖f‖p = sup{

∫
fg : ‖g‖q ≤ 1}.

9f Change of variables in improper integral

First we generalize Prop. 8a2.

9f1 Proposition. Let U, V ⊂ Rn be open sets, ϕ : U → V a diffeomorphism,
and A ⊂ U . Then A is locally Jordan in U if and only if ϕ(A) is locally Jordan
in V .

9f2 Lemma. Let E1, E2, . . . be Jordan sets, and a bounded X ⊂ Rn satisfy
v∗(X∆Ei)→ 0 as i→∞. Then X is a Jordan set, and v(Ei)→ v(X).

Proof. Apply 6d15 to 1lX and 1lEi .

9f3 Lemma. Let X ⊂ Rn, sets Ai ⊂ X be locally Jordan in X, and Ai ↑ X.
Then a set B ⊂ X is locally Jordan in X if and only if B ∩ Ai is locally
Jordan in Ai for each i, and in this case v∗(B ∩ Ai) ↑ v∗(B).

Proof. Let B∩Ai be locally Jordan in Ai for each i; we have to prove that B
is locally Jordan in X (the converse implication being trivial), that is, B∩E
is Jordan for every Jordan E ⊂ X.

Sets Fi = E \ Ai are Jordan measurable, and Fi ↓ ∅, thus v(Fi) → 0 by
9c3. Sets B∩Ai∩E are Jordan measurable, and (B∩E)\ (B∩Ai∩E) ⊂ Fi,
therefore v∗

(
(B∩E)\(B∩Ai∩E)

)
→ 0. By 9f2, B∩E is Jordan measurable.

Thus, B is locally Jordan in X. By Th. 9c1, v∗(B ∩ Ai) ↑ v∗(B).
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9f4 Corollary. Let G ⊂ Rn be open and A ⊂ G. Then A is locally Jordan
in G if and only if A∩E is Jordan for every Jordan E contained in a compact
subset of G, and the supremum over these E of v(A ∩ E) is equal to v∗(A).

Proof of Prop. 9f1. Let A be locally Jordan in U , and B = f(A) ⊂ V ; we’ll
prove that B is locally Jordan in V (the converse being the same for ϕ−1).
Let F ⊂ V be a Jordan set contained in a compact subset of V ; by 9f4 it
is sufficient to prove that B ∩ F is Jordan. By 8a2, the set E = ϕ−1(F ) is
Jordan measurable and contained in a compact subset of U . Thus, A ∩ E
is Jordan (and still contained in a compact subset of U). By 8a2 (again),
f(A ∩ E) is Jordan. It remains to note that f(A ∩ E) = B ∩ F .

Now we generalize Theorem 8a5 and Corollary 8a6.

9f5 Theorem. Let U, V ⊂ Rn be open sets, ϕ : U → V a diffeomorphism,
and f : V → R. Then f is Jordan measurable on V if and only if f ◦ ϕ is
Jordan measurable on U , and in this case∫

V

f =

∫
U

(f ◦ ϕ)| detDϕ| .

9f6 Remark. The equality may be “real = real”, “+∞ = +∞”, “−∞ =
−∞”, or “∞−∞ =∞−∞”.

Proof. The mapping (ϕ × id) : U × R → V × R, (ϕ × id)(x, t) = (ϕ(x), t),

is also a diffeomorphism, since D(ϕ × id) =
(
Dϕ 0

0 id

)
. Prop. 9f1 applied to

ϕ × id shows that the set {(x, t) : x ∈ U, t < (f ◦ ϕ)(x)} is locally Jordan
in U × R if and only if the set {(y, t) : y ∈ V, t < f(y)} is locally Jordan in
V × R. Thus, f ◦ ϕ is Jordan measurable on U if and only if f is Jordan
measurable on V .

It remains to prove the equality of the integrals. By 9d5 we may assume
that f ≥ 0. We take compact Jordan sets Ei ⊂ U such that Ei ↑ U , and
denote Fi = ϕ(Ei). By Theorem 8a5,

∀i
∫
Fi

fi =

∫
Ei

(fi ◦ ϕ)| detDϕ| ;

here fi(x) = min(f(x), i). By 9d1,∫
Fi

fi = v
(
A ∩ (Fi × [0, i]

)
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where A = {(x, t) : 0 < t < f(x)} ⊂ V ×R. By Th. 9c1, v
(
A∩ (Fi× [0, i])

)
↑

v∗(A), that is, ∫
Fi

fi ↑
∫
V

f .

Similarly,
∫
Ei

(fi ◦ ϕ)| detDϕ| ↑
∫
U

(f ◦ ϕ)| detDϕ|. Thus,
∫
V
f =

∫
U

(f ◦
ϕ)| detDϕ|.

9g Examples: Newton potential

The gravitational force F (x) exerted by the particle of mass µ at point ξ on
a particle of mass m at point x is

F (x) = −G mµ

|x− ξ|3
(x− ξ) = Gm∇U(x)

where the function U : x 7→ µ
|x−ξ| is called the Newton (or gravitational) po-

tential and G is the gravitational constant.1 2 This is the celebrated Newton
law of gravitation. The reason to replace the force F by the potential U is
simple: it is easier to work with scalar functions than with the vector ones.3

What happens if we have a system of point masses µ1, ..., µN at points
ξ1, ..., ξN? The forces are to be added, and the corresponding potential is

U(x) =
N∑
j=1

µj
|x− ξj|

.

Now, suppose that the masses are distributed with continuous density
µ(ξ) over a portion Ω of the space. Then the Newton potential is

U(x) =

∫
Ω

µ(ξ) dξ

|ξ − x|

(the integral being three-dimensional), and the corresponding gravitational
force (after normalization G = 1, m = 1) is again F = ∇U .

1G = 6.6743 · 10−11 N(m/kg)2; that is, if m = µ = 1 kg and |x − ξ| = 1 m then
|F | = 6.6743 · 10−11 newtons.

2Mathematicians usually omit not only the physical constant G but also the minus
sign; in physics, F = −∇U and U(x) = −Gµ 1

|x−ξ| (for m = 1).
3Knowing the force F one can write down the differential equations of motion of the

particle (Newton’s second law) mẍ = F , or ẍ = G∇ µ
|x−ξ| (note that m does not matter).

Then one hopes to integrate these equations and to find out where is the particle at time
t.
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Let us compute the Newton potential of the homogeneous mass distri-
bution (that is, µ(ξ) = 1) within the ball BR of radius R centered at the
origin:

U(x) =

∫
BR

dξ

|x− ξ|
.

By symmetry U is a radial function, that is, depends only on |x|.

9g1 Exercise. Check this!

Thus, it suffices to compute U at the point x = (0, 0, z), z ≥ 0. Using
the spherical coordinates ξ1 = r sin θ cosϕ, ξ2 = r sin θ sinϕ, ξ3 = r cos θ we
have1

U =

∫ R

0

dr 2π

∫ π

0

r2 sin θ dθ√
(z − r cos θ)2 + r2 sin2 θ

=

=

∫ R

0

dr 2π

∫ π

0

r2 sin θ dθ√
z2 − 2zr cos θ + r2︸ ︷︷ ︸

V

.

The under-braced expression V is the Newton potential of the homogeneous
sphere of radius r. We compute V using the variable

t =
√
z2 − 2zr cos θ + r2 .

Then |z − r| < t < z + r, and t dt = zr sin θ dθ. We get

V = 2πr2

∫ z+r

|z−r|

t dt

zr · t
=

2πr

z
(z + r − |z − r|) = 4π

r

z
min(r, z) .

Now we easily find U by integration:

U =

∫ R

0

V dr .

Outside the ball z > R, thus

U = 4π

∫ R

0

r2

z
dr =

4πR3

3z
.

Inside the ball z < R, thus2

U = 4π

(∫ z

0

r2

z
dr +

∫ R

z

r dr

)
= 4π

(z2

3
+
R2

2
− z2

2

)
=

2π

3
(3R2 − z2) .

1Note that in the case z < R the original integral is improper, and we treat it as
iterated! Wait for Sect. 9i for the needed theory.

2A wonder: the original improper integral turned into a proper integral.
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Finally,

U(x) =

{
4πR3

3|x| for |x| ≥ R,
2π
3

(3R2 − |x|2) for |x| ≤ R.

Observe that 4πR3/3 is exactly the total mass of the ball BR. That is,
together with Newton, we arrived at the conclusion that the gravitational
potential, and hence the gravitational force exerted by the homogeneous ball
on a particle is the same as if the whole mass of the ball were concentrated
at its center, if the point is outside the ball. Of course, you heard about this
already in the high-school.

Another important conclusion is that the potential V of the homogeneous
sphere does not depend on the point x when x is inside the sphere!1 Hence,
the gravitational force is zero inside the sphere. The same is true for the
homogeneous shell {ξ : a < |ξ| < b}: there is no gravitational force inside
the shell.

9g2 Exercise. Check that all the conclusions are true when the mass dis-
tribution µ(ξ) is radial: µ(ξ) = µ(ξ′) if |ξ| = |ξ′|.

9g3 Exercise. Find the potential of the homogeneous solid ellipsoid (x2 +
y2)/b2 + z2/c2 ≤ 1 at its center.

9g4 Exercise. Find the potential of the homogeneous solid cone of height
h and radius of the base r at its vertex.

9g5 Problem. Show that at sufficiently large distances the potential of a
solid S is approximated by the potential of a point with the same total mass
located at the center of mass of S with an error less than a constant divided
by the square of the distance. The potential itself decays as the distance, so
the approximation is good: its relative error is small.2

9h Monotone convergence of integrals

We generalize 9d1 as follows.

9h1 Lemma. Let f : Rn → [0,∞) be a bounded function with bounded
support, and X = {(x, t) : 0 < t < f(x)}. Then ∗

∫
Rn f = v∗(X).

1Since V does not depend on z for z < r.
2This estimate is rather straightforward. A more accurate argument shows that the

error is of order constant divided by the cube of the distance.
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Proof. On one hand, the argument of 6h1 gives v(E−) = L(f, P ) where
E− = ∪C∈PC × (0, infC f) ⊂ X; the supremum over partitions P gives

∗

∫
Rn f ≤ v∗(X).
On the other hand, for every Jordan set E ⊂ X we have

∫
R 1lE(x, t) dt ≤

f(x) for all x; thus,

v(E) =

∫
Rn

dx

∫
R

dt 1lE(x, t) ≤
∗

∫
Rn
f ;

by 9b1, the supremum over E gives v∗(X) ≤ ∗

∫
Rn f .

The (proper) lower integral ∗

∫
Rn f was defined by 6e4 for bounded f :

Rn → R with bounded support. Now we define the improper lower integral

∗

∫
X
f for arbitrary X ⊂ Rn and f : X → [0,∞) by

(9h2)
∗

∫
X

f = v∗
(
{(x, t) : x ∈ X, 0 < t < f(x)}

)
∈ [0,∞] ,

note that

(9h3)
∗

∫
X

f =
∗

∫
Rn
f · 1lX

and that, by Lemma 9h1, the two definitions do not conflict.
Similarly to (9d9) and (9d10),

(9h4)
∗

∫
X

f = lim
i ∗

∫
Ai

f

whenever sets Ai locally Jordan in X are such that Ai ↑ X; and

(9h5)
∗

∫
X

f = lim
i ∗

∫
Ai

min(f(·), i) ,

since Ai × [0, i] ↑ X × [0,∞), and Ai × [0, i] are locally Jordan in X × R.
Taking boxes Bi ↑ Rn we have, using 9h3, the proper lower integral and
(6g7),

∗

∫
X

f =
∗

∫
Rn
f · 1lX = lim

i ∗

∫
Bi

min(f, i) · 1lX = sup
i

sup
h≤min(f,i)·1lX

∫
Bi

h

where h runs over all step functions on Bi. It follows that

(9h6)
∗

∫
X

f = sup

{∫
Rn
h : h integrable, h ≤ f · 1lX

}
.

Given functions f, f1, f2, · · · : X → R we write fi ↑ f when f1(x) ≤
f2(x) ≤ . . . and fi(x)→ f(x) for all x ∈ X.

Do not think that fi ↑ f implies ∗

∫
fi ↑ ∗

∫
f ; it does not, even if

fi : R→ {0, 1}. For a counterexample recall 9c11.
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9h7 Theorem. (Monotone convergence theorem for integrals) Let X ⊂ Rn

be a set, fi : X → [0,∞) functions Jordan measurable on X, fi ↑ f , f : X →
[0,∞). Then

∫
X
fi ↑ ∗

∫
X
f .

Proof. Sets Ai = {(x, t) : x ∈ X, 0 < t < fi(x)} are locally Jordan in
X × R, and Ai ↑ A = {(x, t) : x ∈ X, 0 < t < f(x)}. By Theorem 9c1,
v∗(Ai) ↑ v∗(A). By (9d13),

∫
X
fi = v∗(Ai). By (9h2), ∗

∫
X
f = v∗(A).

9i Iterated improper integral

9i1 Lemma. For every f : Rm+n → [0,∞),

∗

∫
Rn+m

f ≤
∗

∫
Rn

(
x 7→

∗

∫
Rm

fx

)
.

Proof. By (9h6) it is sufficient to prove that∫
Rn+m

h ≤
∗

∫
Rn

(
x 7→

∗

∫
Rm

fx

)
for all integrable h such that h ≤ f . Using Theorem 7d1,∫

Rn+m
h =

∫
Rn

(
x 7→

∗

∫
Rm

hx

)
≤
∗

∫
Rn

(
x 7→

∗

∫
Rm

fx

)
.

Do not think that the equality holds for all f . For a counterexample take
f of 7c4 and consider 1− f .

9i2 Theorem. (Iterated improper integral for positive functions)
Let functions fi : Rn+m → [0,∞) be Jordan measurable, fi ↑ f , f :

Rn+m → [0,∞). Then

∗

∫
Rn+m

f =
∗

∫
Rn

(
x 7→

∗

∫
Rm

fx

)
.

9i3 Exercise. Let X ⊂ Rn, fi : X → [0,∞), fi ↓ 0 (pointwise), and

∗

∫
X
f1 <∞; then ∗

∫
X
fi ↓ 0.

Prove it.1

9i4 Exercise. ∗

∫
(f+g) ≤ ∗

∫
f+

∗∫
g for all bounded functions f, g : Rn →

R with bounded support.
Prove it.2

1Hint: use 9c3.
2Hint: given integrable h ≤ f + g, apply 9c5 to f and h− f .
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9i5 Exercise. If fi ↑ f then ∗

∫
Rn f ≤ limi

∗∫
Rn fi for bounded functions

fi : Rn → R with bounded support.
Prove it.1

Proof of Theorem 9i2. By 9i1 it is sufficient to prove “≥”. We take boxes
Bi ↑ Rn, define gi : Rn+m → [0,∞) by

gi(x) = min
(
fi(x), i

)
· 1lBi(x)

and note that gi ↑ f , ∗

∫
gi ↑ ∗

∫
f (recall (9h5)). We define ϕi, ϕ, ψ : Rn →

[0,∞] by

ϕi(x) =
∗∫
Rm

(gi)x , ϕi ↑ ϕ , ψ(x) =
∗

∫
Rm

fx .

We have to prove that ∗

∫
Rn ψ ≤ ∗

∫
Rn+m f .

By 9d1, each gi is integrable. By Theorem 7d1, each ϕi is integrable, and∫
Rn+m gi =

∫
Rn ϕi. By Theorem 9h7,

∫
ϕi ↑ ∗

∫
ϕ. Applying 9i5 to (gi)x ↑ fx

we get ψ ≤ ϕ. Thus

∗

∫
Rn
ψ ≤

∗

∫
Rn
ϕ = lim

i

∫
ϕi = lim

i

∫
Rn+m

gi =
∗

∫
Rn+m

f .

In practice, the function x 7→ ∗

∫
fx usually is Jordan measurable. But

in general this is not the case, even if f is continuously differentiable and
f(x, y)→ 0, ∇f(x, y)→ 0 as x2 + y2 →∞.

9i6 Example. Similarly to 8e6 we choose disjoint intervals [sk, tk] ⊂ [0, 1],
whose union is dense on [0, 1], such that

∑
k(tk − sk) = a ∈ (0, 1), define

f : R2 → [0,∞) by

f(x, y) =
∞∑
k=1

1l[sk,tk](x)1l[k,k+1](y)

and observe that∫ ∞
−∞

f(x, y) dy =
∞∑
k=1

1l[sk,tk](x) = ψ(x) ,
∗

∫
ψ = a < 1 =

∗∫
ψ .

In order to get f(x, y)→ 0 (as x2 + y2 →∞) we may take

f(x, y) =
∞∑
k=1

1

k
1l[sk,tk](x)1l[k,2k](y) .

1Hint: similar to 9c7 (with max(h− fi, 0) in place of E \Xi).
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In order to get f ∈ C1(R2) we may take

f(x, y) =
∞∑
k=1

1

k
g
( x− sk
tk − sk

)
h
(y − k

k

)
with appropriate g, h ∈ C1(R). In order to get also Df → 0 we may take

f(x, y) =
∞∑
k=1

1

k
(tk − sk)g

( x− sk
tk − sk

)
h
((tk − sk)(y − k)

k

)
.

9i7 Corollary. If f : Rn+m → [0,∞) is Jordan measurable then

∗

∫
Rn

dx
∗

∫
Rm

dy f(x, y) =

∫
Rn+m

f =
∗

∫
Rm

dy
∗

∫
Rn

dx f(x, y) .

Proof. Apply Theorem 9i2 to fi = f (and then consider also f̃(y, x) =
f(x, y)).

9i8 Corollary. For every open set G ⊂ Rn+m,

v∗(G) =
∗

∫
Rn
v∗(Gx) dx

where Gx = {y : (x, y) ∈ G} ⊂ Rm.

Proof. We have Ei ↑ G for some Jordan (moreover, pixelated) sets Ei; thus
1lEi ↑ 1lG, and Theorem 9i2 applies.

This way we can calculate the volume of an open set G even if G is
not Jordan measurable, and even if the function x 7→ v∗(Gx) is not Jordan
measurable (which can happen, as shown by 9i6).

9i9 Corollary. For every compact set K ⊂ Rn+m,

v∗(K) =
∗∫
Rn
v∗(Kx) dx

where Kx = {y : (x, y) ∈ K} ⊂ Rm.

Proof. We take boxes B1 ⊂ Rn, B2 ⊂ Rm, B = B1 × B2 ⊂ Rn+m such that
K ⊂ B◦. By 9c6, v∗(K) + v∗(B

◦ \K) = v(B◦). We apply 9i8 to the open set
G = B◦ \K, note that Gx = B◦2 \Kx for x ∈ B◦1 (but ∅ otherwise) and get

v∗(B
◦ \K) =

∗

∫
B1

v∗(B
◦
2 \Kx) dx ,
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that is,

v(B◦)− v∗(K) =
∗

∫
B1

(
v(B◦2)− v∗(Kx)

)
dx .

By 9c5,

∗

∫
B1

(
v(B◦2)− v∗(Kx)

)
dx+

∗∫
B1

v∗(Kx) dx =

∫
B1

v(B◦2) dx = v(B◦) .

Thus, v(B◦)− v∗(K) = v(B◦)−
∗∫
B1

v∗(Kx)
)

dx.

9j Examples: Gamma function; Dirichlet formula;
n-dimensional ball

The Euler Gamma function

9j1 Definition.

Γ(s) =

∫ ∞
0

ts−1e−t dt for s > 0 .

It can be shown to be a continuous function on (0,∞).1 Integration by
parts gives Γ(s + 1) = sΓ(s). Thus, Γ(n) = (n − 1)! (by induction, starting
with Γ(1) = 1). Also,

Γ(1
2
) =

∫ ∞
0

t−1/2e−t dt = 2

∫ ∞
0

e−x
2

dx =
√
π .

9j2 Exercise. Find the limits lim
s→0

sΓ(s) and lim
s→0

Γ(αs)

Γ(s)
.

There are two remarkable properties of the Γ-function mentioned here
without proof. The first one is the identity

Γ(s)Γ(1− s) =
π

sin πs

that extends the Γ-function to the negative non-integer values of s. The
second one is the celebrated Stirling’s asymptotic formula

Γ(s) =
√

2π ss−1/2e−seθ(s) for some θ(s) ∈
(

0,
1

12s

)
The Gamma function is very useful in computation of integrals.

1Can you do it via Theorem 9h7?
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9j3 Claim.∫ 1

0

xα−1(1− x)β−1 dx =
Γ(α)Γ(β)

Γ(α + β)
for α, β > 0 .

The left hand side is called the Beta function and denoted by by B(α, β).

Proof. Γ(α + β)B(α, β) =
∫∞

0
uα+β−1e−u du ·

∫ 1

0
xα−1(1 − x)β−1 dx; we turn

it into a two-dimensional integral and change the variables u, x to t1, t2 as
follows: {

t1 = ux

t2 = u(1− x)

{
u = t1 + t2

x = t1
t1+t2

This is a diffeomorphism between the first quadrant t1, t2 > 0 and the semi-
strip u > 0, 0 < x < 1. The Jacobian equals

∣∣∂(t1,t2)
∂(u,x)

∣∣ = | x u
1−x −u | = −ux −

u+ ux = −u. We obtain

Γ(α + β)B(α, β) =

=

∫ ∞
0

∫ ∞
0

(t1+t2)α+β−1e−(t1+t2)
( t1
t1 + t2

)α−1( t2
t1 + t2

)β−1 dt1dt2
t1 + t2

= Γ(α)Γ(β) .

9j4 Example. Consider the integral∫ π/2

0

sinα−1 θ cosβ−1 θ dθ .

Rewriting it in the form∫ π/2

0

(
sin2 θ

)α/2−1 (
cos2 θ

)β/2−1
sin θ cos θ dθ

and changing the variable,

sin2 θ = x, dx = 2 sin θ cos θ dθ ,

we get
1

2
B
(α

2
,
β

2

)
=

1

2
·

Γ
(
α
2

)
Γ
(
β
2

)
Γ
(
α+β

2

) .

A special case of this formula says that∫ π/2

0

sinα−1 θ dθ =

∫ π/2

0

cosα−1 θ dθ =
1

2
·

Γ
(
α
2

)
Γ
(

1
2

)
Γ
(
α+1

2

) =

√
π

2
·

Γ
(
α
2

)
Γ
(
α+1

2

) .
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9j5 Exercise. Check that B(x, x) = 21−2xB(x, 1
2
).

Hint:
∫ π/2

0

(
2 sin θ cos θ

2

)
2x−1 dθ.

9j6 Exercise. Check the duplication formula:

Γ(2x) =
22x−1

√
π

Γ(x) Γ
(
x+

1

2

)
.

Hint: use 9j5.

9j7 Exercise. Calculate
∫ 1

0
x4
√

1− x2 dx.
Answer: π

32
.

9j8 Exercise. Calculate
∫∞

0
xme−x

n
dx.

Answer: 1
n
Γ
(
m+1
n

)
.

9j9 Exercise. Calculate
∫ 1

0
xm(lnx)n dx.

Answer: (−1)nn!
(m+1)n+1 .

9j10 Exercise. Calculate
∫ π/2

0
dx√
cosx

.

Answer: Γ2(1/4)

2
√

2π
.

9j11 Exercise. Check that Γ(p)Γ(1− p) =
∫∞

0
xp−1

1+x
dx.

Hint: change x to t via (1 + x)(1− t) = 1.

We mention without proof another useful formula∫ ∞
0

xp−1

1 + x
dx =

π

sin πp
for 0 < p < 1 .

There is a simple proof that that uses the residues theorem from the complex
analysis course. This formula yields that Γ(s)Γ(1− s) = π

sinπs
.

The Dirichlet formula

9j12 Proposition.∫
· · ·
∫

x1,...xn≥0,
x1+···+xn≤1

xp1−1
1 . . . xpn−1

n dx1 . . . dxn =
Γ(p1) . . .Γ(pn)

Γ(p1 + · · ·+ pn + 1)

for p1, . . . pn > 0.
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Proof. Induction in the dimension n. For n = 1 the formula is obvious:∫ 1

0

xp1−1
1 dx1 =

1

p1

=
Γ(p1)

Γ(p1 + 1)
.

Now denote the n-dimensional integral by In and assume that the result is
valid for n− 1. Then

In =

∫ 1

0

xpn−1
n dxn

∫
· · ·
∫

x1,...,xn−1≥0
x1+···+xn−1≤1−xn

xp1−1
1 . . . x

pn−1−1
n−1 dx1 . . . dxn−1 .

In order to compute the inner integral we change the variables: x1 = (1 −
xn)ξ1, . . . , xn−1 = (1− xn)ξn−1. The inner integral becomes

(1− xn)n−1+(p1−1)+···+(pn−1−1)

∫
· · ·
∫

ξ1,...ξn−1≥0
ξ1+···+ξn−1≤1

ξp1−1
1 . . . ξ

pn−1−1
n−1 dξ1 . . . dξn−1 =

= (1− xn)p1+···+pn−1 In−1 .

Thus,

In = In−1

∫ 1

0

(1− xn)p1+ ...+pn−1xpn−1
n dxn =

=
Γ(p1) . . .Γ(pn−1)

Γ(p1 + · · ·+ pn−1 + 1)
· Γ(p1 + · · ·+ pn−1 + 1)Γ(pn)

Γ(p1 + · · ·+ pn + 1)
=

Γ(p1) . . .Γ(pn)

Γ(p1 + · · ·+ pn + 1)
.

There is a seemingly more general formula,∫
· · ·
∫

x1,...,xn≥0,
x
γ1
1 +···+xγnn ≤1

xp1−1
1 . . . xpn−1

n dx1 . . . dxn =
1

γ1 . . . γn
·

Γ
(
p1
γ1

)
. . .Γ

(
pn
γn

)
Γ
(
p1
γ1

+ · · ·+ pn
γn

+ 1
) ,

easily obtained from the previous one by the change of variables yj = x
γj
j .

A special case: p1 = · · · = pn = 1, γ1 = · · · = γn = p;∫
· · ·
∫

x1,...,xn≥0
xp1+···+xpn≤1

dx1 . . . dxn =
Γn
(

1
p

)
pnΓ
(
n
p

+ 1
) .
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We’ve found the volume of the unit ball in the metric lp:

vn
(
Bp(1)

)
=

2nΓn
(

1
p

)
pnΓ
(
n
p

+ 1
) .

If p = 2, the formula gives us the volume of the standard unit ball:

vn = vn(B2(1)) =
2πn/2

nΓ
(
n
2

) .
We also see that the volume of the unit ball in the l1-metric equals 2n

n!
.

Question: what does the formula give in the p→∞ limit?

9j13 Exercise. Show that∫
· · ·
∫

x1+···+xn≤1
x1,...,xn≥0

ϕ(x1 + · · ·+ xn) dx1 . . . dxn =
1

(n− 1)!

∫ 1

0

ϕ(s)sn−1 ds

for every “good” function ϕ : [0, 1]→ R and, more generally,∫
· · ·
∫

x1+···+xn≤1
x1,...,xn≥0

ϕ(x1 + · · ·+ xn)xp1−1
1 . . . xpn−1

n dx1 . . . dxn =

=
Γ(p1) . . .Γ(pn)

Γ(p1 + · · ·+ pn)

∫ 1

0

ϕ(u)up1+...pn−1 du .

Hint: consider ∫ 1

0

ds ϕ′(s)

∫
· · ·
∫

x1+···+xn≤s
x1,...,xn≥0

xp1−1
1 . . . xpn−1

n dx1 . . . dxn .

9k Oscillation function

Let f : Rn → R, and X = {(x, t) : t < f(x)} ⊂ Rn+1. Then the interior of
X is

X◦ = {(x, t) : t < f∗(x)}
where f∗ : Rn → [−∞,∞) is defined by1

f∗(x0) = lim inf
x→x0

f(x) = sup
δ>0

inf
|x−x0|≤δ

f(x) .

1Here, “x→ x0” includes the case x = x0.
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The proof is simple: (x0, t0) ∈ X◦ ⇐⇒ ∃δ, ε > 0 ∀x, t
(
|x−x0| ≤ δ∧|t−t0| ≤

ε =⇒ t < f(x)
)
⇐⇒ ∃δ > 0 t0 < inf |x−x0|≤δ f(x) ⇐⇒ t0 < f∗(x0).

Similarly, for Y = {(x, t) : t > f(x)} we have

Y ◦ = {(x, t) : t > f ∗(x)} where

f ∗(x0) = lim sup
x→x0

f(x) = inf
δ>0

sup
|x−x0|≤δ

f(x) ∈ (−∞,+∞] .

The set

Γf = Rn+1 \ (X◦ ] Y ◦) = {(x, t) : f∗(x) ≤ t ≤ f ∗(x)}

is closed, and contains the graph of f (as well as its closure). An example:
f = 1l[0,∞) : R → R; Γ consists of the graph of f and a vertical segment
{0} × [0, 1].

9k1 Definition. The oscillation function Oscf : Rn → [0,+∞] is defined by

Oscf (x0) = f ∗(x0)− f∗(x0) = lim sup
x→x0

f(x)− lim inf
x→x0

f(x) =

= inf
δ>0

sup
|x1−x0|≤δ,|x2−x0|≤δ

|f(x1)− f(x2)| .

Clearly, f is continuous at x if and only if Oscf (x) = 0.

9k2 Theorem. The following three conditions on a bounded function f :
B → R on a box B ⊂ Rn are equivalent:

(a) f is integrable;
(b)

∗∫
B

Oscf = 0;
(c) for every ε > 0 the set {x ∈ B : Oscf (x) ≥ ε} is of volume zero.

9k3 Proposition. If a function f is bounded on a box B ⊂ Rn then

∗∫
B

f −
∗

∫
B

f =
∗∫
B

Oscf .

9k4 Lemma. v∗(G1 ] G2) = v∗(G1) + v∗(G2) whenever G1, G2 ⊂ Rn are
disjoint open sets.

Proof. We approximate G1]G2 from within by a pixelated set and note that
each pixel, being connected, is contained either in G1 or G2.

Proof of Prop. 9k3. We take M such that supB |f | < M , introduce sets

X = {(x, t) : x ∈ B,−M < t < f(x)} ,
Γ = {(x, t) : x ∈ B◦, f∗(x) ≤ t ≤ f ∗(x)} = Γf ∩ (B◦ × R) ,

Y = {(x, t) : x ∈ B, f(x) < t < M}
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and note that

X◦ = {(x, t) : x ∈ B◦,−M < t < f∗(x)} ,
Y ◦ = {(x, t) : x ∈ B◦, f ∗(x) < t < M} ,

B◦ × (−M,M) = X◦ ] Γ ] Y ◦ .

By 9c6 and 9k4,

v∗(X
◦) + v∗(Γ) + v∗(Y

◦) = 2Mv(B) .

It is sufficient to prove that

v∗(Γ) =
∗∫
B

Oscf ,(a)

v∗(X) =
∗

∫
B

f +Mv(B) ,(b)

v∗(Y ) = Mv(B)−
∗∫
B

f ,(c)

since v∗(X) = v∗(X
◦) and v∗(Y ) = v∗(Y

◦) by 6k1.
We have Γx = [f∗(x), f ∗(x)], thus (a) follows from 9i9.
By 9h1, ∗

∫
B

(f +M) = v∗
(
X + (0,M)

)
, which implies (b) via 9c4. Sim-

ilarly, ∗
∫
B

(M − f) = v∗
(
−Y + (0,M)

)
implies (c).

9k5 Lemma. The following two conditions on a bounded function f : B →
R on a box B ⊂ Rn are equivalent:

(a)
∗∫
B
|f | = 0;

(b) for every ε > 0 the set {x ∈ B : |f(x)| ≥ ε} is of volume zero.

Proof. Denote A = {x : |f(x)| ≥ ε}.
(a)=⇒(b): εv∗(A) =

∗∫
B
ε1lA ≤

∗∫
B
|f | = 0, since ε1lA ≤ |f |.

(b)=⇒(a):
∗∫
B
|f | = ∗∫

B\A |f | ≤
∗∫
B\A ε ≤ εv(B) for all ε > 0.

Proof of Theorem 9k2. By 9k3, (a)⇐⇒(b); by 9k5, (b)⇐⇒(c).

9l On Lebesgue’s theory

Here is a bridge from Jordan measure and Riemann integral to Lebesgue
measure and Lebesgue integral.

For a set X ⊂ Rn,

∗ the inner Lebesgue measure

m∗(X) = sup
compact K⊂X

v∗(K) ;
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∗ the outer Lebesgue measure

m∗(X) = inf
open G⊃X

v∗(G) ;

∗ X is called Lebesgue measurable iff m∗(Xr) = m∗(Xr) for all r; in this
case its Lebesgue measure

m(X) = lim
r→∞

m∗(Xr) = m∗(X) = lim
r→∞

m∗(Xr) = m∗(X) ∈ [0,∞]

(here Xr = {x ∈ X : |x| ≤ r}, as in Sect. 9b).

Note the “bidirectional” limiting procedure:

m∗(X) = sup
K⊂X

inf
E⊃K

v(E) , m∗(X) = inf
G⊃X

sup
E⊂G

v(E) ,

where E runs over Jordan (or just pixelated) sets, K compact and G open.
A set of Lebesgue measure zero is called null (or negligible) set. “Almost

all” means “all except for a null set”.
For a function f : Rn → R,

∗ f is called Lebesgue measurable iff the set {(x, t) : t < f(x)} ⊂ Rn+1 is
Lebesgue measurable;

∗ in this case the Lebesgue integral∫
R
f = m

(
{(x, t) : 0 < t < f(x)}

)
−m

(
{(x, t) : f(x) < t < 0}

)
;

four cases appear, similarly to 9d4: real (integrable), +∞, −∞ and
∞−∞.

Here are some facts (not to be proved or used in this course).

∗ Every locally Jordan set A is Lebesgue measurable; m(A) = v∗(A).
Every Jordan measurable function is Lebesgue measurable, with the
same integral.

∗ Lebesgue measurable sets are a σ-algebra (in other words, σ-field) of
sets (in Rn). That is, ∅, Rn \ A, A1 ∪ A2 ∪ . . . (and therefore also Rn

and A1 ∩ A2 ∩ . . . ) are Lebesgue measurable whenever A,A1, A2, . . .
are. This σ-algebra contains all open sets (as well as all closed sets).

Note that m(G) = v∗(G), m(K) = v∗(K) for open G and compact K.

∗ (σ-additivity) m(A1 ] A2 ] . . . ) = m(A1) + m(A2) + . . . whenever
A1, A2, . . . are disjoint Lebesgue measurable sets.

∗ (Monotone convergence for sets) Let sets Ai be Lebesgue measurable.
If Ai ↑ A then m(Ai) ↑ m(A); if Ai ↓ A and m(A1) <∞ then m(Ai) ↓
m(A).
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∗ All locally volume zero sets are null sets. A countable union of null
sets is a null set.

Now we are in position to reformulate Theorem 9k2:

∗ (Lebesgue’s criterion of Riemann integrability) A bounded function
with bounded support is Riemann integrable if and only if it is contin-
uous almost everywhere. A function is Jordan measurable if and only
if it is continuous almost everywhere.

∗ (Monotone convergence for functions) Let functions fi be Lebesgue
measurable. If 0 ≤ fi ↑ f then

∫
fi ↑

∫
f . If fi ↓ f ≥ 0 and

∫
f1 < ∞

then
∫
fi ↓

∫
f .

∗ (Tonelli: Iterated Lebesgue integral for positive functions) If f : Rn+m →
[0,∞) is Lebesgue measurable then fx is Lebesgue measurable for
almost all x, the function x 7→

∫
fx is Lebesgue measurable,1 and∫

Rn+m f =
∫
Rn dx

∫
Rm dy f(x, y).

∗ (Fubini: Iterated Lebesgue integral for integrable functions) If f : Rn+m →
[0,∞) is integrable then fx is integrable for almost all x, the function
x 7→

∫
fx is integrable and

∫
Rn+m f =

∫
Rn dx

∫
Rm dy f(x, y).

Note that all lower integrals in Theorem 9i2 are equal to Lebesgue inte-
grals.

∗ (Change of variables) The same as Theorem 9f5, with “Lebesgue mea-
surable” in place of “Jordan measurable”.

∗ (Dominated convergence) If fi : Rn → R are Lebesgue measurable.
fi → f pointwise, and

∫
supi |fi| <∞ then

∫
fi →

∫
f .

The choice axiom leads to a proof of existence of sets and functions that
fail to be Lebesgue measurable; but not to specific2 examples of such mon-
sters.

Index

improper integral, 134
integrable, 134

Jordan measurable on X, 136
Jordan measurable, 134

locally Jordan measurable, 129
locally Jordan measurable in X, 130
locally volume zero, 129
locally volume zero in X, 130

B(·, ·), 149

f∗, 153
f∗, 152
fi ↑ f , 144
Γ(·), 148∫
A
f , 134∫

X
f , 136

∗
∫
X
f , 144

Oscf , 153
v∗, 128
Xi ↑ X, 131
Xr, 128

1No matter how it is defined on the null set. . .
2I mean, definable without parameters.
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