Solutions to selected exercises

3e3 Exercise. Consider the set $U \subset \mathbb{R}^{n}$ of all $\left(a_{0}, \ldots, a_{n-1}\right)$ such that the polynomial

$$
t \mapsto t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}
$$

has n pairwise distinct real roots.
(a) Prove that U is open.
(b) Define $\psi: U \rightarrow \mathbb{R}^{n}$ by $\psi\left(a_{0}, \ldots, a_{n-1}\right)=\left(t_{1}, \ldots, t_{n}\right)$ where $t_{1}<\cdots<$ t_{n} are the roots of the polynomial. Prove that ψ is a homeomorphism $U \rightarrow V$ where $V=\left\{\left(t_{1}, \ldots, t_{n}\right): t_{1}<\cdots<t_{n}\right\} .{ }^{1}$

Solution.

The set V is open (evidently). We consider a mapping $\varphi: V \rightarrow U$ defined by

$$
\begin{aligned}
& \varphi\left(t_{1}, \ldots, t_{n}\right)=\left(a_{0}, \ldots, a_{n-1}\right) \quad \text { whenever } \\
& \forall x\left(t-t_{1}\right) \ldots\left(t-t_{n}\right)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}
\end{aligned}
$$

It is continuously differentiable, since each a_{k} is a polynomial function of t_{1}, \ldots, t_{n}. We note that $\varphi\left(t_{1}, \ldots, t_{n}\right)=\left(a_{0}, \ldots, a_{n-1}\right)$ if and only if $\psi\left(a_{0}, \ldots, a_{n-1}\right)=\left(t_{1}, \ldots, t_{n}\right)$; that is, $\varphi^{-1}=\psi$.

According to the hint we use 2 e 9 (b). Treating a_{0}, \ldots, a_{n-1} as coordinates in the space S_{n} of 2 e 9 we have

$$
\text { the operator }(D \varphi)_{\left(t_{1}, \ldots, t_{n}\right)} \text { is invertible }
$$

for all $\left(t_{1}, \ldots, t_{n}\right) \in V$.
By Theorem 4 c 1 applied to φ near an arbitrary point $v \in V$, the set $\varphi(V)=U$ is a neighborhood of $\varphi(v)=u$, and the mapping $\varphi^{-1}=\psi$ is continuous at u.

This holds for every $u \in U$; thus U is open, and ψ is continuous. Taking into account continuity of $\psi^{-1}=\varphi$ we see that ψ is a homeomorphism.

3i1 Exercise. Let A be an invertible linear operator. Find $\left\|A^{-1}\right\|$.
Solution. Using 1 e 1 and taking $x=A^{-1} y$ we have

$$
\begin{gathered}
\left\|A^{-1}\right\|=\sup _{y \in \mathbb{R}^{n}, y \neq 0} \frac{\left|A^{-1} y\right|}{|y|}=\sup _{x \in \mathbb{R}^{n}, x \neq 0} \frac{|x|}{|A x|} ; \\
\frac{1}{\left\|A^{-1}\right\|}=\inf _{x \in \mathbb{R}^{n}, x \neq 0} \frac{|A x|}{|x|}=\min _{|x|=1}|A x| .
\end{gathered}
$$

[^0]It was shown before Exercise 3i1 that $\max _{|x|=1}|A x|^{2}$ is the maximal eigenvalue $\lambda_{\max }$ of $A^{*} A$. Similarly, $\min _{|x|=1}|A x|^{2}$ is the minimal eigenvalue $\lambda_{\text {min }}$ of $A^{*} A$. Thus, $\left\|A^{-1}\right\|^{2}=1 / \lambda_{\min }$.

4c9 Exercise. (a) Let $f: U \rightarrow V$ be as in Theorem 4 c 5 and in addition $f \in C^{2}(U)$ (recall Sect. 2g). Prove that $f^{-1} \in C^{2}(V) .{ }^{1}$
(b) The same for $C^{k}(\ldots)$ where $k=3,4, \ldots$

Solution. (a) Denote $g=f^{-1}$. The mapping $y \mapsto(D g)_{y}=\left((D f)_{g(y)}\right)^{-1}$ is the composition of three mappings. First, $y \mapsto g(y)=x$. Second, $x \mapsto(D f)_{x}=A$. Third, $A \mapsto A^{-1}$. The first mapping $g: V \rightarrow U$ is continuously differentiable by Theorem 4 c 5 . The second mapping is continuously differentiable on U since $f \in C^{2}(U)$. The third mapping is continuously differentiable, see 4 c 8 . Therefore their composition $y \mapsto(D g)_{y}$ is continuously differentiable, which means that $g \in C^{2}(V)$.
(b) Induction in k. By the induction hypothesis, the first mapping g belongs to $C^{k-1}(V)$. The second mapping $x \mapsto(D f)_{x}$ belongs to $C^{k-1}(U)$ since $f \in C^{k}(U)$. The third mapping $A \mapsto A^{-1}$ belongs to C^{m} for all m, since elements of A^{-1} are just rational functions (that is, fractions of polynomials) of the elements of A (as noted in 4c8). Therefore their composition belongs to C^{k-1}, which means that $g \in C^{k}(V)$.

[^1]
[^0]: ${ }^{1}$ Hint: use 2e9(b).

[^1]: ${ }^{1}$ Hint: $(D g)_{y}=\left((D f)_{g(y)}\right)^{-1}$ where $g=f^{-1}$.

