Solutions to selected exam questions

Question 3.

A vector field $F \in C^{1}\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right)$ satisfies

$$
\begin{gathered}
\operatorname{div} F=0 \\
F(x, y, z) \neq 0 \quad \Longrightarrow \quad 0 \leq\left(x^{2}+y^{2}\right)^{3 / 2} z \leq 1 \\
F(x, y, z)=o\left(x^{2}+y^{2}+z^{2}\right), \quad x^{2}+y^{2}+z^{2} \rightarrow \infty
\end{gathered}
$$

Consider the flux of F through the plane $z=c$. Prove that this flux equals zero for every $c \in \mathbb{R}$.

Solution.

First, F vanishes outside the set $\left\{(x, y, z): 0 \leq\left(x^{2}+y^{2}\right)^{3 / 2} z \leq 1\right\}$ and therefore, by continuity, F vanishes also on the boundary of this set. That is, F vanishes outside the open set $\left\{(x, y, z): z>0,\left(x^{2}+y^{2}\right)^{3 / 2} z<1\right\}$. The case $c \leq 0$ is thus trivial. Now let $c>0$.

Here is the idea. For arbitrary $R>0$ we consider the cylinder

$$
\left\{(x, y, z): x^{2}+y^{2} \leq R^{2}, 0 \leq z \leq c\right\} .
$$

The flux of F through its surface is zero, since $\operatorname{div} F=0$. The surface of the cylinder consists of two disks

$$
\left\{(x, y, 0): x^{2}+y^{2} \leq R^{2}\right\}, \quad\left\{(x, y, c): x^{2}+y^{2} \leq R^{2}\right\}
$$

and the lateral surface

$$
\left\{(x, y, z): x^{2}+y^{2}=R^{2}, 0 \leq z \leq c\right\}
$$

The flux through the top disk is the flux through the plane $z=c$ when R is large enough (namely, $R \geq c^{-1 / 3}$. The flux through the bottom disk is 0 (since $F=0$ here). Thus, it is sufficient to prove that the flux through the lateral surface converges to 0 as $R \rightarrow \infty$.

On the lateral surface, first, $F=o\left(R^{2}\right)$, and second, $F \neq 0$ only when $z<1 / R^{3}$. The relevant area is $2 \pi R \cdot \frac{1}{R^{3}}=2 \pi / R^{2}$. Thus, the flux is $o\left(R^{2}\right.$. $\left.2 \pi / R^{2}\right)=o(1)$.

More formally, we may treat the cylinder as a singular 3-box $\Gamma:[0, R] \times$ $[0,2 \pi] \times[0, c] \rightarrow \mathbb{R}^{3}$,

$$
\Gamma(r, \theta, z)=(r \cos \theta, r \sin \theta, z)
$$

Alternatively, instead of the cylinder we may use the (non-singular) box $[-R, R] \times[-R, R] \times[0, c]$.

