Analysis-III

Solutions to selected exercises

6#1(b) Exercise. Differentiate $S: M_{n,n}(\mathbb{R}) \to M_{n,n}(\mathbb{R}), S(A) = A^t A$.

Solution. $S(A+H) = (A+H)^t(A+H) = A^tA + A^tH + H^tA + H^tH = S(A) + (A^tH + H^tA) + o(||H||); (DS)_A(H) = A^tH + H^tA = A^tH + (A^tH)^t.$

6#1(d) Exercise. Differentiate $P: M_{n,n}(\mathbb{R}) \to P_n, P(A)(x) = \det(xI - A)$, at the point I.

Solution. By 2e7(b), $(D \det)_I = \text{tr}$, that is, $\det(I + H) = 1 + \text{tr}(H) + o(||H||)$. Thus, for $x \neq 1$,

$$P(I+H)(x) = \det(xI - (I+H)) = \det((x-1)I - H) =$$

= $(x-1)^n \det\left(I - \frac{1}{x-1}H\right) = (x-1)^n \left(1 + \operatorname{tr}\left(-\frac{1}{x-1}H\right) + o(||H||)\right) =$
= $(x-1)^n - (x-1)^{n-1} \operatorname{tr} H + o(||H||);$

finally, $(DP)_I(H)(x) = -(x-1)^{n-1} \operatorname{tr} H.$

6#3 Exercise. Define a mapping $f : U \to M_{d,d}(\mathbb{R})$, where $U = \{A \in M_{d,d}(\mathbb{R}) : ||A|| < 1\}$ (the operator norm being used), by

$$f(A) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{A^k}{k} \text{ for } ||A|| < 1$$

(it is in fact $\log(I + A)$). Prove that

(a) the series converges;

(b) f is continuously differentiable;

(c) f is open on some neighborhood of 0;

**(d) $\log(\exp(A)) = A$ for all A in some neighborhood of 0.

Solution. (a) Partial sums are a Cauchy sequence, since

$$\left\|\sum_{k=m}^{m+n} (-1)^{k+1} \frac{A^k}{k}\right\| \le \sum_{k=m}^{m+n} \left\| (-1)^{k+1} \frac{A^k}{k} \right\| = \sum_{k=m}^{m+n} \frac{1}{k} \|A^k\| \le \sum_{k=m}^{m+n} \frac{1}{k} \|A\|^k \le \sum_{k=m}^{\infty} \|A\|^k = \frac{\|A\|^m}{1 - \|A\|} \to 0$$

as $m \to \infty$.

(b) First, consider (for arbitrary k) a mapping $g_k: M_{d,d} \to M_{d,d}$,

$$g_k(A) = A^k$$

.

Analysis-III

We have

$$g_k(A+H) = (A+H)^k = \sum_{\substack{i_1,\dots,i_k=0,1\\i_1,\dots,i_k=0,1}} A^{1-i_1}H^{i_1}\dots A^{1-i_k}H^{i_k} =$$
$$= \underbrace{A^k}_{g_k(A)} + \underbrace{A^{k-1}H + A^{k-2}HA + \dots + HA^{k-1}}_{(Dg_k)_A(H)} + \underbrace{\sum_{\substack{i_1+\dots+i_k\geq 2\\o(||H||)}} A^{1-i_1}H^{i_1}\dots A^{1-i_k}H^{i_k}}_{o(||H||)};$$

$$\begin{aligned} \|g_k(A+H) - g_k(A) - (Dg_k)_A(H)\| &\leq \sum_{i_1 + \dots + i_k \geq 2} \|A^{1-i_1}H^{i_1} \dots A^{1-i_k}H^{i_k}\| \leq \\ &\leq \sum_{i_1 + \dots + i_k \geq 2} \|A\|^{1-i_1} \|H\|^{i_1} \dots \|A\|^{1-i_k} \|H\|^{i_k} = \\ &= \left(\|A\| + \|H\|\right)^k - \|A\|^k - k\|A\|^{k-1} \|H\| \leq \frac{1}{2}k(k-1)(\|A\| + \|H\|)^{k-2} \|H\|^2. \end{aligned}$$

The series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} g_k(A) = f(A)$ converges by (a); also the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} g_k(A+H) = f(A+H)$ converges when ||H|| < 1 - ||A||; and the series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(g_k(A+H) - g_k(A) - (Dg_k)_A(H) \right)$$

converges for these H, since

$$\sum_{k=1}^{\infty} \left\| \frac{(-1)^{k+1}}{k} \left(g_k(A+H) - g_k(A) - (Dg_k)_A(H) \right) \right\| \le \sum_{k=1}^{\infty} \frac{1}{k} \cdot \frac{1}{2} k(k-1) (\|A\| + \|H\|)^{k-2} \|H\|^2 < \infty.$$

Therefore the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (Dg_k)_A(H)$ converges, and

$$\left\| f(A+H) - f(A) - \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (Dg_k)_A(H) \right\| \le \\ \le \sum_{k=1}^{\infty} \frac{k-1}{2} (\|A\| + \|H\|)^{k-2} \|H\|^2 = o(\|H\|).$$

We see that

$$(Df)_A = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (Dg_k)_A, \quad (Dg_k)_A (H) = A^{k-1} H + A^{k-2} H A + \dots + H A^{k-1}.$$

Each Dg_k is evidently continuous, and the series converges uniformly on $\{A : ||A|| \le 1 - \varepsilon\}$ for every $\varepsilon > 0$, therefore Df is continuous.

(c) Clearly, $(Dg_1)_0 = \text{id}$ and $(Dg_k)_0 = 0$ for k > 1; thus $(Df)_0 = \text{id}$. It follows that f is open on some neighborhood of 0 (see Theorem 4c1 and Exercise 3b3).

(**d) (Sketch only) First, for arbitrary polynomials f and g,

$$g(f(A)) = (g \circ f)(A)$$

(this algebraic identity follows from definitions). The problem is that our functions $f, g, f(x) = e^x - 1$ and $g(x) = \log(1+x)$, are not polynomials (but power series).

Second, the Jordan normal form¹ reduces the general case to the special case

$$A = \lambda I + T, \quad T^d = 0.$$

For arbitrary polynomial f,

$$f(A) = \sum_{k=0}^{d-1} \frac{1}{k!} f^{(k)}(\lambda) T^k =$$

= $f(\lambda)I + f'(\lambda)T + \frac{1}{2}f''(\lambda)T^2 + \dots + \frac{1}{(d-1)!}f^{(d-1)}(\lambda)T^{d-1}.$

It follows that the same equality holds whenever f is a power series whose radius of convergence exceeds $|\lambda|$. Moreover, if f_k are polynomials such that $f_k(\lambda) \to f(\lambda), f'_k(\lambda) \to f'(\lambda), \ldots, f_k^{(d-1)}(\lambda) \to f^{(d-1)}(\lambda)$ as $k \to \infty$, then $f_k(A) \to f(A)$.

Third, let f_n be the *n*-th Taylor sum for f, $f(x) = e^x - 1$, and similarly g_n for g, $g(x) = \log(1+x)$. It appears that $f_n \to f$, $g_n \to g$ and $g_n \circ f_n \to g \circ f$, the convergence being the locally uniform (near 0) convergence of functions and all derivatives.

8#2 Exercise. Prove that the mapping²

$$S: \mathbb{R}_+ \times (0,\pi)^{n-2} \times \mathbb{R} \to \mathbb{R}^n \setminus \operatorname{Span}\{e_3, \dots, e_n\}$$

¹See Wikipedia, articles "Jordan normal form" and "Logarithm of a matrix" (item "The logarithm of a non-diagonalizable matrix").

²The original formulation contains $\bigcup_{j=3}^{n} \text{Span}\{e_j\}$ rather than $\text{Span}\{e_3, \ldots, e_n\}$; this is a mistake, sorry.

Analysis-III

defined by equations

$$x_{n} = r \cos \theta_{n-2}$$

$$x_{n-1} = r \sin \theta_{n-2} \cos \theta_{n-3}$$

$$\dots$$

$$x_{3} = r \sin \theta_{n-2} \sin \theta_{n-3} \dots \sin \theta_{2} \cos \theta_{1}$$

$$x_{2} = r \sin \theta_{n-2} \sin \theta_{n-3} \dots \sin \theta_{2} \sin \theta_{1} \cos \varphi$$

$$x_{1} = r \sin \theta_{n-2} \sin \theta_{n-3} \dots \sin \theta_{2} \sin \theta_{1} \sin \varphi$$

is locally invertible, and satisfies¹

$$\det(DS) = r^{n-1} \prod_{j=1}^{n-2} \sin^j \theta_j$$

Solution. First we prove that S(U) = V where $U = (0, \infty) \times (0, \pi)^{n-2} \times \mathbb{R}$ and $V = \mathbb{R}^n \setminus \text{Span}\{e_3, \ldots, e_n\} = \{(x_1, \ldots, x_n) : x_1^2 + x_2^2 > 0\}$. We introduce $r_k = \sqrt{x_1^2 + \cdots + x_k^2}$ and note that

$$r_k = r \sin \theta_{n-2} \dots \sin \theta_{k-1} \quad \text{for } k = 2, \dots, n,$$
$$x_k = r_k \cos \theta_{k-2} \quad \text{for } k = 3, \dots, n.$$

Thus, $x_1^2 + x_2^2 = r_2^2 = (r \sin \theta_{n-2} \dots \sin \theta_1)^2 > 0$ (since $\theta_1, \dots, \theta_{n-2} \in (0, \pi)$), that is, $S(U) \subset V$.

Given $x \in V$, we take $\theta_{k-2} \in (0,\pi)$ such that $\cos \theta_{k-2} = x_k/r_k$ for $k = 3, \ldots, n$, then $\sin \theta_{k-2} = \sqrt{1 - \frac{x_k^2}{r_k^2}} = \sqrt{\frac{r_k^2 - x_k^2}{r_k^2}} = r_{k-1}/r_k$ for $k = 3, \ldots, n$, therefore $r_k = r \sin \theta_{n-2} \ldots \sin \theta_{k-1}$ for $k = 2, \ldots, n$, and $x_k = r_k \cos \theta_{k-2} = r \sin \theta_{n-2} \ldots \sin \theta_{k-1} \cos \theta_{k-2}$ for $k = 3, \ldots, n$. We take some (non-unique) $\varphi \in \mathbb{R}$ such that $\cos \varphi = x_2/r_2$ and $\sin \varphi = x_1/r_2$, then $x_2 = r_2 \cos \varphi = r \sin \theta_{n-2} \ldots \sin \theta_1 \cos \varphi$ and $x_1 = r_2 \sin \varphi = r \sin \theta_{n-2} \ldots \sin \theta_1 \sin \varphi$, which shows that $x \in S(U)$. We see that S(U) = V.

Second, we find det(DS). Denoting the matrix DS by A,

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \dots & \dots & \dots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} = \begin{pmatrix} \frac{\partial x_1}{\partial r} & \frac{\partial x_1}{\partial \varphi} & \frac{\partial x_1}{\partial \theta_1} & \dots & \frac{\partial x_1}{\partial \theta_{n-2}} \\ \dots & \dots & \dots \\ \frac{\partial x_n}{\partial r} & \frac{\partial x_n}{\partial \varphi} & \frac{\partial x_n}{\partial \theta_1} & \dots & \frac{\partial x_n}{\partial \theta_{n-2}} \end{pmatrix}$$

¹The original formulation contains det(DS) rather than |det(DS)|; however, the sign of the determinant depends on the enumeration of the variables.

and the corresponding matrix in dimension n-1 by B, we observe that the minor $A_{n,n}$ is proportional to B,

$$A_{n,n} = \sin \theta_{n-2} \cdot B$$
, that is, $a_{k,l} = \sin \theta_{n-2} \cdot b_{k,l}$ for $k, l = 1, \dots, n-1$.

Therefore det $A_{n,n} = \sin^{n-1} \theta_{n-2} \cdot \det B$.

We also note that the first and last columns of A are proportional, except for the last element,

$$a_{i,n} = r \frac{\cos \theta_{n-2}}{\sin \theta_{n-2}} a_{i,1}$$
 for $i = 1, ..., n-1$.

Without changing det A we add the first column multiplied by $\left(-r\frac{\cos\theta_{n-2}}{\sin\theta_{n-2}}\right)$ to the last column; we get

$$a_{1,n} = \dots = a_{n-1,n} = 0,$$

$$a_{n,n} = \frac{\partial x_n}{\partial \theta_{n-2}} - r \frac{\cos \theta_{n-2}}{\sin \theta_{n-2}} \frac{\partial x_n}{\partial r} = -r \sin \theta_{n-2} - r \frac{\cos \theta_{n-2}}{\sin \theta_{n-2}} \cos \theta_{n-2} = -\frac{r}{\sin \theta_{n-2}}$$

Finally,

$$\det A = -\frac{r}{\sin \theta_{n-2}} \det A_{n,n} = -\frac{r}{\sin \theta_{n-2}} \sin^{n-1} \theta_{n-2} \cdot \det B = -r \sin^{n-2} \theta_{n-2} \det B$$

The result follows by induction in n.

8#4 Exercise. Let $\mathbb{R}^2 \ni (u, v) \mapsto F(u, v) = w \in \mathbb{R}$ be a C^1 mapping, $F(0, 0) = 0,^1$ and $a, b \in \mathbb{R}$ satisfy

$$a\frac{\partial F}{\partial u}(0,0) + b\frac{\partial F}{\partial v}(0,0) \neq 0.$$

Prove that

(a) equation F(x - az, y - bz) = 0 in some neighborhood of (0, 0, 0) determines z as a C^1 function of x, y;

(b) $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 1$ in this neighborhood.

Solution. We rewrite the equation as g(x, y, z) = 0 where $g \in C^1(\mathbb{R}^3 \to \mathbb{R})$ is defined by g(x, y, z) = F(x - az, y - bz). We have

$$\frac{\partial}{\partial z}g(x,y,z) = -a\frac{\partial F}{\partial u}(x-az,y-bz) - b\frac{\partial F}{\partial v}(x-az,y-bz) \neq 0$$

¹This condition is forgotten in the original formulation, sorry.

at (0,0,0). By Th. 5c1, near (0,0,0) the equation determines z as a C^1 function of x, y. We differentiate the equality

$$F(x - az(x, y), y - bz(x, y)) = 0$$

in x:

$$\left(1-a\frac{\partial z}{\partial x}\right)\frac{\partial F}{\partial u}-b\frac{\partial z}{\partial x}\cdot\frac{\partial F}{\partial v}=0\,;\quad \frac{\partial z}{\partial x}=\frac{\frac{\partial F}{\partial u}}{a\frac{\partial F}{\partial u}+b\frac{\partial F}{\partial v}}\,.$$

Similarly (differentiating in y),

$$\frac{\partial z}{\partial y} = \frac{\frac{\partial F}{\partial v}}{a\frac{\partial F}{\partial u} + b\frac{\partial F}{\partial v}} \,.$$

Thus, $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 1.$