Analysis-III

Solutions to selected exercises

2f2 Exercise. Let $U \subset \mathbb{R}^n$ be an open set, $f \in C^1(U)$, and $K \subset U$ is compact. Prove that $f|_K$ is a Lipschitz function; that is, $\exists M \quad \forall x, y \in K \quad |f(x) - f(y)| \leq M|x - y|$.¹

Solution. Assume the contrary: $\forall M \exists x, y \in K ||f(x) - f(y)|| > M||x-y||$. Applying this to $M = 1, 2, 3, \ldots$ we get $x_n, y_n \in K$ such that $||f(x_n) - f(y_n)|| > n||x_n - y_n||$ for $n = 1, 2, \ldots$

The function f, being continuous on the compact set K, is bounded on K; therefore $|x_n - y_n| < \frac{1}{n} |f(x_n) - f(y_n)| \to 0$ as $n \to \infty$.

By compactness, there exists a convergent subsequence; we take $n_1 < n_2 < \ldots$ and $a \in K$ such that $x_{n_k} \to a$ as $k \to \infty$. Also $y_{n_k} \to a$, since $|y_{n_k} - a| \leq |y_{n_k} - x_{n_k}| + |x_{n_k} - a| \to 0$.

We take a bounded convex neighborhood V of a (say, a small ball) such that $\overline{V} \subset U$. The mapping ∇f , being continuous on the compact set \overline{V} , is bounded on V by some M. By 2f1, $|f(x) - f(y)| \leq M|x - y|$ for all $x, y \in V$.

For k large enough we have $x_{n_k}, y_{n_k} \in V$, thus $|f(x_{n_k}) - f(y_{n_k})| \leq M |x_{n_k} - y_{n_k}|$ in contradiction to $|f(x_{n_k}) - f(y_{n_k})| > n_k |x_{n_k} - y_{n_k}|, n_k \to \infty$. \Box

3b10 Exercise. Prove invariance of domain in dimension one.²

Solution. A set $U \subset \mathbb{R}$ is open; $f: U \to \mathbb{R}$ is continuous and one-to-one. We have to prove that f is an open map, that is, $f(U_1)$ is open for every open $U_1 \subset U$. It means: $f(U_1)$ is a neighborhood of f(x) for every $x \in U_1$.

Given $x \in U_1$, we take a < b such that $x \in (a, b) \subset [a, b] \subset U_1$. Consider the case f(a) < f(b) (the other case f(a) > f(b) is similar, and $f(a) \neq f(b)$ since f is one-to-one).

It is sufficient to prove that $f(x) \in (f(a), f(b))$, since $f((a, b)) \supset (f(a), f(b))$ by the intermediate value theorem, and $f(U_1) \supset f((a, b))$.

Assume the contrary: f(x) < f(a) or f(x) > f(b) (we know that $f(x) \neq f(a)$, $f(x) \neq f(b)$ since f is one-to-one). Consider the case f(x) < f(a) (the other case f(x) > f(b) is similar).

Take y such that f(x) < y < f(a) < f(b). By the intermediate value theorem (again), $y = f(x_1)$ for some $x_1 \in (a, x)$; and similarly, $y = f(x_2)$ for some $x_2 \in (x, b)$. Thus $x_1 < x_2$ but $f(x_1) = f(x_2)$ in contradiction to the fact that f is one-to-one.

¹Hint: note that U need not be convex; assuming $f(x_n) - f(y_n) \ge n|x_n - y_n|$ take a convergent subsequence...

²Hint: recall 3b4.

3b12 Exercise. Taking Prop. 3b9 for granted, prove the following claim:

Assume that $x_0 \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable near x_0 , Df is continuous at x_0 , and the operator $(Df)_{x_0}$ is one-to-one. Then there exists a bounded open neighborhood U of x_0 such that $f|_{\overline{U}}$ is a homeomorphism $\overline{U} \to f(\overline{U})$.¹

Solution. The one-to-one linear operator $(Df)_{x_0}$ maps \mathbb{R}^n onto an *n*-dimensional subspace $E = (Df)_{x_0}(\mathbb{R}^n)$ of \mathbb{R}^m (and therefore $n \leq m$). We take an orthonormal basis (e_1, \ldots, e_n) of E and define a linear operator $T : \mathbb{R}^m \to \mathbb{R}^n$ by $T(y) = (\langle y, e_1 \rangle, \ldots, \langle y, e_n \rangle).$

Claim: the operator $T \circ (Df)_{x_0}$ (from \mathbb{R}^n to itself) is one-to-one (therefore invertible). Proof: if $x \in \mathbb{R}^n$, $x \neq 0$, then $(Df)_{x_0}(x) = y \in E$, $y \neq 0$; thus, $0 \neq |y|^2 = \langle y, e_1 \rangle^2 + \cdots + \langle y, e_n \rangle^2 = |T(y)|^2 = |T \circ (Df)_{x_0}(x)|^2$.

A mapping $g = T \circ f$ (from \mathbb{R}^n to itself) is differentiable near x_0 , Dg is continuous at x_0 , and the operator $(Dg)_{x_0} = T \circ (Df)_{x_0}$ is invertible. Proposition 3b9 gives a bounded open neighborhood U_0 of x_0 such that $g|_{\overline{U_0}}$ is a homeomorphism $\overline{U_0} \to g(\overline{U_0})$.

On the other hand, there exists an open neighborhood U_1 of x_0 such that f is (differentiable, therefore) continuous on $\overline{U_1}$. The set $U = U_0 \cap U_1$ is a bounded open neighborhood of x_0 . It remains to prove that $f|_{\overline{U}}$ is a homeomorphism $\overline{U} \to f(\overline{U})$.

We know that $g|_{\overline{U}}$ is a homeomorphism $\overline{U} \to g(\overline{U})$, since $\overline{U} \subset \overline{U_0}$. Thus, $g|_{\overline{U}}$ is one-to-one; it follows that $f|_{\overline{U}}$ is one-to-one, since $x_1 \neq x_2 \implies g(x_1) \neq g(x_2) \implies T(f(x_1)) \neq T(f(x_2)) \implies f(x_1) \neq f(x_2)$ for $x_1, x_2 \in \overline{U}$.

We know that f is continuous on $\overline{U} \subset \overline{U_1}$, that is, $x_n \to x \implies f(x_n) \to f(x)$ for $x, x_1, x_2, \dots \in \overline{U}$. It remains to prove that $f(x_n) \to f(x) \implies x_n \to x$. We have $f(x_n) \to f(x) \implies T(f(x_n)) \to T(f(x)) \implies g(x_n) \to g(x) \implies x_n \to x$, since $g|_{\overline{U}}$ is a homeomorphism. \Box

¹Hint: the operator $T \circ (Df)_{x_0}$ is one-to-one for some linear $T : \mathbb{R}^m \to \mathbb{R}^n$.