Solutions to selected exercises

2f2 Exercise. Let $U \subset \mathbb{R}^{n}$ be an open set, $f \in C^{1}(U)$, and $K \subset U$ is compact. Prove that $\left.f\right|_{K}$ is a Lipschitz function; that is, $\exists M \forall x, y \in$ $K|f(x)-f(y)| \leq M|x-y| .{ }^{1}$

Solution. Assume the contrary: $\forall M \exists x, y \in K|f(x)-f(y)|>M|x-y|$. Applying this to $M=1,2,3, \ldots$ we get $x_{n}, y_{n} \in K$ such that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|>$ $n\left|x_{n}-y_{n}\right|$ for $n=1,2, \ldots$

The function f, being continuous on the compact set K, is bounded on K; therefore $\left|x_{n}-y_{n}\right|<\frac{1}{n}\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

By compactness, there exists a convergent subsequence; we take $n_{1}<$ $n_{2}<\ldots$ and $a \in K$ such that $x_{n_{k}} \rightarrow a$ as $k \rightarrow \infty$. Also $y_{n_{k}} \rightarrow a$, since $\left|y_{n_{k}}-a\right| \leq\left|y_{n_{k}}-x_{n_{k}}\right|+\left|x_{n_{k}}-a\right| \rightarrow 0$.

We take a bounded convex neighborhood V of a (say, a small ball) such that $\bar{V} \subset U$. The mapping ∇f, being continuous on the compact set \bar{V}, is bounded on V by some M. By $2 \mathrm{f} 1,|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in V$.

For k large enough we have $x_{n_{k}}, y_{n_{k}} \in V$, thus $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \leq M \mid x_{n_{k}}-$ $y_{n_{k}} \mid$ in contradiction to $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right|>n_{k}\left|x_{n_{k}}-y_{n_{k}}\right|, n_{k} \rightarrow \infty$.

3b10 Exercise. Prove invariance of domain in dimension one. ${ }^{2}$
Solution. A set $U \subset \mathbb{R}$ is open; $f: U \rightarrow \mathbb{R}$ is continuous and one-to-one. We have to prove that f is an open map, that is, $f\left(U_{1}\right)$ is open for every open $U_{1} \subset U$. It means: $f\left(U_{1}\right)$ is a neighborhood of $f(x)$ for every $x \in U_{1}$.

Given $x \in U_{1}$, we take $a<b$ such that $x \in(a, b) \subset[a, b] \subset U_{1}$. Consider the case $f(a)<f(b)$ (the other case $f(a)>f(b)$ is similar, and $f(a) \neq f(b)$ since f is one-to-one).

It is sufficient to prove that $f(x) \in(f(a), f(b))$, since $f((a, b)) \supset(f(a), f(b))$ by the intermediate value theorem, and $f\left(U_{1}\right) \supset f((a, b))$.

Assume the contrary: $f(x)<f(a)$ or $f(x)>f(b)$ (we know that $f(x) \neq$ $f(a), f(x) \neq f(b)$ since f is one-to-one). Consider the case $f(x)<f(a)$ (the other case $f(x)>f(b)$ is similar).

Take y such that $f(x)<y<f(a)<f(b)$. By the intermediate value theorem (again), $y=f\left(x_{1}\right)$ for some $x_{1} \in(a, x)$; and similarly, $y=f\left(x_{2}\right)$ for some $x_{2} \in(x, b)$. Thus $x_{1}<x_{2}$ but $f\left(x_{1}\right)=f\left(x_{2}\right)$ in contradiction to the fact that f is one-to-one.

[^0]3b12 Exercise. Taking Prop. 3b9 for granted, prove the following claim:
Assume that $x_{0} \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable near $x_{0}, D f$ is continuous at x_{0}, and the operator $(D f)_{x_{0}}$ is one-to-one. Then there exists a bounded open neighborhood U of x_{0} such that $\left.f\right|_{\bar{U}}$ is a homeomorphism $\bar{U} \rightarrow f(\bar{U}) .{ }^{1}$

Solution. The one-to-one linear operator $(D f)_{x_{0}}$ maps \mathbb{R}^{n} onto an n-dimensional subspace $E=(D f)_{x_{0}}\left(\mathbb{R}^{n}\right)$ of \mathbb{R}^{m} (and therefore $n \leq m$). We take an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of E and define a linear operator $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ by $T(y)=\left(\left\langle y, e_{1}\right\rangle, \ldots,\left\langle y, e_{n}\right\rangle\right)$.

Claim: the operator $T \circ(D f)_{x_{0}}$ (from \mathbb{R}^{n} to itself) is one-to-one (therefore invertible). Proof: if $x \in \mathbb{R}^{n}, x \neq 0$, then $(D f)_{x_{0}}(x)=y \in E, y \neq 0$; thus, $0 \neq|y|^{2}=\left\langle y, e_{1}\right\rangle^{2}+\cdots+\left\langle y, e_{n}\right\rangle^{2}=|T(y)|^{2}=\left|T \circ(D f)_{x_{0}}(x)\right|^{2}$.

A mapping $g=T \circ f$ (from \mathbb{R}^{n} to itself) is differentiable near $x_{0}, D g$ is continuous at x_{0}, and the operator $(D g)_{x_{0}}=T \circ(D f)_{x_{0}}$ is invertible. Proposition 3b9 gives a bounded open neighborhood U_{0} of x_{0} such that $\left.g\right|_{\overline{U_{0}}}$ is a homeomorphism $\overline{U_{0}} \rightarrow g\left(\overline{U_{0}}\right)$.

On the other hand, there exists an open neighborhood U_{1} of x_{0} such that f is (differentiable, therefore) continuous on $\overline{U_{1}}$. The set $U=U_{0} \cap U_{1}$ is a bounded open neighborhood of x_{0}. It remains to prove that $\left.f\right|_{\bar{U}}$ is a homeomorphism $\bar{U} \rightarrow f(\bar{U})$.

We know that $\left.g\right|_{\bar{U}}$ is a homeomorphism $\bar{U} \rightarrow g(\bar{U})$, since $\bar{U} \subset \overline{U_{0}}$. Thus, $\left.g\right|_{\bar{U}}$ is one-to-one; it follows that $\left.f\right|_{\bar{U}}$ is one-to-one, since $x_{1} \neq x_{2} \Longrightarrow g\left(x_{1}\right) \neq$ $g\left(x_{2}\right) \Longrightarrow T\left(f\left(x_{1}\right)\right) \neq T\left(f\left(x_{2}\right)\right) \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$ for $x_{1}, x_{2} \in \bar{U}$.

We know that f is continuous on $\bar{U} \subset \overline{U_{1}}$, that is, $x_{n} \rightarrow x \Longrightarrow f\left(x_{n}\right) \rightarrow$ $f(x)$ for $x, x_{1}, x_{2}, \cdots \in \bar{U}$. It remains to prove that $f\left(x_{n}\right) \rightarrow f(x) \Longrightarrow$ $x_{n} \rightarrow x$. We have $f\left(x_{n}\right) \rightarrow f(x) \Longrightarrow T\left(f\left(x_{n}\right)\right) \rightarrow T(f(x)) \Longrightarrow g\left(x_{n}\right) \rightarrow$ $g(x) \Longrightarrow x_{n} \rightarrow x$, since $\left.g\right|_{\bar{U}}$ is a homeomorphism.

[^1]
[^0]: ${ }^{1}$ Hint: note that U need not be convex; assuming $f\left(x_{n}\right)-f\left(y_{n}\right) \geq n\left|x_{n}-y_{n}\right|$ take a convergent subsequence...
 ${ }^{2}$ Hint: recall 3b4.

[^1]: ${ }^{1}$ Hint: the operator $T \circ(D f)_{x_{0}}$ is one-to-one for some linear $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

