
2b9 Proposition. (Linearity of derivative) Let S be an affine space, V a vector space,
f, g : S → V , a, b ∈ R, and x0 ∈ S. If f, g are differentiable at x0 then also af + bg is,
and (

D(af + bg)
)
x0 = a(Df)x0 + b(Dg)x0 .

2b10 Proposition. (Product rule) Let S be an affine space, f, g : S → R, and x0 ∈ S.
If f, g are differentiable at x0 then also fg (the pointwise product) is, and(

D(fg)
)
x0 = f(x0)(Dg)x0 + g(x0)(Df)x0 .

2b12 Proposition. (Chain rule) Let S1, S2, S3 be affine space s, f : S1 → S2, g : S2 →
S3, and x0 ∈ S1. If f is differentiable at x0 and g is differentiable at f(x0) then g ◦ f is
differentiable at x0, and (

D(g ◦ f)
)
x0

= (Dg)f(x0) ◦ (Df)x0
.

2d1 Proposition. (Mean value) Assume that x0, h ∈ Rn and f : Rn → R is differen-
tiable at x0 + th for all t ∈ (0, 1), and continuous at x0 and x0 + h. Then there exists
t ∈ (0, 1) such that

f(x0 + h)− f(x0) = (Dhf)x0+th .

2e1 Proposition. Assume that all partial derivatives of a mapping f : Rn → Rm exist
near x0 and are continuous at x0. Then f is differentiable at x0.

2f3 Lemma. Let a mapping f : Rn → Rm be differentiable at x0, and f1, . . . , fm :
Rn → R be the coordinate functions of f (that is, f(x) =

(
f1(x), . . . , fm(x)

)
. Then the

following two conditions are equivalent:
(a) vectors ∇f1(x0), . . . ,∇fm(x0) are linearly independent;
(b) the linear operator (Df)x0 maps Rn onto Rm.

f(x0 + h) = f(x0) +Dhf(x0) +
1

2!
DhDhf(x0) + · · ·+ 1

k!
Dk

hf(x0) + o(|h|k) .

3b7 Proposition. Let U ⊂ Rn be open, and f ∈ C1(U → Rn). If the operator (Df)x
is invertible for all x ∈ U then f is open.

3b8 Lemma. Let U ⊂ Rn be open and bounded, f : U → Rn a continuous mapping,
differentiable on U . If f is a homeomorphism U → f(U) and the operator (Df)x is
invertible for all x ∈ U then f |U is open. (Here U is the closure of U .)

3b9 Proposition. Assume that x0 ∈ Rn, f : Rn → Rn is differentiable near x0, Df is
continuous at x0, and the operator (Df)x0

is invertible. Then there exists a bounded
open neighborhood U of x0 such that f |U is a homeomorphism U → f(U), and f is
differentiable on U , and the operator (Df)x is invertible for all x ∈ U .

3b11 Exercise. Let U ⊂ Rn be open, and f ∈ C1(U → Rm). If the operator (Df)x
maps Rn onto Rm for all x ∈ U then f is open.

3b12 Exercise. Assume that x0 ∈ Rn, f : Rn → Rm is differentiable near x0, Df is
continuous at x0, and the operator (Df)x0 is one-to-one. Then there exists a bounded
open neighborhood U of x0 such that f |U is a homeomorphism U → f(U).

3d1 Lemma. Let U ⊂ Rn be open and bounded, f : U → Rn continuous. If f is a
homeomorphism U → f(U) with no regular boundary points then f(U) is open.

3f1 Proposition. Assume that f, g : R2 → R are continuously differentiable near a
given point (x0, y0); vectors ∇f(x0, y0) and ∇g(x0, y0) are linearly independent; and
g(x0, y0) = 0. Denote z0 = f(x0, y0). Then there exist ε > 0 and a path γ : (z0 − ε, z0 +
ε)→ R2 such that γ(z0) = (x0, y0), f(γ(t)) = t and g(γ(t)) = 0 for all t ∈ (z0−ε, z0 +ε).

3f4 Proposition. Assume that f, g1, g2 : R3 → R are continuously differentiable near
a given point (x0, y0, z0); vectors ∇f(x0, y0, z0), ∇g1(x0, y0, z0) and ∇g2(x0, y0, z0) are
linearly independent; and g1(x0, y0, z0) = g2(x0, y0, z0) = 0. Denote w0 = f(x0, y0, z0).
Then there exist ε > 0 and a path γ : (w0−ε, w0+ε)→ R3 such that γ(w0) = (x0, y0, z0),
f(γ(t)) = t and g1(γ(t)) = g2(γ(t)) = 0 for all t ∈ (w0 − ε, w0 + ε).

3g1 Proposition. Assume that f, g : R3 → R are continuously differentiable near a
given point (x0, y0, z0); vectors∇f(x0, y0, z0) and∇g(x0, y0, z0) are linearly independent;
and g(x0, y0, z0) = 0. Denote w0 = f(x0, y0, z0). Then there exist ε > 0 and a path
γ : (w0 − ε, w0 + ε)→ R3 such that γ(w0) = (x0, y0, z0), f(γ(t)) = t and g(γ(t)) = 0 for
all t ∈ (w0 − ε, w0 + ε).

3g2 Corollary. If f, g, x0, y0, z0 are as in 3g1 then (x0, y0, z0) cannot be a local con-
strained extremum of f on Zg.

3g3 Exercise. Generalize 3g1 and 3g2 to f, g1, . . . , gm : Rn → R, 1 ≤ m ≤ n− 1.

3h1 Theorem. Assume that x0 ∈ Rn, functions f, g1, . . . , gm : Rn → R are continuously
differentiable near x0, g1(x0) = · · · = gm(x0) = 0, and vectors ∇g1(x0), . . . ,∇gm(x0) are
linearly independent. If x0 is a local constrained extremum of f subject to g1(·) = · · · =
gm(·) = 0 then there exist λ1, . . . , λm ∈ R such that

∇f(x0) = λ1∇g1(x0) + · · ·+ λm∇gm(x0) .

∂

∂ck

∣∣∣
c=0

f(x(c)) = λk(0) .

It means that λk = λk(0) is the sensitivity of the critical value to the level ck of the
constraint gk(x) = ck.

4c1 Theorem. Assume that a mapping f : Rn → Rn is continuously differentiable near
x0, and the operator (Df)x0

is invertible. Then there exists an open neighborhood U
of x0 and an open neighborhood V of y0 = f(x0) such that f |U is a homeomorphism
U → V , continuously differentiable on U , and the inverse mapping (f |U )−1 : V → U is
continuously differentiable on V .

(Dg)y =
(
(Df)x

)−1 for g = (f |U )−1 , y = f(x) .



4c5 Theorem. Assume that U, V ⊂ Rn are open, f : U → V is a homeomorphism,
continuously differentiable, and the operator (Df)x is invertible for all x ∈ U . Then the
inverse mapping f−1 : V → U is continuously differentiable.

4c9 Exercise. (a) Let f : U → V be as in Theorem 4c5 and in addition f ∈ C2(U).
Then f−1 ∈ C2(V ).

(b) The same for Ck(. . . ) where k = 3, 4, . . .

4d1 Proposition. Assume that x0 ∈ Rn, f : Rn → Rn is differentiable near x0, Df
is continuous at x0, and the operator T = (Df)x0 is invertible. Then for every y near
y0 = f(x0) the iterative process

xn+1 = xn + T−1
(
y − f(xn)

)
for n = 0, 1, 2, . . .

is well-defined and converges to a solution x of the equation f(x) = y. In addition,
|x− x0| = O(|y − y0|).

5c1 Theorem. Assume that r, c ∈ {1, 2, 3, . . . }, n = r+c, x0 ∈ Rr, y0 ∈ Rc, g : Rn → Rc

is continuously differentiable near (x0, y0), g(x0, y0) = 0, and the operator B = ∂g
∂y

∣∣∣
(x0,y0)

is invertible. Then there exist open neighborhoods U of x0 and V of y0 such that
(a) for every x ∈ U there exists one and only one y ∈ V satisfying g(x, y) = 0;
(b) a function ϕ : U → V defined by g

(
x, ϕ(x)

)
= 0 is continuously differentiable, and

(Dϕ)x0 = −B−1A where A = ∂g
∂x

∣∣∣
(x0,y0)

.

∗∫
B

(f + g) ≤
∗∫
B

f +
∗∫
B

g ;(6d8)

∗

∫
B

(f + g) ≥
∗

∫
B

f +
∗

∫
B

g ;(6d9)

if f, g are integrable then f + g is, and

∫
B

(f + g) =

∫
B

f +

∫
B

g .(6d10)

6d15 Proposition. Let f, fn : B → R be bounded functions such that

∗∫
B

|fn − f | → 0 as n→∞ .

Then

∗

∫
B

fn →
∗

∫
B

f and
∗∫
B

fn →
∗∫
B

f as n→∞ .

If each fn is integrable then f is integrable and
∫
B
fn →

∫
B
f .

(6f1) v∗(E) =
∗

∫
Rn

1lE , v∗(E) =
∗∫
Rn

1lE , v(E) =

∫
Rn

1lE .

v∗(E1 ∪ E2) ≤ v∗(E1) + v∗(E2) ,(6f3)

v∗(E1 ] E2) ≥ v∗(E1) + v∗(E2) ;(6f4)

if E1, E2 are Jordan measurable then E1 ] E2 is, and

v(E1 ] E2) = v(E1) + v(E2) .
(6f5)

6g1 Lemma. If bounded functions f, g : Rn → R with bounded support differ only on
a set of volume zero then ∗

∫
f = ∗

∫
g and

∗∫
f =

∗∫
g.

(6g7)
∗∫
B

f = inf
h≥f

∫
B

h ,
∗

∫
B

f = sup
h≤f

∫
B

h

where h runs over all step functions, and the inequalities h ≥ f , h ≤ f are required on
the domain of h.

6h1 Proposition. Let f : B → [0,∞) be an integrable function on a box B ⊂ Rn, and

E = {(x, t) : x ∈ B, 0 ≤ t ≤ f(x)} ⊂ Rn+1 .

Then E is Jordan measurable (in Rn+1), and v(E) =

∫
B

f .

(6i1) |f(x)− f(y)| ≤ L|x− y| for all x, y .

6i2 Proposition. For every bounded function f on a box B,

∗

∫
B

f = sup
g≤f

∫
B

g ,
∗∫
B

f = inf
g≥f

∫
B

g ,

where g runs over all Lipschitz functions.

(6i3)

f+L (x) = sup
y∈B

(
f(y)− L|x− y|

)
for x ∈ B

f−L (x) = inf
y∈B

(
f(y) + L|x− y|

)
for x ∈ B

(6i4)
(1lE)+L(x) = max

(
0, 1− Ldist(x,E)

)
= 1−min

(
1, Ldist(x,B \ E)

)
,

(1lE)−L (x) = min
(
1, Ldist(x,B \ E)

)
6i9 Lemma. ∫

B

h−L ↑
∫
B

h and

∫
B

h+L ↓
∫
B

h as L→∞

for every step function h on B.

6i10 Lemma. ∫
B

f−L ↑
∗

∫
B

f and

∫
B

f+L ↓
∗∫
B

f as L→∞

for every bounded function f on B.



6i12 Exercise. A function f is integrable on B if and only if there exist Lipschitz
functions fn on B such that

∗∫
B
|fn − f | → 0.

6j1 Lemma. Let ϕ : R→ R be a Lipschitz function satisfying ϕ(0) = 0, and f : Rn → R
an integrable function. Then the function ϕ ◦ f : Rn → R is integrable.

6j3 Exercise. If f, g : Rn → R are integrable then min(f, g), max(f, g) and fg are
integrable.

6j4 Exercise. If E,F are Jordan measurable then E ∩ F , E ∪ F and E \ F are Jordan
measurable.

(6j5)

∫
E

f =

∫
Rn

f1lE .

(6j6)

∫
E1]E2

f =

∫
E1

f +

∫
E2

f

whenever E1, E2 are Jordan measurable and disjoint.

6k3 Corollary. v∗(E) + v∗(∂E) = v∗(E) for all bounded E ⊂ Rn.

(6k7) v(E1 ∪ E2) + v(E1 ∩ E2) = v(E1) + v(E2)

6k8 Proposition. If f is integrable on B then

L(f, P )→
∫
B

f and U(f, P )→
∫
B

f as mesh(P )→ 0 .

6k10 Exercise. For every integrable f : Rn → R,

εn
∑

k1,...,kn∈Z
f(εk1, . . . , εkn)→

∫
f as ε→ 0 .

6k11 Exercise. (a) For every ε > 0 and Jordan measurable E ⊂ Rn, for all δ > 0
small enough there exist closed δ-pixelated sets E−, E+ such that E− ⊂ E ⊂ E+ and
v(E+)− v(E−) ≤ ε.

(b) The same holds for non-closed δ-pixelated sets.

6l1 Proposition. If a map w : J (Rn) → [0,∞) satisfies additivity and translation
invariance then ∃c ≥ 0 ∀E ∈ J (Rn) w(E) = cv(E) .

6m1 Proposition. Let T : Rn → Rn be a linear isometry (that is, a linear operator
satisfying ∀x |T (x)| = |x|). Then the image T (E) of an arbitrary E ⊂ Rn is Jordan
measurable if and only if E is Jordan measurable, and in this case

v
(
T (E)

)
= v(E) .

6m4 Proposition. Let T : Rn → Rn be a linear isometry, and f : Rn → R a bounded
function with bounded support. Then

∗

∫
f ◦ T =

∗

∫
f and

∗∫
f ◦ T =

∗∫
f .

Thus, f ◦ T is integrable if and only if f is integrable, and in this case∫
f ◦ T =

∫
f .

6n1 Theorem. Let T : Rn → Rn be an invertible linear operator. Then the image T (E)
of an arbitrary E ⊂ Rn is Jordan measurable if and only if E is Jordan measurable, and
in this case

v
(
T (E)

)
= |detT |v(E) .

Also, for every bounded function f : Rn → R with bounded support,

|detT |
∗

∫
f ◦ T =

∗

∫
f and |detT |

∗∫
f ◦ T =

∗∫
f .

Thus, f ◦ T is integrable if and only if f is integrable, and in this case

|detT |
∫
f ◦ T =

∫
f .

7b1 Proposition. Let f : B → R be a Lipschitz function on a box B = I1 × I2 ⊂ R2.
Then
(a) for every x ∈ I1 the function fx is Lipschitz continuous on I2;
(b) the function x 7→

∫
I2
fx is Lipschitz continuous on I1;

(c)

∫
B

f =

∫
I1

(
x 7→

∫
I2

fx

)
.

7b3 Proposition. Let two boxes B1 ⊂ Rm, B2 ⊂ Rn be given, and a Lipschitz function
f on a box B = B1 ×B2 ⊂ Rm+n. Then
(a) for every x ∈ B1 the function fx is Lipschitz continuous on B2;
(b) the function x 7→

∫
B2
fx is Lipschitz continuous on B1;

(c)

∫
B

f =

∫
B1

(
x 7→

∫
B2

fx

)
.

7b5 Exercise.∫
B1×B2

f(x1, . . . , xm)g(y1, . . . , yn) dx1 . . . dxm dy1 . . . dyn =

=

(∫
B1

f(x1, . . . , xm) dx1 . . . dxm

)(∫
B2

g(y1, . . . , yn) dy1 . . . dyn

)
for Lipschitz functions f : B1 → R, g : B2 → R.

7d1 Theorem. Let two boxes B1 ⊂ Rm, B2 ⊂ Rn be given, and an integrable function
f on a box B = B1 ×B2 ⊂ Rm+n. Then the iterated integrals∫

B1

dx
∗

∫
B2

dy f(x, y) ,

∫
B1

dx
∗∫
B2

dy f(x, y) ,∫
B2

dy
∗

∫
B1

dx f(x, y) ,

∫
B2

dy
∗∫
B1

dx f(x, y)

are well-defined and equal to ∫∫
B

f(x, y) dxdy .



7d3 Exercise. Generalize 7b5 to integrable functions
(a) assuming integrability of the function (x, y) 7→ f(x)g(y),
(b) deducing integrability of the function (x, y) 7→ f(x)g(y) from integrability of f

and g (via sandwich).

7d4 Exercise. If E1 ⊂ Rm and E2 ⊂ Rn are Jordan measurable sets then the set
E = E1 × E2 ⊂ Rm+n is Jordan measurable.

7d5 Exercise. If E1 ⊂ Rm and E2 ⊂ Rm+n are Jordan measurable sets then the set
E = {(x, y) ∈ E2 : x ∈ E1} = (E1 × Rn) ∩ E2 ⊂ Rm+n is Jordan measurable.

7d6 Corollary. Let f : Rm+n → R be integrable on every box, and E ⊂ Rm+n a Jordan
measurable set; then ∫

E

f =

∫
Rm

(
x 7→

∫
Ex

fx

)
where Ex = {y : (x, y) ∈ E} ⊂ Rn for x ∈ Rm.

7d7 Corollary. (Cavalieri) If Jordan measurable sets E,F ⊂ R3 satisfy v2(Ex) = v2(Fx)
for all x then v3(E) = v3(F ).

7e1 Theorem. Let B ⊂ Rn be a box, and f, g : B× [0, 1]→ R Lipschitz functions such
that f ′x(t) = gx(t) for all x ∈ B, t ∈ (0, 1). Then F ′(t) = G(t) for all t ∈ (0, 1), where
F (t) =

∫
B
f(x, t) dx and G(t) =

∫
B
g(x, t) dx.

8a2 Proposition. Let U, V ⊂ Rn be open sets, ϕ : U → V a diffeomorphism, and
E ⊂ U . Then the following two conditions are equivalent.

(a) E is Jordan measurable and contained in a compact subset of U ;
(b) ϕ(E) is Jordan measurable and contained in a compact subset of V .

8a5 Theorem. Let U, V ⊂ Rn be open sets, ϕ : U → V a diffeomorphism, E ⊂ U
a Jordan measurable set contained in a compact subset of U , and f : ϕ(E) → R an
integrable function. Then f ◦ ϕ : E → R is integrable, and∫

ϕ(E)

f =

∫
E

(f ◦ ϕ)|detDϕ| .

8a6 Corollary. If, in addition, U and V are Jordan measurable and Dϕ is bounded on
U then integrability of f : V → R implies integrability of (f ◦ ϕ)|detDϕ| : U → R, and∫

V

f =

∫
U

(f ◦ ϕ)|detDϕ| .

8b8 Proposition. (Pappus) Let Ω ⊂ (0,∞)×R ⊂ R2 be a Jordan measurable set and

Ω̃ = {(x, y, z) :
(√

x2 + y2, z
)
∈ Ω} ⊂ R3. Then Ω̃ is Jordan measurable, and

v3(Ω̃) = v2(Ω) · 2πxCE
;

here CE = (xCE
, yCE

, zCE
) is the centroid of E.

8d1 Proposition. If F : B 7→
∫
B
f for a locally integrable function f : Rn → R, then

the three functions ∗F
′, f , ∗F ′ are (pairwise) equivalent.

8e1 Proposition. (a) If an additive box function F is differentiable on a box B then

v(B) inf
x∈B

F ′(x) ≤ F (B) ≤ v(B) sup
x∈B

F ′(x) .

(b) For every additive box function F ,

v(B) inf
x∈B

∗F
′(x) ≤ F (B) ≤ v(B) sup

x∈B

∗F ′(x) .

(8e4) F (B) =

∫
B

F ′

whenever F ′ exists and is integrable on B.
8e5 Exercise.

∗

∫
B
∗F
′ ≤ F (B) ≤

∗∫
B

∗F ′

for every box B and additive box function F such that ∗F
′ and ∗F ′ are bounded on B.

(8f1) F∗(B) = v∗(ϕ
−1(B◦)) , F ∗(B) = v∗(ϕ−1(B)) ,

(8f2) J−(x) = lim inf
B→x

F∗(B)

v(B)
, J+(x) = lim sup

B→x

F ∗(B)

v(B)
.

8f3 Proposition. If J−, J+ are locally integrable and equivalent then

F∗(B) = F ∗(B) =

∫
B

J− =

∫
B

J+

for every box B.

In this case

(8f4) v
(
ϕ−1(B)

)
=

∫
B

J

where J is any function equivalent to J−, J+.

8g1 Proposition. If ϕ : Rm → Rn is such that J−, J+ are locally integrable and
equivalent then for every integrable f : Rn → R the function f ◦ ϕ : Rm → R is
integrable and ∫

Rm

f ◦ ϕ =

∫
Rn

fJ .

8g2 Corollary. If ϕ : Rm → Rn is such that J−, J+ are locally integrable and equivalent
then:

(a) for every Jordan measurable set E ⊂ Rn the set ϕ−1(E) ⊂ Rm is Jordan measur-
able;

(b) for every integrable f : E → R the function f ◦ ϕ is integrable on ϕ−1(E), and∫
ϕ−1(E)

f ◦ ϕ =

∫
E

fJ .

8h1 Proposition. Let U, V ⊂ Rn be open sets and ϕ : V → U a diffeomorphism, then

J−(x) = J+(x) = |det(Dψ)x|

for all x ∈ U ; here ψ = ϕ−1 : U → V .


