2b9 Proposition. (Linearity of derivative) Let S be an affine space, V a vector space, $f, g: S \rightarrow V, a, b \in \mathbb{R}$, and $x_{0} \in S$. If f, g are differentiable at x_{0} then also $a f+b g$ is, and

$$
(D(a f+b g))_{x_{0}}=a(D f)_{x_{0}}+b(D g)_{x_{0}}
$$

2b10 Proposition. (Product rule) Let S be an affine space, $f, g: S \rightarrow \mathbb{R}$, and $x_{0} \in S$. If f, g are differentiable at x_{0} then also $f g$ (the pointwise product) is, and

$$
(D(f g))_{x_{0}}=f\left(x_{0}\right)(D g)_{x_{0}}+g\left(x_{0}\right)(D f)_{x_{0}}
$$

2b12 Proposition. (Chain rule) Let S_{1}, S_{2}, S_{3} be affine space s, $f: S_{1} \rightarrow S_{2}, g: S_{2} \rightarrow$ S_{3}, and $x_{0} \in S_{1}$. If f is differentiable at x_{0} and g is differentiable at $f\left(x_{0}\right)$ then $g \circ f$ is differentiable at x_{0}, and

$$
(D(g \circ f))_{x_{0}}=(D g)_{f\left(x_{0}\right)} \circ(D f)_{x_{0}} .
$$

2d1 Proposition. (Mean value) Assume that $x_{0}, h \in \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $x_{0}+t h$ for all $t \in(0,1)$, and continuous at x_{0} and $x_{0}+h$. Then there exists $t \in(0,1)$ such that

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=\left(D_{h} f\right)_{x_{0}+t h}
$$

2e1 Proposition. Assume that all partial derivatives of a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ exist near x_{0} and are continuous at x_{0}. Then f is differentiable at x_{0}.

2f3 Lemma. Let a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable at x_{0}, and f_{1}, \ldots, f_{m} : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ be the coordinate functions of f (that is, $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$. Then the following two conditions are equivalent:
(a) vectors $\nabla f_{1}\left(x_{0}\right), \ldots, \nabla f_{m}\left(x_{0}\right)$ are linearly independent;
(b) the linear operator $(D f)_{x_{0}}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+D_{h} f\left(x_{0}\right)+\frac{1}{2!} D_{h} D_{h} f\left(x_{0}\right)+\cdots+\frac{1}{k!} D_{h}^{k} f\left(x_{0}\right)+o\left(|h|^{k}\right)
$$

3b7 Proposition. Let $U \subset \mathbb{R}^{n}$ be open, and $f \in C^{1}\left(U \rightarrow \mathbb{R}^{n}\right)$. If the operator $(D f)_{x}$ is invertible for all $x \in U$ then f is open.

3b8 Lemma. Let $U \subset \mathbb{R}^{n}$ be open and bounded, $f: \bar{U} \rightarrow \mathbb{R}^{n}$ a continuous mapping, differentiable on U. If f is a homeomorphism $\bar{U} \rightarrow f(\bar{U})$ and the operator $(D f)_{x}$ is invertible for all $x \in U$ then $\left.f\right|_{U}$ is open. (Here \bar{U} is the closure of U.)
3b9 Proposition. Assume that $x_{0} \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is differentiable near $x_{0}, D f$ is continuous at x_{0}, and the operator $(D f)_{x_{0}}$ is invertible. Then there exists a bounded open neighborhood U of x_{0} such that $\left.f\right|_{\bar{U}}$ is a homeomorphism $\bar{U} \rightarrow f(\bar{U})$, and f is differentiable on U, and the operator $(D f)_{x}$ is invertible for all $x \in U$.
3b11 Exercise. Let $U \subset \mathbb{R}^{n}$ be open, and $f \in C^{1}\left(U \rightarrow \mathbb{R}^{m}\right)$. If the operator $(D f)_{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m} for all $x \in U$ then f is open.

3b12 Exercise. Assume that $x_{0} \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable near $x_{0}, D f$ is continuous at x_{0}, and the operator $(D f)_{x_{0}}$ is one-to-one. Then there exists a bounded open neighborhood U of x_{0} such that $\left.f\right|_{\bar{U}}$ is a homeomorphism $\bar{U} \rightarrow f(\bar{U})$.

3d1 Lemma. Let $U \subset \mathbb{R}^{n}$ be open and bounded, $f: \bar{U} \rightarrow \mathbb{R}^{n}$ continuous. If f is a homeomorphism $\bar{U} \rightarrow f(\bar{U})$ with no regular boundary points then $f(U)$ is open.

3f1 Proposition. Assume that $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuously differentiable near a given point $\left(x_{0}, y_{0}\right)$; vectors $\nabla f\left(x_{0}, y_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}\right)$ are linearly independent; and $g\left(x_{0}, y_{0}\right)=0$. Denote $z_{0}=f\left(x_{0}, y_{0}\right)$. Then there exist $\varepsilon>0$ and a path $\gamma:\left(z_{0}-\varepsilon, z_{0}+\right.$ $\varepsilon) \rightarrow \mathbb{R}^{2}$ such that $\gamma\left(z_{0}\right)=\left(x_{0}, y_{0}\right), f(\gamma(t))=t$ and $g(\gamma(t))=0$ for all $t \in\left(z_{0}-\varepsilon, z_{0}+\varepsilon\right)$.

3f4 Proposition. Assume that $f, g_{1}, g_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are continuously differentiable near a given point $\left(x_{0}, y_{0}, z_{0}\right)$; vectors $\nabla f\left(x_{0}, y_{0}, z_{0}\right), \nabla g_{1}\left(x_{0}, y_{0}, z_{0}\right)$ and $\nabla g_{2}\left(x_{0}, y_{0}, z_{0}\right)$ are linearly independent; and $g_{1}\left(x_{0}, y_{0}, z_{0}\right)=g_{2}\left(x_{0}, y_{0}, z_{0}\right)=0$. Denote $w_{0}=f\left(x_{0}, y_{0}, z_{0}\right)$. Then there exist $\varepsilon>0$ and a path $\gamma:\left(w_{0}-\varepsilon, w_{0}+\varepsilon\right) \rightarrow \mathbb{R}^{3}$ such that $\gamma\left(w_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right)$, $f(\gamma(t))=t$ and $g_{1}(\gamma(t))=g_{2}(\gamma(t))=0$ for all $t \in\left(w_{0}-\varepsilon, w_{0}+\varepsilon\right)$.
3g1 Proposition. Assume that $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are continuously differentiable near a given point $\left(x_{0}, y_{0}, z_{0}\right)$; vectors $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}, z_{0}\right)$ are linearly independent; and $g\left(x_{0}, y_{0}, z_{0}\right)=0$. Denote $w_{0}=f\left(x_{0}, y_{0}, z_{0}\right)$. Then there exist $\varepsilon>0$ and a path $\gamma:\left(w_{0}-\varepsilon, w_{0}+\varepsilon\right) \rightarrow \mathbb{R}^{3}$ such that $\gamma\left(w_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right), f(\gamma(t))=t$ and $g(\gamma(t))=0$ for all $t \in\left(w_{0}-\varepsilon, w_{0}+\varepsilon\right)$.
3g2 Corollary. If $f, g, x_{0}, y_{0}, z_{0}$ are as in 3 g 1 then $\left(x_{0}, y_{0}, z_{0}\right)$ cannot be a local constrained extremum of f on Z_{g}.
3g3 Exercise. Generalize 3g1 and 3g2 to $f, g_{1}, \ldots, g_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}, 1 \leq m \leq n-1$.
3h1 Theorem. Assume that $x_{0} \in \mathbb{R}^{n}$, functions $f, g_{1}, \ldots, g_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are continuously differentiable near $x_{0}, g_{1}\left(x_{0}\right)=\cdots=g_{m}\left(x_{0}\right)=0$, and vectors $\nabla g_{1}\left(x_{0}\right), \ldots, \nabla g_{m}\left(x_{0}\right)$ are linearly independent. If x_{0} is a local constrained extremum of f subject to $g_{1}(\cdot)=\cdots=$ $g_{m}(\cdot)=0$ then there exist $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ such that

$$
\nabla f\left(x_{0}\right)=\lambda_{1} \nabla g_{1}\left(x_{0}\right)+\cdots+\lambda_{m} \nabla g_{m}\left(x_{0}\right) .
$$

$$
\left.\frac{\partial}{\partial c_{k}}\right|_{c=0} f(x(c))=\lambda_{k}(0)
$$

It means that $\lambda_{k}=\lambda_{k}(0)$ is the sensitivity of the critical value to the level c_{k} of the constraint $g_{k}(x)=c_{k}$.

4c1 Theorem. Assume that a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuously differentiable near x_{0}, and the operator $(D f)_{x_{0}}$ is invertible. Then there exists an open neighborhood U of x_{0} and an open neighborhood V of $y_{0}=f\left(x_{0}\right)$ such that $\left.f\right|_{U}$ is a homeomorphism $U \rightarrow V$, continuously differentiable on U, and the inverse mapping $\left(\left.f\right|_{U}\right)^{-1}: V \rightarrow U$ is continuously differentiable on V.

$$
(D g)_{y}=\left((D f)_{x}\right)^{-1} \quad \text { for } g=\left(\left.f\right|_{U}\right)^{-1}, y=f(x) .
$$

4c5 Theorem. Assume that $U, V \subset \mathbb{R}^{n}$ are open, $f: U \rightarrow V$ is a homeomorphism, continuously differentiable, and the operator $(D f)_{x}$ is invertible for all $x \in U$. Then the inverse mapping $f^{-1}: V \rightarrow U$ is continuously differentiable.
4c9 Exercise. (a) Let $f: U \rightarrow V$ be as in Theorem 4c5 and in addition $f \in C^{2}(U)$. Then $f^{-1} \in C^{2}(V)$.
(b) The same for $C^{k}(\ldots)$ where $k=3,4, \ldots$

4d1 Proposition. Assume that $x_{0} \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is differentiable near $x_{0}, D f$ is continuous at x_{0}, and the operator $T=(D f)_{x_{0}}$ is invertible. Then for every y near $y_{0}=f\left(x_{0}\right)$ the iterative process

$$
x_{n+1}=x_{n}+T^{-1}\left(y-f\left(x_{n}\right)\right) \quad \text { for } n=0,1,2, \ldots
$$

is well-defined and converges to a solution x of the equation $f(x)=y$. In addition, $\left|x-x_{0}\right|=O\left(\left|y-y_{0}\right|\right)$.

5c1 Theorem. Assume that $r, c \in\{1,2,3, \ldots\}, n=r+c, x_{0} \in \mathbb{R}^{r}, y_{0} \in \mathbb{R}^{c}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{c}$ is continuously differentiable near $\left(x_{0}, y_{0}\right), g\left(x_{0}, y_{0}\right)=0$, and the operator $B=\left.\frac{\partial g}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}$ is invertible. Then there exist open neighborhoods U of x_{0} and V of y_{0} such that
(a) for every $x \in U$ there exists one and only one $y \in V$ satisfying $g(x, y)=0$;
(b) a function $\varphi: U \rightarrow V$ defined by $g(x, \varphi(x))=0$ is continuously differentiable, and $(D \varphi)_{x_{0}}=-B^{-1} A$ where $A=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}$

$$
\begin{align*}
\int_{B}^{*}(f+g) & \leq \int_{B}^{*} f+\int_{B}^{*} g \tag{6d8}\\
\int_{B}(f+g) & \geq \int_{*} f+\int_{*} g \tag{6d9}
\end{align*}
$$

if f, g are integrable then $f+g$ is, and $\int_{B}(f+g)=\int_{B} f+\int_{B} g$.
6d15 Proposition. Let $f, f_{n}: B \rightarrow \mathbb{R}$ be bounded functions such that

$$
\int_{B}^{*}\left|f_{n}-f\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Then

$$
\int_{B} f_{n} \rightarrow \int_{B} f \text { and } \int_{B}^{*} f_{n} \rightarrow \int_{B}^{*} f \quad \text { as } n \rightarrow \infty
$$

If each f_{n} is integrable then f is integrable and $\int_{B} f_{n} \rightarrow \int_{B} f$.

$$
\begin{equation*}
v_{*}(E)=\int_{*} \mathbb{R}_{E}, \quad v^{*}(E)=\int_{\mathbb{R}^{n}}^{*} \mathbb{1}_{E}, \quad v(E)=\int_{\mathbb{R}^{n}} \mathbb{1}_{E} . \tag{6f1}
\end{equation*}
$$

6g1 Lemma. If bounded functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with bounded support differ only on a set of volume zero then ${ }_{*} \int f={ }_{*} \int g$ and ${ }^{*} \int f={ }^{*} \int g$.

$$
\begin{equation*}
\int_{B}^{*} f=\inf _{h \geq f} \int_{B} h, \quad \int_{B} f=\sup _{h \leq f} \int_{B} h \tag{6~g7}
\end{equation*}
$$

where h runs over all step functions, and the inequalities $h \geq f, h \leq f$ are required on the domain of h
6h1 Proposition. Let $f: B \rightarrow[0, \infty)$ be an integrable function on a box $B \subset \mathbb{R}^{n}$, and

$$
E=\{(x, t): x \in B, 0 \leq t \leq f(x)\} \subset \mathbb{R}^{n+1}
$$

Then E is Jordan measurable (in \mathbb{R}^{n+1}), and $v(E)=\int_{B} f$.

$$
\begin{equation*}
|f(x)-f(y)| \leq L|x-y| \quad \text { for all } x, y \tag{6i1}
\end{equation*}
$$

$6 i 2$ Proposition. For every bounded function f on a box B,

$$
\int_{B} f=\sup _{g \leq f} \int_{B} g, \quad \int_{B}^{*} f=\inf _{g \geq f} \int_{B} g
$$

where g runs over all Lipschitz functions.

$$
\begin{align*}
& f_{L}^{+}(x)=\sup _{y \in B}(f(y)-L|x-y|) \quad \text { for } x \in B \tag{6i3}\\
& f_{L}^{-}(x)=\inf _{y \in B}(f(y)+L|x-y|) \quad \text { for } x \in B \\
\left(\mathbb{1}_{E}\right)_{L}^{+}(x)= & \max (0,1-L \operatorname{dist}(x, E))=1-\min (1, L \operatorname{dist}(x, B \backslash E)), \\
\left(\mathbb{1}_{E}\right)_{L}^{-}(x)= & \min (1, L \operatorname{dist}(x, B \backslash E)) \tag{6i4}
\end{align*}
$$

6 i 9 Lemma.

$$
\int_{B} h_{L}^{-} \uparrow \int_{B} h \text { and } \int_{B} h_{L}^{+} \downarrow \int_{B} h \quad \text { as } L \rightarrow \infty
$$

for every step function h on B.

6 i10 Lemma.

$$
\int_{B} f_{L}^{-} \uparrow \int_{B} f \text { and } \int_{B} f_{L}^{+} \downarrow \int_{B}^{*} f \quad \text { as } L \rightarrow \infty
$$

for every bounded function f on B.

6i12 Exercise. A function f is integrable on B if and only if there exist Lipschitz functions f_{n} on B such that $\int_{B}\left|f_{n}-f\right| \rightarrow 0$.
6j1 Lemma. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a Lipschitz function satisfying $\varphi(0)=0$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an integrable function. Then the function $\varphi \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is integrable.
6j3 Exercise. If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are integrable then $\min (f, g), \max (f, g)$ and $f g$ are integrable.
$\mathbf{6 j 4} 4$ Exercise. If E, F are Jordan measurable then $E \cap F, E \cup F$ and $E \backslash F$ are Jordan measurable.

$$
\begin{align*}
\int_{E} f & =\int_{\mathbb{R}^{n}} f \mathbb{1}_{E} . \tag{6j5}\\
\int_{E_{1} \uplus E_{2}} f & =\int_{E_{1}} f+\int_{E_{2}} f \tag{6j6}
\end{align*}
$$

whenever E_{1}, E_{2} are Jordan measurable and disjoint.
6k3 Corollary. $v_{*}(E)+v^{*}(\partial E)=v^{*}(E)$ for all bounded $E \subset \mathbb{R}^{n}$.

$$
\begin{equation*}
v\left(E_{1} \cup E_{2}\right)+v\left(E_{1} \cap E_{2}\right)=v\left(E_{1}\right)+v\left(E_{2}\right) \tag{6k7}
\end{equation*}
$$

6k8 Proposition. If f is integrable on B then

$$
L(f, P) \rightarrow \int_{B} f \quad \text { and } \quad U(f, P) \rightarrow \int_{B} f \quad \text { as } \operatorname{mesh}(P) \rightarrow 0
$$

6k10 Exercise. For every integrable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\varepsilon^{n} \sum_{k_{1}, \ldots, k_{n} \in \mathbb{Z}} f\left(\varepsilon k_{1}, \ldots, \varepsilon k_{n}\right) \rightarrow \int f \quad \text { as } \varepsilon \rightarrow 0
$$

6k11 Exercise. (a) For every $\varepsilon>0$ and Jordan measurable $E \subset \mathbb{R}^{n}$, for all $\delta>0$ small enough there exist closed δ-pixelated sets E_{-}, E_{+}such that $E_{-} \subset E \subset E_{+}$and $v\left(E_{+}\right)-v\left(E_{-}\right) \leq \varepsilon$.
(b) The same holds for non-closed δ-pixelated sets.
$\overline{611 \text { Proposition. If a map } w: \mathcal{J}\left(\mathbb{R}^{n}\right) \rightarrow[0, \infty) \text { satisfies additivity and translation }}$ invariance then

$$
\exists c \geq 0 \quad \forall E \in \mathcal{J}\left(\mathbb{R}^{n}\right) \quad w(E)=c v(E)
$$

6m1 Proposition. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear isometry (that is, a linear operator satisfying $\forall x|T(x)|=|x|)$. Then the image $T(E)$ of an arbitrary $E \subset \mathbb{R}^{n}$ is Jordan measurable if and only if E is Jordan measurable, and in this case

$$
v(T(E))=v(E)
$$

6m4 Proposition. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear isometry, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a bounded function with bounded support. Then

$$
{ }_{*} f f \circ T=\int_{*} f \text { and } \int^{*} f \circ T=\int^{*} f .
$$

Thus, $f \circ T$ is integrable if and only if f is integrable, and in this case

$$
\int f \circ T=\int f
$$

6n1 Theorem. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear operator. Then the image $T(E)$ of an arbitrary $E \subset \mathbb{R}^{n}$ is Jordan measurable if and only if E is Jordan measurable, and in this case

$$
v(T(E))=|\operatorname{det} T| v(E)
$$

Also, for every bounded function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with bounded support,

$$
|\operatorname{det} T|_{*} \int f \circ T=\int_{*} f \quad \text { and } \quad|\operatorname{det} T| \int^{*} f \circ T=\int^{*} f .
$$

Thus, $f \circ T$ is integrable if and only if f is integrable, and in this case

$$
|\operatorname{det} T| \int f \circ T=\int f
$$

7b1 Proposition. Let $f: B \rightarrow \mathbb{R}$ be a Lipschitz function on a box $B=I_{1} \times I_{2} \subset \mathbb{R}^{2}$. Then
(a) for every $x \in I_{1}$ the function f_{x} is Lipschitz continuous on I_{2};
(b) the function $x \mapsto \int_{I_{2}} f_{x}$ is Lipschitz continuous on I_{1};

$$
\begin{equation*}
\int_{B} f=\int_{I_{1}}\left(x \mapsto \int_{I_{2}} f_{x}\right) . \tag{c}
\end{equation*}
$$

7b3 Proposition. Let two boxes $B_{1} \subset \mathbb{R}^{m}, B_{2} \subset \mathbb{R}^{n}$ be given, and a Lipschitz function f on a box $B=B_{1} \times B_{2} \subset \mathbb{R}^{m+n}$. Then
(a) for every $x \in B_{1}$ the function f_{x} is Lipschitz continuous on B_{2};
(b) the function $x \mapsto \int_{B_{2}} f_{x}$ is Lipschitz continuous on B_{1};

$$
\begin{equation*}
\int_{B} f=\int_{B_{1}}\left(x \mapsto \int_{B_{2}} f_{x}\right) . \tag{c}
\end{equation*}
$$

7b5 Exercise.

$$
\begin{aligned}
& \int_{B_{1} \times B_{2}} f\left(x_{1}, \ldots, x_{m}\right) g\left(y_{1}, \ldots, y_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{m} \mathrm{~d} y_{1} \ldots \mathrm{~d} y_{n}= \\
& \quad=\left(\int_{B_{1}} f\left(x_{1}, \ldots, x_{m}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{m}\right)\left(\int_{B_{2}} g\left(y_{1}, \ldots, y_{n}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{n}\right)
\end{aligned}
$$

for Lipschitz functions $f: B_{1} \rightarrow \mathbb{R}, g: B_{2} \rightarrow \mathbb{R}$.
7 d 1 Theorem. Let two boxes $B_{1} \subset \mathbb{R}^{m}, B_{2} \subset \mathbb{R}^{n}$ be given, and an integrable function f on a box $B=B_{1} \times B_{2} \subset \mathbb{R}^{m+n}$. Then the iterated integrals

$$
\begin{array}{ll}
\int_{B_{1}} \mathrm{~d} x \int_{B_{2}} \mathrm{~d} y f(x, y), & \int_{B_{1}} \mathrm{~d} x \int_{B_{2}}^{*} \mathrm{~d} y f(x, y), \\
\int_{B_{2}} \mathrm{~d} y \int_{B_{1}} \mathrm{~d} x f(x, y), & \int_{B_{2}} \mathrm{~d} y \int_{B_{1}}^{*} \mathrm{~d} x f(x, y)
\end{array}
$$

are well-defined and equal to

$$
\iint_{B} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

7d3 Exercise. Generalize 7b5 to integrable functions
(a) assuming integrability of the function $(x, y) \mapsto f(x) g(y)$,
(b) deducing integrability of the function $(x, y) \mapsto f(x) g(y)$ from integrability of f and g (via sandwich).
7d4 Exercise. If $E_{1} \subset \mathbb{R}^{m}$ and $E_{2} \subset \mathbb{R}^{n}$ are Jordan measurable sets then the set $E=E_{1} \times E_{2} \subset \mathbb{R}^{m+n}$ is Jordan measurable.

7d5 Exercise. If $E_{1} \subset \mathbb{R}^{m}$ and $E_{2} \subset \mathbb{R}^{m+n}$ are Jordan measurable sets then the set $E=\left\{(x, y) \in E_{2}: x \in E_{1}\right\}=\left(E_{1} \times \mathbb{R}^{n}\right) \cap E_{2} \subset \mathbb{R}^{m+n}$ is Jordan measurable.

7d6 Corollary. Let $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$ be integrable on every box, and $E \subset \mathbb{R}^{m+n}$ a Jordan measurable set; then

$$
\int_{E} f=\int_{\mathbb{R}^{m}}\left(x \mapsto \int_{E_{x}} f_{x}\right)
$$

where $E_{x}=\{y:(x, y) \in E\} \subset \mathbb{R}^{n}$ for $x \in \mathbb{R}^{m}$.
7 d 7 Corollary. (Cavalieri) If Jordan measurable sets $E, F \subset \mathbb{R}^{3}$ satisfy $v_{2}\left(E_{x}\right)=v_{2}\left(F_{x}\right)$ for all x then $v_{3}(E)=v_{3}(F)$.

7e1 Theorem. Let $B \subset \mathbb{R}^{n}$ be a box, and $f, g: B \times[0,1] \rightarrow \mathbb{R}$ Lipschitz functions such that $f_{x}^{\prime}(t)=g_{x}(t)$ for all $x \in B, t \in(0,1)$. Then $F^{\prime}(t)=G(t)$ for all $t \in(0,1)$, where $F(t)=\int_{B} f(x, t) \mathrm{d} x$ and $G(t)=\int_{B} g(x, t) \mathrm{d} x$.

8a2 Proposition. Let $U, V \subset \mathbb{R}^{n}$ be open sets, $\varphi: U \rightarrow V$ a diffeomorphism, and $E \subset U$. Then the following two conditions are equivalent.
(a) E is Jordan measurable and contained in a compact subset of U;
(b) $\varphi(E)$ is Jordan measurable and contained in a compact subset of V.

8a5 Theorem. Let $U, V \subset \mathbb{R}^{n}$ be open sets, $\varphi: U \rightarrow V$ a diffeomorphism, $E \subset U$ a Jordan measurable set contained in a compact subset of U, and $f: \varphi(E) \rightarrow \mathbb{R}$ an integrable function. Then $f \circ \varphi: E \rightarrow \mathbb{R}$ is integrable, and

$$
\int_{\varphi(E)} f=\int_{E}(f \circ \varphi)|\operatorname{det} D \varphi|
$$

8a6 Corollary. If, in addition, U and V are Jordan measurable and $D \varphi$ is bounded on U then integrability of $f: V \rightarrow \mathbb{R}$ implies integrability of $(f \circ \varphi)|\operatorname{det} D \varphi|: U \rightarrow \mathbb{R}$, and

$$
\int_{V} f=\int_{U}(f \circ \varphi)|\operatorname{det} D \varphi|
$$

8b8 Proposition. (Pappus) Let $\Omega \subset(0, \infty) \times \mathbb{R} \subset \mathbb{R}^{2}$ be a Jordan measurable set and $\tilde{\Omega}=\left\{(x, y, z):\left(\sqrt{x^{2}+y^{2}}, z\right) \in \Omega\right\} \subset \mathbb{R}^{3}$. Then $\tilde{\Omega}$ is Jordan measurable, and

$$
v_{3}(\tilde{\Omega})=v_{2}(\Omega) \cdot 2 \pi x_{C_{E}}
$$

here $C_{E}=\left(x_{C_{E}}, y_{C_{E}}, z_{C_{E}}\right)$ is the centroid of E.
8d1 Proposition. If $F: B \mapsto \int_{B} f$ for a locally integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then the three functions ${ }_{*} F^{\prime}, f,{ }^{*} F^{\prime}$ are (pairwise) equivalent.

8e1 Proposition. (a) If an additive box function F is differentiable on a box B then

$$
v(B) \inf _{x \in B} F^{\prime}(x) \leq F(B) \leq v(B) \sup _{x \in B} F^{\prime}(x)
$$

(b) For every additive box function F,

$$
\begin{gather*}
v(B) \inf _{x \in B}^{*} F^{\prime}(x) \leq F(B) \leq v(B) \sup _{x \in B}^{*} F^{\prime}(x) \\
F(B)=\int_{B} F^{\prime} \tag{8e4}
\end{gather*}
$$

whenever F^{\prime} exists and is integrable on B.
8e5 Exercise.

$$
\int_{B} * F^{\prime} \leq F(B) \leq \int_{B}^{*}{ }^{*} F^{\prime}
$$

for every box B and additive box function F such that ${ }_{*} F^{\prime}$ and ${ }^{*} F^{\prime}$ are bounded on B.

$$
\begin{gather*}
F_{*}(B)=v_{*}\left(\varphi^{-1}\left(B^{\circ}\right)\right), \quad F^{*}(B)=v^{*}\left(\varphi^{-1}(B)\right) \tag{8f1}\\
J^{-}(x)=\liminf _{B \rightarrow x} \frac{F_{*}(B)}{v(B)}, \quad J^{+}(x)=\limsup _{B \rightarrow x} \frac{F^{*}(B)}{v(B)} .
\end{gather*}
$$

8f3 Proposition. If J^{-}, J^{+}are locally integrable and equivalent then

$$
F_{*}(B)=F^{*}(B)=\int_{B} J^{-}=\int_{B} J^{+}
$$

for every box B.
In this case
(8f4)

$$
v\left(\varphi^{-1}(B)\right)=\int_{B} J
$$

where J is any function equivalent to J^{-}, J^{+}.
8g1 Proposition. If $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is such that J^{-}, J^{+}are locally integrable and equivalent then for every integrable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the function $f \circ \varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is integrable and

$$
\int_{\mathbb{R}^{m}} f \circ \varphi=\int_{\mathbb{R}^{n}} f J
$$

8g2 Corollary. If $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is such that J^{-}, J^{+}are locally integrable and equivalent then:
(a) for every Jordan measurable set $E \subset \mathbb{R}^{n}$ the set $\varphi^{-1}(E) \subset \mathbb{R}^{m}$ is Jordan measurable;
(b) for every integrable $f: E \rightarrow \mathbb{R}$ the function $f \circ \varphi$ is integrable on $\varphi^{-1}(E)$, and $\int_{\varphi^{-1}(E)} f \circ \varphi=\int_{E} f J$.
8h1 Proposition. Let $U, V \subset \mathbb{R}^{n}$ be open sets and $\varphi: V \rightarrow U$ a diffeomorphism, then

$$
J^{-}(x)=J^{+}(x)=\left|\operatorname{det}(D \psi)_{x}\right|
$$

for all $x \in U$; here $\psi=\varphi^{-1}: U \rightarrow V$.

