2b9 Proposition. (Linearity of derivative) Let S be an affine space, V' a vector space,
f,g:S—=V,a,beR, and zg € S. If f,g are differentiable at xy then also af + bg is,

and
(D(af +09))zo = a(Df)z + b(Dg)y -

2b10 Proposition. (Product rule) Let S be an affine space, f,g:S — R, and zp € S.
If f, g are differentiable at x then also fg (the pointwise product) is, and

(D(fg))aco = f(xO)(Dg)zo + g(mO)(Df)wo :

2b12 Proposition. (Chain rule) Let S, .52, 53 be affine space s, f:S1 — S3, g: 52 —
Sz, and xg € S1. If f is differentiable at xg and g is differentiable at f(x¢) then g o f is
differentiable at xq, and

(D(g o f))l’o = (Dg)f(.to) o (Df)zo .

2d1 Proposition. (Mean value) Assume that zg,h € R® and f : R" — R is differen-
tiable at xg + th for all ¢t € (0,1), and continuous at z¢ and xg + h. Then there exists

t € (0,1) such that
f(xo+h) = f(xo) = (Dnf)wo+th -

2el Proposition. Assume that all partial derivatives of a mapping f : R™ — R™ exist
near xg and are continuous at xg. Then f is differentiable at xg.

2f3 Lemma. Let a mapping f : R® — R™ be differentiable at xg, and fi,..., fm :
R"™ — R be the coordinate functions of f (that is, f(z) = (f1(2),..., fm(z)). Then the
following two conditions are equivalent:

(a) vectors V fi(xg), ...,V fm(zo) are linearly independent;

(b) the linear operator (D f),, maps R"™ onto R™.

1

3 DnDf(a0) + -+ 1 D f o) + o).

f(wo+h) = f(xo) + Dy f(zo) +

3b7 Proposition. Let U C R" be open, and f € C*(U — R"). If the operator (Df),
is invertible for all € U then f is open.

3b8 Lemma. Let U C R" be open and bounded, f : U7_> R"™ a continuous mapping,
differentiable on U. If f is a homeomorphism U — f(U) and the operator (Df), is
invertible for all # € U then f|y is open. (Here U is the closure of U.)

3b9 Proposition. Assume that ¢ € R™, f : R™ — R" is differentiable near xq, Df is
continuous at xg, and the operator (Df),, is invertible. Then there exists a bounded

open neighborhood U of zy such that f|z is a homeomorphism U — f(U), and f is
differentiable on U, and the operator (Df), is invertible for all z € U.

3b11 Exercise. Let U C R™ be open, and f € C}(U — R™). If the operator (Df),
maps R" onto R™ for all x € U then f is open.

3b12 Exercise. Assume that o € R”, f : R" — R™ is differentiable near xg, Df is
continuous at zg, and the operator (Df),, is one-to-one. Then there exists a bounded

open neighborhood U of z¢ such that f|z is a homeomorphism U — f(U).

3d1 Lemma. Let U C R" be open and bounded, f : U — R” continuous. If f is a
homeomorphism U — f(U) with no regular boundary points then f(U) is open.

3f1 Proposition. Assume that f,g : R> — R are continuously differentiable near a
given point (zg,yo); vectors V f(xo,yo) and Vg(zg,yo) are linearly independent; and
9(z0,y0) = 0. Denote zo = f(z0,yo). Then there exist € > 0 and a path v: (z9 — &, 20 +
) — R? such that v(z0) = (z0,%0), f(7(t)) =t and g(y(t)) = 0 for all t € (29 —¢, 20 +¢€).

3f4 Proposition. Assume that f,g;, g2 : R®> — R are continuously differentiable near
a given point (xo,%o,20); vectors V f(xo,40,%20), Vg1(zo, Y0, 20) and Vga(xo, Yo, 20) are
linearly independent; and g1 (zo, Yo, 20) = g2(%0, Yo, 20) = 0. Denote wog = f(x0, Yo, 20)-
Then there exist ¢ > 0 and a path 7 : (wg—¢, wp+¢) — R? such that y(wo) = (70, Yo, 20),
f(y(@®) =t and g1(y(t)) = g2(~(t)) =0 for all t € (wy — €, wp + €).

3gl Proposition. Assume that f,¢g : R®> — R are continuously differentiable near a
given point (xg, Yo, 20); vectors V f(xo, Yo, 20) and Vg(xo, Yo, z0) are linearly independent;
and g(zo,y0,20) = 0. Denote wy = f(xo,¥yo,20). Then there exist ¢ > 0 and a path
7 (wo — €, wo + &) — R? such that v(wo) = (0, Yo, 20), f(7(t)) =t and g(y(t)) = 0 for
all t € (wo — €, wo + €).

3g2 Corollary. If f,g,xo,y0,20 are as in then (xo,yo,20) cannot be a local con-
strained extremum of f on Z,.

3g3 Exercise. Generalize [3gl]and Bg2to f,g1,...,9m R" >R, 1<m<n-1.

3h1 Theorem. Assume that ¢y € R”, functions f, g1, ..., gm : R®™ — R are continuously
differentiable near xg, g1(xg) = - -+ = gm(xo) = 0, and vectors Vg1 (zg), . .., Vgm(xo) are
linearly independent. If z¢ is a local constrained extremum of f subject to g1(-) =--- =
gm(+) = 0 then there exist A1,..., A, € R such that

Vi(xo) = MVagi(zo) + - + A Vgm(zo) .
0

aCk; c=0

f(x(e)) = Ax(0) .

It means that A = Ag(0) is the sensitivity of the critical value to the level ¢i of the
constraint g (x) = cg.

4c1 Theorem. Assume that a mapping f : R” — R"™ is continuously differentiable near
xo, and the operator (Df),, is invertible. Then there exists an open neighborhood U
of xg and an open neighborhood V' of yo = f(zo) such that f|y is a homeomorphism
U — V, continuously differentiable on U, and the inverse mapping (f|y)~!:V — U is
continuously differentiable on V.

(Dg)y = ((Df)z)~" forg=(flv)™", y=f(z).



4c5 Theorem. Assume that U,V C R" are open, f : U — V is a homeomorphism,
continuously differentiable, and the operator (Df),, is invertible for all x € U. Then the
inverse mapping f~!:V — U is continuously differentiable.

4c9 Exercise. (a) Let f : U — V be as in Theorem and in addition f € C?(U).
Then f~1 € C3(V).

(b) The same for C*(...) where k = 3,4, ...

4d1 Proposition. Assume that xo € R”, f : R® — R" is differentiable near zy, D f
is continuous at xg, and the operator T' = (Df),, is invertible. Then for every y near
yo = f(xo) the iterative process

Yy - f(z,) forn=0,1,2,...

is well-defined and converges to a solution z of the equation f(x) = y. In addition,
|z — zo| = O(ly — wol)-

Tl =Tp + T

5c1 Theorem. Assume that r,c € {1,2,3,..

is continuously differentiable near (xg,yo), g(zo, yo) = 0, and the operator B = dy

yn=r4c,x0 € R, yp € R, g'R"—>RC

(z0,y0)
is invertible. Then there exist open neighborhoods U of g and V' of y such that

(a) for every x € U there exists one and only one y € V satisfying g(x,y) = 0;
(b) a function ¢ : U =V deﬁned by g(z,¢(z)) = 0 is continuously differentiable, and

(D¢)zy = —B~'A where A = 52 :
(z0,Y0)
(64s) Juos [+ [0
(69) [ra= [1+ [ o
(6d10) if f, g are integrable then f + ¢ is, and / (f+9) = / I —|—/ g
B B B

6d15 Proposition. Let f, f, : B — R be bounded functions such that

/|fn—f|—>0 as n — 0o .
B

*/Bfnﬁ*/Bf and */Bfn%*/Bf asn — 0o.

If each f, is integrable then f is integrable and [, fn — [z f

Then

(6£1) v (B) =

7n]lE’ U(E):/nnE.

/nE v (E) =

(6f3) U*(El U Eg) < U*(El) + U*(EQ) s
<6f4) (o (E1 ) Eg) Z Vy (El) + Vs (EQ) ]
(665) if F1, Fy are Jordan measurable then Fy W Fs is, and

’U(El (] EQ) = U(El) + U(EQ) .

6g1 Lemma. If bounded functions f, g : R™ — R with bounded support differ only on
a set of volume zero then _[f= _[gand [f="g.

L= fon [ o

where h runs over all step functions, and the inequalities h > f, h < f are required on
the domain of h.

(6g7)

6h1 Proposition. Let f: B — [0,00) be an integrable function on a box B C R™, and

E={(z,t):x€B,0<t< f(x)} cR".

m-[1

for all z,y.

Then E is Jordan measurable (in R"*1), and v(

(6i1) f(z) -

6i2 Proposition. For every bounded function f on a box B,

Lr=sw o [r-

where g runs over all Lipschitz functions.

fi(x) = sgg(f (y) —

f)| < Llz —y|

inf
g>f

Lz —y|) forzeB

(6i3) v
fr(z) = ynelg(f(y) + Ljx — y|) for z € B
(1)} () = max(0,1 — Ldist(z, E)) = 1 — min(1, Ldist(z, B\ E)),

i4
(6i4) (1g)7 (z) = min(1, Ldist(z, B\ E))

/hZT/hand/hzi/h as L — o0
B B B B

for every step function h on B.

[t [ ramd [ gry */Bf as L= o0

for every bounded function f on B.

6i9 Lemma.

6i10 Lemma.



6i12 Exercise. A function f is integrable on B if and only if there exist Lipschitz
functions f,, on B such that ffB |frn— fl — 0.

6j1 Lemma. Let ¢ : R — R be a Lipschitz function satisfying ¢(0) = 0, and f : R* — R
an integrable function. Then the function ¢ o f : R™ — R is integrable.

6j3 Exercise. If f,g : R” — R are integrable then min(f,g), max(f,g) and fg are
integrable.

6j4 Exercise. If E, I are Jordan measurable then ENF, EUF and E \ F are Jordan

measurable.
(65) L= e
E R
(6j6) / =1 r+/ f
E1WE, E, E,

whenever E1, Fs are Jordan measurable and disjoint.

6nl Theorem. Let T : R™ — R” be an invertible linear operator. Then the image T'(E)
of an arbitrary £ C R" is Jordan measurable if and only if F is Jordan measurable, and

in this case U(T(E)) — |det T|w(E).
Also, for every bounded function f :R™ — R with bounded support,

|detT|*/foT: */f and |detT|7foT_ 7f.

Thus, f oT is integrable if and only if f is integrable, and in this case

|detT|/foT:/f.

6k3 Corollary. v.(F) + v*(0F) = v*(E) for all bounded E C R™.

(6k7)
6k8 Proposition. If f is integrable on B then
L(f,P)—>/f and U(f,P)—)/f as mesh(P) — 0.
6k10 Exercise. For ever]fy integrable f : R™ — Rb?
g Z f(skl,...,ekn)a/f ase — 0.

ki, €Z
6k11 Exercise. (a) For every € > 0 and Jordan measurable E C R", for all § > 0
small enough there exist closed d-pixelated sets E_, Ey such that E_ C F C E; and
v(Ey) —v(E-) <e.
(b) The same holds for non-closed J-pixelated sets.

’U(El U Eg) + U(E]_ M EQ) = ’U(El) + ’U(Eg)

611 Proposition. If a map w : J(R") — [0,00) satisfies additivity and translation
invariance then 3¢ >0 VE € J(R") w(E) = cvu(E).

6m1l Proposition. Let T': R® — R” be a linear isometry (that is, a linear operator
satisfying Vo |T(x)| = |z|). Then the image T(F) of an arbitrary E C R™ is Jordan
measurable if and only if E is Jordan measurable, and in this case

v(T(E)) = v(E).

6m4 Proposition. Let T : R™ — R" be a linear isometry, and f : R — R a bounded
function with bounded support. Then

*/foT:*/f and 7foT 71‘.

Thus, f oT is integrable if and only if f is integrable, and in this case

[rer=]1.

7bl Proposition. Let f : B — R be a Lipschitz function on a box B = I; x I, C R2.
Then
(a) for every x € I; the function f, is Lipschitz continuous on Is;

(b) the function z — [ 1, J is Lipschitz continuous on Iy;

L] e ] 5)

7b3 Proposition. Let two boxes By C R™, By C R™ be given, and a Lipschitz function
f onabox B=B; x By C R®"". Then

(a) for every x € B; the function f, is Lipschitz continuous on Bs;

(b) the function z +— [ B, fz is Lipschitz continuous on By;

fr-h (= 1,2)

7b5 Exercise.

/ flxe,. . zm)9(y1, . oy yn) dar . dey dyy . . dy, =
B1X B2

= ( f(xl,...,a:m)dxl...dxm)(/ g(yl,...7yn)dy1...dyn)
B1 B

for Lipschitz functions f: By = R, g: B, — R.

7d1 Theorem. Let two boxes By C R™, By C R™ be given, and an integrable function
f on abox B = B; x B, C R™". Then the iterated integrals

/Bl o /B ) /B da /B dy f(@,9).
/32 dy*/Bl dz f(@,9), /32 dy */Bl d f(z,y)

are well-defined and equal to
// [z, y)dady.
B



7d3 Exercise. Generalize to integrable functions

(a) assuming integrability of the function (z,y) — f(z)g(y),

(b) deducing integrability of the function (z,y) — f(z)g(y) from integrability of f
and ¢ (via sandwich).

7d4 Exercise. If £ € R™ and EF> C R" are Jordan measurable sets then the set
E = E; x Ey C R™™ is Jordan measurable.

7d5 Exercise. If £y C R™ and E5 C R™™ are Jordan measurable sets then the set
E={(z,y) € Ey:2z € F1} = (B, x R") N Ey C R™™ is Jordan measurable.

7d6 Corollary. Let f : R™™™ — R be integrable on every box, and E C R™*" a Jordan

measurable Sel 3 then
E n E.

where E, = {y: (z,y) € E} C R" for z € R™.

7d7 Corollary. (Cavalieri) If Jordan measurable sets E, F' C R? satisfy vo(E,) = va(F})
for all z then v3(E) = vs(F).

7el Theorem. Let B C R™ be a box, and f, g : B x [0, 1] — R Lipschitz functions such
that f1(t) = g.(t) for all z € B, ¢t € (0,1). Then F'(¢t) = G(¢) for all t € (0,1), where
F(t) = [5 f(z,t)dz and G(t) = [, g(x,t) dz.

8a2 Proposition. Let U,V C R"™ be open sets, ¢ : U — V a diffeomorphism, and
E C U. Then the following two conditions are equivalent.

(a) E is Jordan measurable and contained in a compact subset of U;

(b) ¢(F) is Jordan measurable and contained in a compact subset of V.

8a5 Theorem. Let U,V C R™ be open sets, ¢ : U — V a diffeomorphism, £ C U
a Jordan measurable set contained in a compact subset of U, and f : ¢(E) — R an
integrable function. Then f o : E — R is integrable, and

/@(mf/E(fo‘/’”detle-

8a6 Corollary. If, in addition, U and V are Jordan measurable and Dy is bounded on
U then integrability of f : V' — R implies integrability of (f o ¢)|det Dy| : U — R, and

/Vf:/U(fw)\detDw

8b8 Proposition. (Pappus) Let Q2 C (0,00) x R C R? be a Jordan measurable set and
Q= {(z,y,2): (V22 +y%2) € Q} C R% Then ( is Jordan measurable, and

v3() = v2(Q) - 27Ty ;

here Cp = (zcy, Yor, 20y ) 18 the centroid of E.

8d1 Proposition. If F': B — fB f for a locally integrable function f : R®™ — R, then
the three functions ,F’, f, *F’ are (pairwise) equivalent.

8el Proposition. (a) If an additive box function F' is differentiable on a box B then
v(B) inf F'(x) < F(B) <v(B)sup F'(x).
zeB z€B

(b) For every additive box function F,
v(B) igg F'(z) < F(B) <v(B)sup *F'(z).

zeB
F(B) = /B F

whenever F’ exists and is integrable on B.

8e5 Exercise. .
/ J' < F(B)< / R
*J B B

for every box B and additive box function F' such that ,F’ and *F’ are bounded on B.

(8e4)

(8f1) F(B) =v.(p~'(B%), F*(B)=v"(¢"(B)),
oy . Fu(B) s F*(B)
(8f2) J 7 (x) _hESQf o(B) Jt(z) —th;ljlzlp o(B)

8f3 Proposition. If J~,JT are locally integrable and equivalent then

F*(B)ZF*(B)z/BJ—:/Bﬁ

for every box B.
In this case
(8f4)

o(o71(B)) :/BJ

where J is any function equivalent to J—, J*.
8¢l Proposition. If ¢ : R™ — R" is such that J~,JT are locally integrable and

equivalent then for every integrable f : R™ — R the function fo e : R™ — R is
integrable and

foo= [ [fJ.
Rm™ R™

8g2 Corollary. If ¢ : R™ — R" is such that J~, JT are locally integrable and equivalent
then:
(a) for every Jordan measurable set E C R™ the set ¢~ !(E) C R™ is Jordan measur-

able;
(b) for every integrable f : E — R the function f o ¢ is integrable on ¢ ~!(E), and

/SDI(E)fogp:/EfJ.

8h1 Proposition. Let U,V C R™ be open sets and ¢ : V — U a diffeomorphism, then
J 7 (z) = J"(x) = | det(Dy),|
forallz € U;here p = 1 : U = V.




