
Tel Aviv University, 2014/15 Analysis-III,IV 161

10 Improper integral

10a What is the problem . . . . . . . . . . . . . . . . 161

10b Positive integrands . . . . . . . . . . . . . . . . . 162

10c Newton potential . . . . . . . . . . . . . . . . . . 166

10d Special functions gamma and beta . . . . . . . . 169

10e Normed space of equivalence classes . . . . . . . 173

10f Change of variables . . . . . . . . . . . . . . . . . 177

10g Multidimensional beta integrals of Dirichlet . . 179

Riemann integral and Jordan measure are generalized to unbounded func-
tions and sets.

10a What is the problem

The n-dimensional unit ball in the lp metric,

E = {(x1, . . . , xn) : |x1|p + · · ·+ |xn|p ≤ 1} ,

is a Jordan measurable set, and its volume is a Riemann integral,

v(E) =

∫
Rn

1lE ,

of a bounded function with bounded support. In Sect. 10g we’ll calculate it:

v(E) =
2nΓn

(
1
p

)
pnΓ
(
n
p

+ 1
)

where Γ is a function defined by

Γ(t) =

∫ ∞
0

xt−1e−x dx for t > 0 ;

here the integrand has no bounded support; and for t = 1
p
< 1 it is also un-

bounded (near 0). Thus we need a more general, so-called improper integral,
even for calculating the volume of a bounded body!

In relatively simple cases the improper integral may be treated via ad hoc
limiting procedure adapted to the given function; for example,∫ ∞

0

xt−1e−x dx = lim
k→∞

∫ k

1/k

xt−1e−x dx .
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In more complicated cases it is better to have a theory able to integrate rather
general functions on rather general n-dimensional sets. Different functions
may tend to infinity on different subsets (points, lines, surfaces), and still,
we expect

∫
(af + bg) = a

∫
f + b

∫
g (linearity) to hold, as well as change of

variables.1

10b Positive integrands

We consider an open set G ⊂ Rn and functions f : G → [0,∞) continuous
almost everywhere. We do not assume that G is bounded. We also do not
assume that G is Jordan measurable, even if it is bounded.2 “Continuous
almost everywhere” means that the set A ⊂ G of all discontinuity points of
f satisfies m∗(A) = 0, recall Sect. 8f; but now A need not be bounded. For
our purposes it is enough to know that m∗(A) = 0 if and only if m∗(A1) = 0
for every bounded A1 ⊂ A (we may take this as the definition). We can use
the function f · 1lG equal f on G and 0 on Rn \ G, but must be careful: 1lG
and f · 1lG need not be continuous almost everywhere.

We define

(10b1)

∫
G

f = sup

{∫
Rn
g

∣∣∣∣ g : Rn → R integrable,

0 ≤ g ≤ f on G, g = 0 on Rn \G
}
∈ [0,∞] .

The condition on g may be reformulated as 0 ≤ g ≤ f · 1lG.

10b2 Exercise. (a) Without changing this supremum we may restrict our-
selves to continuous g with bounded support; or, alternatively, to step func-
tions g;

(b) if f is bounded and G is bounded, then
∫
G
f = ∗

∫
Rn f · 1lG, and in

particular,
∫
G

1 = v∗(G);3

(c) if f is bounded and G is Jordan measurable, then the integral defined
by (10b1) is equal to the integral defined by (6g16).
Prove it.

1Additional literature (for especially interested):
M. Pascu (2006) “On the definition of multidimensional generalized Riemann integral”,
Bul. Univ. Petrol LVIII:2, 9–16.
(Research level) D. Maharam (1988) “Jordan fields and improper integrals”, J. Math.
Anal. Appl. 133, 163–194.

2A bounded open set need not be Jordan measurable, even if it is diffeomorphic to a
disk, as was noted in Sect. 8e (p. 138).

3According to 8e, v∗(G) = ve (G) = m(G).

http://bmif.unde.ro/docs/20062/2%20PascuM.pdf
http://www.sciencedirect.com/science/article/pii/0022247X88903733
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10b3 Exercise. Consider the case G = Rn, and let ‖ · ‖ be a norm on Rn.
(a) Prove that ∫

Rn
f = lim

k→∞

∫
‖x‖<k

min
(
f(x), k

)
dx .

(b) For a locally bounded1 f prove that∫
Rn
f = lim

k→∞

∫
‖x‖<k

f(x) dx .

(c) Can it happen that f is locally bounded, not bounded, and
∫
Rn f <∞?

10b4 Example (Poisson). Consider

I =

∫
R2

e−|x|
2

dx .

On one hand, by 10b3 for the Euclidean norm,

I = lim
k→∞

∫∫
x2+y2<k2

e−(x2+y2) dxdy = lim
k→∞

k∫
0

r dr e−r
2

2π∫
0

dθ = lim
k→∞

π

k2∫
0

e−u du = π .

On the other hand, by 10b3 for ‖(x, y)‖ = max(|x|, |y|),

I = lim
k→∞

∫∫
|x|<k,|y|<k

e−(x2+y2) dxdy = lim
k→∞

( k∫
−k

e−x
2

dx

)( k∫
−k

e−y
2

dy

)
=

( +∞∫
−∞

e−x
2

dx

)2

,

and we obtain the celebrated Poisson formula:

+∞∫
−∞

e−x
2

dx =
√
π .

10b5 Exercise. Consider

I =

∫∫
x>0,y>0

xaybe−(x2+y2) dxdy ∈ [0,∞]

1That is, bounded on every bounded subset of Rn.



Tel Aviv University, 2014/15 Analysis-III,IV 164

for given a, b ∈ R. Prove that, on one hand,

I =

(∫ ∞
0

ra+b+1e−r
2

dr

)(∫ π/2

0

cosa θ sinb θ dθ

)
,

and on the other hand,

I =

(∫ ∞
0

xae−x
2

dx

)(∫ ∞
0

xbe−x
2

dx

)
.

10b6 Exercise. Consider f : R2 → [0,∞) of the form f(x) = g(|x|) for a
given g : [0,∞)→ [0,∞).

(a) If g is integrable, then f is integrable and
∫
R2 f = 2π

∫∞
0
g(r) r dr.

(b) If g is continuous on (0,∞), then
∫
R2 f = 2π

∫∞
0
g(r) r dr ∈ [0,∞].

Prove it.1

10b7 Exercise. Consider f : Rn → [0,∞) of the form f(x) = g
(
‖x‖
)

for a
given g : [0,∞)→ [0,∞) and a given norm ‖ · ‖ on Rn.

(a) If g is integrable then f is integrable, and
∫
Rn f = nV

∫∞
0
g(r) rn−1 dr

where V is the volume of {x : ‖x‖ < 1}.
(b) If g is continuous on (0,∞), then

∫
Rn f = nV

∫∞
0
g(r) rn−1 dr ∈ [0,∞].

c) Let g be continuous on (0,∞) and satisfy

g(r) ∼ ra for r → 0+ , g(r) ∼ rb for r → +∞ .

Then
∫
f <∞ if and only if b < −n < a.

Prove it.2

10b8 Example.
∫
Rn e−‖x‖

2
dx = nV

∫∞
0
rn−1e−r

2
dr; in particular,∫

Rn e−|x|
2

dx = nVn
∫∞

0
rn−1e−r

2
dr where Vn is the volume of the (usual) n-di-

mensional unit ball. On the other hand,
∫
Rn e−|x|

2
dx =

(∫
R e−x

2
dx
)
n = πn/2.

Therefore

Vn =
πn/2

n
∫∞

0
rn−1e−r2 dr

.

Not unexpectedly, V2 = π

2
∫∞
0 re−r2 dr

= π.

Clearly,
∫
G
cf = c

∫
G
f for c ∈ (0,∞).

10b9 Proposition.
∫
G

(f1 + f2) =
∫
G
f1 +

∫
G
f2 ∈ [0,∞] for all f1, f2 ≥ 0 on

G, continuous almost everywhere.

1Hint: (a) either polar coordinates, or 9g4; (b) use (a).
2Hint: (a), (b) similar to 9g4, using also 9c3 and 6g12; (c) use (b).
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Proof. First we prove that
∫
G

(f1 + f2) ≥
∫
G
f1 +

∫
G
f2.1 Given integrable

g1, g2 such that 0 ≤ g1 ≤ f1 · 1lG and 0 ≤ g2 ≤ f2 · 1lG, we have
∫
g1 +

∫
g2 =∫

(g1 + g2) ≤
∫
G

(f1 + f2), since g1 + g2 is integrable and 0 ≤ g1 + g2 ≤
(f1 + f2) · 1lG. The supremum in g1, g2 gives the claim.

It remains to prove that
∫
G

(f1 + f2) ≤
∫
G
f1 +

∫
G
f2, that is,

∫
g ≤∫

G
f1 +

∫
G
f2 for every integrable g such that 0 ≤ g ≤ (f1 + f2) · 1lG. We

introduce g1 = min(f1, g), g2 = min(f2, g) (pointwise minimum on G; and 0
on Rn \ G) and prove that they are continuous almost everywhere (on Rn,
not just on G). For almost every x ∈ G, both f1 and g are continuous at x
and therefore g1 is continuous at x. For almost every x ∈ ∂G, g is continuous
at x, which ensures continuity of g1 at x (irrespective of continuity of f1),
since g(x) = 0 (x /∈ G). Thus, g1 is continuous almost everywhere; the same
holds for g2.

By Theorem 8f1, the functions g1, g2 are integrable. We have g1 + g2 ≥
min(f1 + f2, g) = g, since generally, min(a, c) + min(b, c) ≥ min(a + b, c) for
all a, b, c ∈ [0,∞) (think, why). Thus,

∫
g ≤

∫
(g1 + g2) =

∫
g1 +

∫
g2 ≤∫

G
f1 +

∫
G
f2, since 0 ≤ g1 ≤ f1 · 1lG, 0 ≤ g2 ≤ f2 · 1lG.

10b10 Proposition (exhaustion). For open sets G,G1, G2, · · · ⊂ Rn,

Gk ↑ G =⇒
∫
Gk

f ↑
∫
G

f ∈ [0,∞]

for all f : G→ [0,∞) continuous almost everywhere.

Proof. First of all,
∫
Gk
f ≤

∫
Gk+1

f (since 0 ≤ g ≤ f · 1lGk implies 0 ≤ g ≤
f · 1lGk+1

), and similarly,
∫
Gk
f ≤

∫
G
f , thus

∫
Gk
f ↑ and limk

∫
Gk
f ≤

∫
G
f .

We have to prove that
∫
G
f ≤ limk

∫
Gk
f .

Let a step function g : Rn → R satisfy 0 ≤ g ≤ f · 1lG; we have to
prove that

∫
g ≤ limk

∫
Gk
f , but we’ll prove that moreover,

∫
g ≤ limk

∫
Gk
g.

By linearity, WLOG, g = 1lC◦ for a box C, C◦ ⊂ G. By 10b2,
∫
Gk
g =

∗

∫
Rn 1lC◦∩Gk = v∗(C

◦ ∩Gk) and
∫
G
g = v(C); by 8e9, v∗(C

◦ ∩Gk) ↑ v∗(C◦ ∩
G) = v(C◦).

10b11 Exercise. Let G1 ⊂ G2 ⊂ Rn be two open sets, and f : G2 → [0,∞)
continuous almost everywhere. If f = 0 on G2 \G1, then

∫
G2
f =

∫
G1
f .

Prove it.2

10b12 Exercise. The following four conditions on a function f : G→ [0,∞)
continuous almost everywhere are equivalent:

1Compare it with (6d10).
2Hint: just (10b1).
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(a)
∫
G
f = 0;

(b) f(x) = 0 for every continuity point x of f ;
(c) f(x) = 0 for almost all x ∈ G;
(d) the set {x ∈ G : f(x) = 0} is dense in G.

Prove it.1

10c Newton potential

By the celebrated Newton’s law of universal gravitation, the gravitational
force exerted by a particle of mass m at point ξ on a particle of mass m0 at
point x is −Gm0mgξ(x), and −Gmgξ(·) is the gravitational field generated
by m,

(10c1) gξ(x) = g0(x− ξ) =
x− ξ
|x− ξ|3

= −∇U0(x− ξ) ;

here the function U0 : x 7→ 1
|x| is proportional to the gravitational potential

(energy), and G is the gravitational constant.2 The reason to replace the
force by the potential is simple: it is easier to work with scalar functions
than with the vector ones.3

What happens if we have a system of point masses µ1, ..., µk at points
ξ1, ..., ξk? The forces are to be added, and the corresponding potential is

U(x) =
k∑
j=1

µj
|x− ξj|

.

A continuously distributed mass is described in physics by its density ρ.
Mathematically it means that the density is a point function, the mass is
an additive box function, and these two functions are related according to
Sect. 6a (and 8c): the mass within a box B is

∫
B
ρ. Generally, ρ is not quite

integrable but improperly integrable; and still, the mass within a box B is
assumed to be

∫
B
ρ (improper integral) for evident physical reasons; and the

total mass is
∫
R3 ρ.

1Hint: (b)=⇒(c)=⇒(d): easy; (d)=⇒(a): use 10b2(a); (a)=⇒(b): otherwise f(·) ≥ ε
on some neighborhood of x.

2G ≈ 6.674 · 10−11 N(m/kg)2; that is, if m = µ = 1 kg and |x− ξ| = 1 m then the force
is ≈ 6.674 · 10−11 newtons.

3Knowing the force F one can write down the differential equations of motion of the
particle (Newton’s second law) m0ẍ = F , or ẍ = G∇U (note that m0 does not matter).
Then one hopes to integrate these equations, thus finding out where is the particle at time
t.
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Similarly, the potential is assumed to be −GUρ where Uρ(x) =
∫
R3

ρ(ξ)
|x−ξ| dξ;

this integral is improper (in general) and must be finite.1

Let us compute the potential of the homogeneous mass distribution, of
density 1, within the ball of radius R centered at the origin:

UR(x) =

∫
|ξ|<R

dξ

|x− ξ|
.

Due to rotation invariance (Theorem 9c1), UR is a radial function, that is,
depends only on |x|. Thus, it suffices to compute UR(x) at the point x =
(0, 0, a), a ∈ [0,∞). The integral is proper for a ∈ (R,∞) and improper for
a ∈ [0, R].

First, consider the proper integral, for a > R. Using the spherical coor-
dinates ξ = (r cosϕ sin θ, r sinϕ sin θ, r cos θ) (recall 9b3) we have

UR(x) =

∫ R

0

dr 2π

∫ π

0

r2 sin θ dθ√
(a− r cos θ)2 + r2 sin2 θ

=

=

∫ R

0

dr 2π

∫ π

0

r2 sin θ dθ√
a2 − 2ar cos θ + r2︸ ︷︷ ︸

Va(r)

.

Intuitively, the under-braced expression Va(r) is the potential of the homo-
geneous sphere of radius r; but rigorously, integration over spheres and other
surfaces will be treated much later. We compute Va(r) using the variable

t =
√
a2 − 2ar cos θ + r2 .

Then a− r < t < a+ r, and t dt = ar sin θ dθ. We get

Va(r) = 2πr2

∫ a+r

a−r

t dt

art
=

2πr

a
· 2r = 4π

r2

a
.

1Mathematical rigorosity is of little interest to physicists, and still, the distinction
between proper and improper integrals may be physically sound. Imagine a material ball of
mass M and radius R, consisting of a large number of uniformy distributed “particles” that
are balls of mass m and radius r. Outside the (large) ball, near its surface, the gravitational
field is GM/R2 in a good approximation. Inside the ball, near the surface of a “particle”,
the gravitational field of this single “particle” is Gm/r2. Let M = 1 kg, R = 0.1 m,
m = 10−25 kg, r = 10−14 m; then M/R2 = 100 kg/m2 while m/r2 = 1000 kg/m2. Here, a
single “particle” generates a field 10 times stronger than the improper integral that will
be calculated! Do not think that such parameters are physically unrealistic; these m, r are
the parameters of a typical atomic nucleus.
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Now we easily find UR(x) by integration:

UR(x) =

∫ R

0

Va(r) dr = 4π

∫ R

0

r2

a
dr =

4πR3

3a
=

4πR3

3|x|
for |x| > R .

We turn to the case a < R, and treat the improper integral by exhaustion:

UR(x) = lim
ε→0+

(∫
|ξ|<a−ε

dξ

|x− ξ|
+

∫
a+ε<|ξ|<R

dξ

|x− ξ|

)
=

= lim
ε→0+

(∫ a−ε

0

Va(r) dr +

∫ R

a+ε

Va(r) dr

)
=

∫ R

0

Va(r) dr ∈ [0,∞] ,

the latter integral being improper, since Va need not be bounded near a.
For r < a we have Va(r) = 4π r

2

a
as before. For r > a we still use t =√

a2 − 2ar cos θ + r2, and t is still strictly increasing in θ ∈ (0, π), but now√
a2 − 2ar + r2 = r − a, thus r − a < t < r + a, and we get

Va(r) = 2πr2

∫ r+a

r−a

t dt

art
=

2πr

a
· 2a = 4πr .

A surprise: Va appears to be bounded near a, and extends by continuity to
(0, R), thus the one-dimensional integral may be treated as proper. We have

UR(x) =

∫ R

0

Va(r) dr =

∫ a

0

4π
r2

a
dr +

∫ R

a

4πr dr =

= 4π

(
a2

3
+
R2

2
− a

2

2

)
=

2π

3
(3R2−a2) =

2π

3
(3R2−|x|2) for 0 ≤ |x| < R .

The case a = R is easy: UR(x) =
∫ R

0
Va(r) dr =

∫ R
0

4π r
2

a
dr = 4πR

3

3a
= 4πR2

3

for |x| = R. The function UR appears to be continuous. Finally,

UR(x) =

{
4πR3

3|x| for |x| ≥ R,
2π
3

(3R2 − |x|2) for |x| ≤ R.

Observe that 4πR3/3 is exactly the total mass of the ball. That is, to-
gether with Newton, we arrived at the conclusion that the gravitational po-
tential, and hence the gravitational force exerted by the homogeneous ball on
a particle is the same as if the whole mass of the ball were concentrated at its
center, as long as the point is outside the ball. Of course, you heard about
this already in the high-school.
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Another important conclusion is that the potential of the homogeneous
sphere does not depend on the point inside the sphere!1 Hence, the gravita-
tional force is zero inside the sphere. The same is true for the homogeneous
shell {ξ : a < |ξ| < b}: there is no gravitational force inside the shell.

10c2 Exercise. Check that all the conclusions are true when the mass dis-
tribution ρ is radial: ρ(ξ) = ρ(ξ′) whenever |ξ| = |ξ′|.

10c3 Exercise. Find the potential of the homogeneous solid ellipsoid (x2 +
y2)/b2 + z2/c2 < 1 at its center.

10c4 Exercise. Find the potential of the homogeneous solid cone of height
h and radius of the base r at its vertex.

10c5 Problem. Show that at sufficiently large distances the potential of a
solid is approximated by the potential of a point with the same total mass
located at the center of mass of the solid with an error less than a constant
divided by the square of the distance. The potential itself decays as the
distance, so the approximation is good: its relative error is small.2

10d Special functions gamma and beta

Integrating a function of two variables in one variable we get a function
of the other variable. An interesting example was seen in 7e2: the func-

tion F (t) =
∫ π/2

0
ln(t2 − sin2 x) dx appeared to be the elementary function

F (t) = π ln t+
√
t2−1
2

. But generally it is not elementary. Here is a much more
important example. The Euler gamma function Γ is defined by3

(10d1) Γ(t) =

∫ ∞
0

xt−1e−x dx for t ∈ (0,∞) .

This integral is not proper for two reasons. First, the integrand is bounded
near 0 for t ∈ [1,∞) but unbounded for t ∈ (0, 1). Second, the integrand has
no bounded support. In every case, using 10b10,

Γ(t) = lim
k→∞

∫ k

1/k

xt−1e−x dx <∞ ,

since the integrand (for a given t) is continuous on (0,∞), is O(xt−1) as
x→ 0, and (say) O(e−x/2) as x→∞. Thus, Γ : (0,∞)→ (0,∞).

1Since Va(r) does not depend on a for a < r.
2This estimate is rather straightforward. A more accurate argument shows that the

error is of order constant divided by the cube of the distance.
3This is rather Γ|(0,∞).
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Clearly, Γ(1) = 1. Integration by parts gives∫ k

1/k

xte−x dx = −xte−x
∣∣k
x=1/k

+ t

∫ k

1/k

xt−1e−x dx ;

Γ(t+ 1) = tΓ(t) for t ∈ (0,∞) .(10d2)

In particular,

(10d3) Γ(n+ 1) = n! for n = 0, 1, 2, . . .

We note that

(10d4)

∫ ∞
0

xae−x
2

dx =
1

2
Γ
(a+ 1

2

)
for a ∈ (−1,∞) ,

since
∫∞

0
xae−x

2
dx =

∫∞
0
ua/2e−u du

2
√
u
. For a = 0 the Poisson formula (recall

10b4) gives

(10d5) Γ
(1

2

)
=
√
π .

Thus,

(10d6) Γ
(2n+ 1

2

)
=

1

2
· 3

2
· · · · · 2n− 1

2

√
π .

The volume Vn of the n-dimensional unit ball (recall 10b8) is thus calculated:

(10d7) Vn =
πn/2

n
2
Γ(n

2
)
.

Not unexpectedly, V3 = π3/2

3
2

Γ( 3
2

)
= π3/2

3
2
· 1
2

√
π

= 4
3
π.

By 10b5, 1
2
Γ
(
a+b+2

2

) ∫ π/2
0

cosa θ sinb θ dθ = 1
2
Γ
(
a+1

2

)
· 1

2
Γ
(
b+1

2

)
for a, b ∈

(−1,∞); that is,

(10d8)

∫ π/2

0

cosα−1 θ sinβ−1 θ dθ =
1

2

Γ(α
2
)Γ(β

2
)

Γ(α+β
2

)
for α, β ∈ (0,∞) .

In particular,

(10d9)

∫ π/2

0

sinα−1 θ dθ =

∫ π/2

0

cosα−1 θ dθ =

√
π

2
·

Γ
(
α
2

)
Γ
(
α+1

2

) .
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The trigonometric functions can be eliminated:
∫ π/2

0
cosα−1 θ sinβ−1 θ dθ =

1
2

∫ π/2
0

cosα−2 θ sinβ−2 θ · 2 sin θ cos θ dθ = 1
2

∫ 1

0
(1− u)

α−2
2 u

β−2
2 du; thus,

(10d10)

∫ 1

0

xα−1(1− x)β−1 dx = B(α, β) for α, β ∈ (0,∞) ,

where

(10d11) B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
for α, β ∈ (0,∞)

is another special function, the beta function.

10d12 Exercise. Check that B(x, x) = 21−2xB(x, 1
2
).

Hint:
∫ π/2

0

(
2 sin θ cos θ

2

)
2x−1 dθ.

10d13 Exercise. Check the duplication formula:

Γ(2x) =
22x−1

√
π

Γ(x) Γ
(
x+

1

2

)
.

Hint: use 10d12.

10d14 Exercise. Calculate
∫ 1

0
x4
√

1− x2 dx.
Answer: π

32
.

10d15 Exercise. Calculate
∫∞

0
xme−x

n
dx.

Answer: 1
n
Γ
(
m+1
n

)
.

10d16 Exercise. Calculate
∫ 1

0
xm(lnx)n dx.

Answer: (−1)nn!
(m+1)n+1 .

10d17 Exercise. Calculate
∫ π/2

0
dx√
cosx

.

Answer: Γ2(1/4)

2
√

2π
.

10d18 Exercise. Check that Γ(p)Γ(1− p) =
∫∞

0
xp−1

1+x
dx.

Hint: change x to t via (1 + x)(1− t) = 1.

We mention without proof another useful formula∫ ∞
0

xp−1

1 + x
dx =

π

sin πp
for 0 < p < 1 .

There is a simple proof that that uses the residues theorem from the complex
analysis course. This formula yields that Γ(t)Γ(1− t) = π

sinπt
.
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Is the function Γ continuous?
For every compact interval [t0, t1] ⊂ (0,∞) the given function of two

variables (t, x) 7→ xt−1e−x is Lipschitz continuous on [t0, t1]×
[

1
k
, k
]
, therefore

the integral is Lipschitz continuous on [t0, t1] (recall 7b). Also,∫ k

1/k

xt−1e−x dx→ Γ(t) uniformly on [t0, t1] ,

since
∫ 1/k

0
xt−1e−x dx ≤

∫ 1/k

0
xt0−1 dx → 0 as k → ∞ and

∫∞
k
xt−1e−x dx ≤∫∞

k
xt1−1e−x dx → 0 as k → ∞. It follows that Γ is continuous on arbitrary

[t0, t1], therefore, on the whole (0,∞).
In particular, tΓ(t) = Γ(t+ 1)→ Γ(1) = 1 as t→ 0+; that is,

Γ(t) =
1

t
+ o
(1

t

)
as t→ 0 + .

Is the function Γ differentiable?
By Theorem 7e1 the function t 7→

∫ k
1/k

xt−1e−x dx is continuously differ-

entiable, and its derivative is t 7→
∫ k

1/k
xt−1e−x lnx dx; this relation results

from application of Prop. 7b4 (iterated integral) to the function (t, x) 7→
∂
∂t
xt−1e−x = xt−1e−x lnx on [t0, t1] ×

[
1
k
, k
]
. Regretfully, iterated improper

integral is not an easy matter.1 Instead, we use exhaustion, as follows. As
before,∫ k

1/k

xt−1e−x lnx dx→
∫ ∞

0

xt−1e−x lnx dx uniformly on [t0, t1]

(check it), therefore∫ t1

t0

dt

∫ k

1/k

xt−1e−x lnx dx→
∫ t1

t0

dt

∫ ∞
0

xt−1e−x lnx dx .

On the other hand,∫ k

1/k

dx

∫ t1

t0

dt xt−1e−x lnx =

∫ k

1/k

(
xt−1e−x

∣∣t1
t=t0

)
dx =

=

∫ k

1/k

xt1−1e−x dx−
∫ k

1/k

xt0−1e−x dx→ Γ(t1)− Γ(t0) .

1If f : [0, 1]×[0, 1]→ [0,∞) is improperly integrable, then fx : y → f(x, y) is improperly
integrable on [0, 1] for almost every x; however, the function ϕ : x →

∫
fx need not be

improperly integrable. Rather, ϕ is equivalent to a function semicontinuous from below
(possibly, unbounded on every interval), and ∗

∫
ϕ =

∫
f .
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Thus, Γ(t1)− Γ(t0) =
∫ t1
t0

dt
∫∞

0
xt−1e−x lnx dx, which implies

Γ′(t) =

∫ ∞
0

xt−1e−x lnx dx .

Similarly, Γ′ is differentiable; continuing this way we get

Γ(k)(t) =

∫ ∞
0

xt−1e−x(lnx)k dx for k = 1, 2, . . .

10e Normed space of equivalence classes

In order to integrate signed functions we reuse the simple trick of (8e1). We
define ∫

G

(g − h) =

∫
G

g −
∫
G

h

whenever g, h : G→ [0,∞) are continuous almost everywhere and
∫
G
g <∞,∫

G
h <∞; this definition is correct, that is,∫

G

g1 −
∫
G

h1 =

∫
G

g2 −
∫
G

h2 whenever g1 − h1 = g2 − h2 ;

proof:

(10e1)

g1−h1 = g2−h2 =⇒ g1+h2 = g2+h1 =⇒
∫
G

(g1+h2) =

∫
G

(g2+h1) =⇒

=⇒
∫
G

g1 +

∫
G

h2 =

∫
G

g2 +

∫
G

h1 =⇒
∫
G

g1 −
∫
G

h1 =

∫
G

g2 −
∫
G

h2 .

10e2 Lemma. The following two conditions on a function f : G → R
continuous almost everywhere are equivalent:

(a) there exist g, h : G → [0,∞), continuous almost everywhere, such
that

∫
G
g <∞,

∫
G
h <∞ and f = g − h;

(b)
∫
G
|f | <∞.

Proof. (a)=⇒(b):
∫
G
|g − h| ≤

∫
G

(
|g|+ |h|

)
=
∫
G
|g|+

∫
G
|h| <∞.

(b)=⇒(a): we introduce the positive part f+ and the negative part f− of
f ,

(10e3)
f+(x) = max

(
0, f(x)

)
, f−(x) = max

(
0,−f(x)

)
;

f− = (−f)+ ; f = f+ − f− ; |f | = f+ + f− ;

they are continuous almost everywhere (think, why);
∫
G
f+ ≤

∫
G
|f | < ∞,∫

G
f− ≤

∫
G
|f | <∞; and f+ − f− = f .
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We summarize:

(10e4)

∫
G

f =

∫
G

f+ −
∫
G

f−

whenever f : G→ R is continuous almost everywhere and such that
∫
G
|f | <

∞. Such functions will be called improperly integrable1 (on G).

10e5 Exercise. Prove linearity:
∫
G
cf = c

∫
G
f for c ∈ R, and

∫
G

(f1 + f2) =∫
G
f1 +

∫
G
f2.

Similarly to Sect. 6e, a function f : G → R continuous almost every-
where will be called negligible if

∫
G
|f | = 0. Functions f, g continuous almost

everywhere and such that f − g is negligible will be called equivalent. The
equivalence class of f will be denoted [f ].

Improperly integrable functions f : G → R are a vector space. On this
space, the functional f 7→

∫
G
|f | is a seminorm. The corresponding equiva-

lence classes are a normed space (therefore also a metric space). Similarly to
6e3, the integral is a continuous linear functional on this space.

If G is Jordan measurable then the space of improperly integrable func-
tions on G is embedded into the space of improperly integrable functions on
Rn by f 7→ f · 1lG.

10e6 Lemma. Let G1 ⊂ G2 ⊂ Rn be two open sets, and f : G2 → R
continuous almost everywhere. If f = 0 almost everywhere on G2 \G1, then
f · 1lG1 is continuous almost everywhere on G2 and equivalent to f .

Proof. The set A = {x ∈ G2 \ G1 : f(x) 6= 0} is of Lebesgue measure 0. If
f is continuous at x ∈ G2 while f · 1lG1 is not, then clearly x ∈ G2 \G1; and
moreover, x ∈ A (since limt→x f(t) = 0 implies limt→x

(
f(t) · 1lG1(t)

)
= 0).

Thus, f · 1lG1 is continuous almost everywhere on G2. Finally, f · 1lG1 = f on
G2 \ A.

In particular, if G1 contains almost all points of G2 (that is, G2 \ G1 is
of Lebesgue measure 0),2 then the condition “f = 0 almost everywhere on
G2 \ G1” holds vacuously; in this case the values of f on G2 \ G1 do not
influence the equivalence class of f .

10e7 Corollary. Let G1 ⊂ G2 ⊂ Rn be two open sets, and f : G2 → R
improperly integrable. If f = 0 almost everywhere on G2 \G1, then

∫
G2
f =∫

G1
f .

1In one dimension they are usually called absolutely (improperly) integrable.
2Warning: this condition implies v∗(G1) = v∗(G2) and is implied by v∗(G1) = v∗(G2) <

∞, but is not implied by v∗(G1) = v∗(G2) =∞.
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Proof. First,
∫
G2
f =

∫
G2
f · 1lG1 since [f ] = [f · 1lG1 ] by 10e6. Second,∫

G2
f+ · 1lG1 =

∫
G1
f+ by 10b11; the same holds for f−, and therefore for

f+ − f− = f .

Once again, if G1 contains almost all points of G2, then we get
∫
G2
f =∫

G1
f for all f improperly integrable on G2.
We may admit a function f partially defined on G, provided that for

almost every x ∈ G, f is defined near x.1 2 In other words: f : G \ A → R,
and the (relative) closure of A in G is of Lebesgue measure 0. In this case
almost all points of G belong to (G \ A)◦. Such partially defined functions
may be used as well as functions defined on the whole G, whenever only
equivalence classes matter.

Thus, we need not hesitate saying that, for instance,
∫ 1

−1
dx
|x|α = 2

1−α for
α < 1, even though the integrand is undefined at 0.

10e8 Proposition (Exhaustion). Let open sets G1 ⊂ G2 ⊂ · · · ⊂ G ⊂ Rn

be such that ∪kGk contains almost all points of G. Then∫
Gk

f →
∫
G

f as k →∞

for all f improperly integrable on G.

Proof. First, the open set G̃ = ∪kGk contains almost all points of G, there-
fore

∫
G
f =

∫
G̃
f . Second, Gk ↑ G̃; 10b10 gives

∫
Gk
f =

∫
Gk
f+ −

∫
Gk
f− →∫

G̃
f+ −

∫
G̃
f− =

∫
G̃
f .

In particular, if Gk are also Jordan measurable and such that f is defined
and bounded on each Gk, then

∫
Gk
f is the proper (Riemann) integral, and

we obtain the improper integral
∫
G
f as the limit of proper integrals.

10e9 Proposition. Let G ⊂ Rn be an open set, and f an improperly in-
tegrable function on G.3 Then there exist Jordan measurable open sets
G1 ⊂ G2 ⊂ . . . such that Gk ⊂ G, ∪kGk contains almost all points of G, and
f is defined and bounded on every Gk.

1Not just “at x”!
2In fact, for every set A ⊂ G of Lebesgue measure 0 (even if dense in G), every

function f : G \ A → R continuous almost everywhere can be extended to a function
G → R continuous almost everywhere (and all such extentions evidently are mutually
eqiuvalent). Hint: lim inft→x,t∈G\A f(t) ≤ f̃(x) ≤ lim supt→x,t∈G\A f(t) for every x ∈ A
such that f is bounded near x. Such f̃ is continuous at every continuity point of f .

3We admit partially defined f , as explained above.
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Proof. We’ll prove that for every box B ⊂ Rn and every ε > 0 there exists
a Jordan measurable open set GB,ε ⊂ B◦ ∩ G such that f is defined and
bounded on GB,ε and v(GB,ε) ≥ v∗(G ∩ B) − ε. This is sufficient, since we
may take Bk ↑ Rn and εk → 0, and then the sets Gk = GB1,ε1 ∪ · · · ∪GBk,εk

fit.
We take a set A ⊂ G of Lebesgue measure 0 such that for each x ∈ G\A,

f is defined near x and continuous at x.1 Given B and ε, we take an open
U ⊂ G such that A∩B ⊂ U and v∗(U ∩B◦) ≤ ε/2. We also take a compact
set K ⊂ B◦ ∩G such that v∗(K) ≥ v∗(B

◦ ∩G)− ε/2. Then the compact set
K \U satisfies v∗(K \U) ≥ v∗(K)− v∗(U ∩B◦) ≥ v∗(B

◦ ∩G)− ε, and every
point of K \ U has a Jordan measurable open neighborhood (just a ball, or
a box) on which f is defined and bounded. We choose a finite subcovering;
the union of the chosen neighborhoods (intersected with B◦∩G) is GB,ε.

The normed space of equivalence classes, introduced above, does not
admit an inner product.2 Now we turn to improperly square integrable
functions; these are functions f : G → R continuous almost everywhere
and such that

∫
f 2 < ∞. If [f ] = [g] then

∫
f 2 =

∫
g2 (check it via

10b12), thus, square integrability applies to equivalence classes. We de-
note the set of all square integrable equivalence classes by L̃2(G),3 and often
write f ∈ L̃2(G) instead of [f ] ∈ L̃2(G). This set is a vector space (since
(f + g)2 ≤ (f + g)2 + (f − g)2 = 2f 2 + 2g2).

If f, g ∈ L̃2(G) then their pointwise product fg is improperly integrable
(since f 2 − 2|fg|+ g2 ≥ 0), and we define the inner product

(10e10) 〈[f ], [g]〉 =

∫
fg

and the corresponding norm

(10e11) ‖[f ]‖2 =
√
〈[f ], [f ]〉 , that is, ‖f‖2 =

√∫
f 2

satisfying [f ] 6= [0] =⇒ ‖[f ]‖2 > 0 (check it via 10b12). We often write
〈f, g〉 and ‖f‖2 instead of 〈[f ], [g]〉 and ‖[f ]‖2. Every 2-dimensional subspace
of L̃2(G) is a Euclidean plane, which ensures the triangle inequality

(10e12) ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2

1Not “continuous near x”!
2Its 2-dimensional subspace of step functions is not the Euclidean plane; you may check

it similarly to the paragraph before 1e3.
3The widely used notation L2 is reserved for the corresponding notion in the framework

of Lebesgue integration.
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and the Cauchy-Schwarz inequality

(10e13) − ‖f‖2‖g‖2 ≤ 〈f, g〉 ≤ ‖f‖2‖g‖2 .

More generally, for arbitrary p ∈ [1,∞) we introduce the norm

‖f‖p =

(∫
|f |p
)1/p

on the vector space L̃p(G) of [f ] such that
∫
|f |p < ∞ (two special cases

p = 1 and p = 2 being already treated). The triangle inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p

follows from convexity of the ball {f :
∫
|f |p ≤ 1} (recall 1e14); convexity of

the ball follows from convexity of the functional f 7→
∫
|f |p (recall 1e13); and

convexity of this functional follows from convexity of the function t 7→ |t|p
(similarly to 1e15). The triangle inequality ensures that L̃p(G) is a vector
space. The Hölder inequality∣∣∣∣ ∫ fg

∣∣∣∣ ≤ ‖f‖p‖g‖q for f ∈ L̃p(G), g ∈ L̃q(G),
1

p
+

1

q
= 1 ,

is obtained similarly to 6d15(b) (but harder); first, ab ≤ ap

p
+ bq

q
for a, b ∈

[0,∞); second,∣∣∣∣ ∫ fg

∣∣∣∣ ≤ min
c>0

(
1

p
‖cf‖pp +

1

q

∥∥∥1

c
g
∥∥∥q
q

)
= ‖f‖p‖g‖q .

10f Change of variables

10f1 Theorem. Let U, V ⊂ Rn be open sets, ϕ : U → V a diffeomorphism,
and f : V → R. Then

(a) f is improperly integrable on V if and only if (f ◦ ϕ)| detDϕ| is
improperly integrable on U ; and

(b) in this case ∫
V

f =

∫
U

(f ◦ ϕ)| detDϕ| .

Proof. We reuse the arguments from the proof of Theorem 9a1. There, U
and V are assumed to be Jordan measurable, but this assumption is used
only in the last paragraph of the proof. Before that we constructed Jordan
measurable open sets Vk ↑ V (denoted there by K◦i )1 such that V k ⊂ V ,

1But notations U, V are swapped there; compare 9a1 and 9a2.
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the sets ϕ−1(Vk) = Uk ↑ U are Jordan measurable, Uk ⊂ U , and we showed
that the claim of the theorem (for Riemann integral) holds for every f whose
support is contained in some Vk, therefore, for every f with a compact support
inside V .

Now, given f : V → R, we note that

f is improperly integrable on V if and only if
it is improperly integrable on each Vk, and
limk

∫
Vk
|f | <∞,

and in this case
∫
V
f = limk

∫
Vk
f .

Similarly,

(f ◦ ϕ)| detDϕ| is improperly integrable on U if and only if
it is improperly integrable on each Uk, and
limk

∫
Uk

(f ◦ ϕ)| detDϕ| <∞,

and in this case
∫
U

(f ◦ ϕ)| detDϕ| = limk

∫
Uk

(f ◦ ϕ)| detDϕ|.

Thus, in order to prove the theorem for arbitrary f it is sufficient to prove
it for f whose support is contained in some Vk.

Theorem 9a1, applied to the diffeomorphism ϕ|Uk : Uk → Vk, gives the
needed claim for proper integration, that is, for bounded f (boundedness of
(f ◦ϕ)| detDϕ| follows, since the determinant is bounded on Uk). It remains
to generalize this claim to unbounded f : Vk → R. Taking into account that
f = f+ − f− we may assume that f : Vk → [0,∞). We note that

f is improperly integrable on Vk if and only if
each f` = min(f, `) is integrable on Vk,

and in this case
∫
Vk
f = lim`

∫
Vk
f`

(since every integrable g such that 0 ≤ g ≤ f · 1lVk satisfies g ≤ ` for some `).
Similarly, taking into account that | detDϕ| is bounded away from 0 on Uk,
we see that

(f ◦ ϕ)| detDϕ| is improperly integrable on Uk if and only if
each (f` ◦ ϕ)| detDϕ| is improperly integrable on Uk,

and in this case
∫
Uk

(f ◦ ϕ)| detDϕ| = lim`

∫
Uk

(f` ◦ ϕ)| detDϕ|.

The claim follows.

10f2 Exercise. Prove the equality (10d10) once again, avoiding (10b5) and
triginometric functions; to this end, consider(∫ ∞

0

uα+β−1e−u du

)(∫ 1

0

xα−1(1− x)β−1 dx

)
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and change the variables u, x to t1, t2 as follows:{
t1 = ux

t2 = u(1− x)

{
u = t1 + t2

x = t1
t1+t2

10g Multidimensional beta integrals of Dirichlet

10g1 Proposition.∫
· · ·
∫

x1,...xn>0,
x1+···+xn<1

xp1−1
1 . . . xpn−1

n dx1 . . . dxn =
Γ(p1) . . .Γ(pn)

Γ(p1 + · · ·+ pn + 1)

for all p1, . . . pn > 0.

For the proof, we denote

I(p1, . . . , pn) =

∫
· · ·
∫

x1,...xn>0,
x1+···+xn<1

xp1−1
1 . . . xpn−1

n dx1 . . . dxn .

This integral is improper, unless p1, . . . , pn ≥ 1.

10g2 Lemma. I(p1, . . . , pn) = B(pn, p1 + · · ·+ pn−1 + 1)I(p1, . . . , pn−1).

Proof. We introduce proper integrals

Iε(p1, . . . , pn) =

∫
· · ·
∫

x1,...xn>ε,
x1+···+xn<1

xp1−1
1 . . . xpn−1

n dx1 . . . dxn

for ε > 0.1 Clearly, Iε(p1, . . . , pn) ≤ I(p1, . . . , pn), and Iε(p1, . . . , pn) →
I(p1, . . . , pn) as ε→ 0+.

The change of variables ξ = ax (that is, ξ1 = ax1, . . . , ξn = axn) gives (by
Theorem 10f1)∫

· · ·
∫

ξ1,...xn>aε,
x1+···+xn<a

ξp1−1
1 . . . ξpn−1

n dξ1 . . . dξn = ap1+···+pnIε(p1, . . . , pn) for a > 0 .

1If nε ≥ 1 then Iε(p1, . . . , pn) = 0, of course.
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We use iterated integral (proper! ):

Iε(p1, . . . , pn) =

∫ 1

ε

dxn x
pn−1
n

∫
· · ·
∫

x1,...xn−1>ε,
x1+···+xn−1<1−xn

xp1−1
1 . . . x

pn−1−1
n−1 dx1 . . . dxn−1 =

=

∫ 1

ε

xpn−1
n (1− xn)p1+···+pn−1Iε/(1−xn)(p1, . . . , pn−1) dxn .

On one hand,

Iε(p1, . . . , pn) ≤ I(p1, . . . , pn−1)

∫ 1

0

xpn−1
n (1− xn)p1+···+pn−1 dxn =

= I(p1, . . . , pn−1)B(pn, p1 + · · ·+ pn−1 + 1)

for all ε, therefore I(p1, . . . , pn) ≤ B(pn, p1 + · · ·+ pn−1 + 1)I(p1, . . . , pn−1).
On the other hand, for arbitrary δ > 0,

Iε(p1, . . . , pn) ≥
∫ 1−δ

ε

xpn−1
n (1− xn)p1+···+pn−1Iε/(1−xn)(p1, . . . , pn−1) dxn ≥

≥
∫ 1−δ

ε

xpn−1
n (1− xn)p1+···+pn−1Iε/δ(p1, . . . , pn−1) dxn

for all ε, therefore

I(p1, . . . , pn) ≥
∫ 1−δ

0

xpn−1
n (1− xn)p1+···+pn−1I(p1, . . . , pn−1) dxn

for all δ, and finally, I(p1, . . . , pn) ≥ B(pn, p1 + · · ·+ pn−1 + 1)I(p1, . . . , pn−1).

Proof of Prop. 10g1.
Induction in the dimension n. For n = 1 the formula is obvious:∫ 1

0

xp1−1
1 dx1 =

1

p1

=
Γ(p1)

Γ(p1 + 1)
.

From n− 1 to n: using 10g2,

I(p1, . . . , pn) =
Γ(pn)Γ(p1 + · · ·+ pn−1 + 1)

Γ(p1 + · · ·+ pn + 1)
· Γ(p1) . . .Γ(pn−1)

Γ(p1 + · · ·+ pn−1 + 1)
=

=
Γ(p1) . . .Γ(pn)

Γ(p1 + · · ·+ pn + 1)
.
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There is a seemingly more general formula,∫
· · ·
∫

x1,...,xn>0,
x
γ1
1 +···+xγnn <1

xp1−1
1 . . . xpn−1

n dx1 . . . dxn =
1

γ1 . . . γn
·

Γ
(
p1
γ1

)
. . .Γ

(
pn
γn

)
Γ
(
p1
γ1

+ · · ·+ pn
γn

+ 1
) ,

easily obtained from the previous one by the change of variables yj = x
γj
j .

A special case: p1 = · · · = pn = 1, γ1 = · · · = γn = p;∫
· · ·
∫

x1,...,xn>0
xp1+···+xpn<1

dx1 . . . dxn =
Γn
(

1
p

)
pnΓ
(
n
p

+ 1
) .

We’ve found the volume of the unit ball in the metric lp:

v
(
Bp(1)

)
=

2nΓn
(

1
p

)
pnΓ
(
n
p

+ 1
) .

If p = 2, the formula gives us (again; see (10d7)) the volume of the standard
unit ball:

Vn = v
(
B2(1)

)
=

2πn/2

nΓ
(
n
2

) .
We also see that the volume of the unit ball in the l1-metric equals 2n

n!
.

Question: what does the formula give in the p→∞ limit?

10g3 Exercise. Show that∫
· · ·
∫

x1+···+xn<1
x1,...,xn>0

ϕ(x1 + · · ·+ xn) dx1 . . . dxn =
1

(n− 1)!

∫ 1

0

ϕ(s)sn−1 ds

for every “good” function ϕ : [0, 1]→ R and, more generally,∫
· · ·
∫

x1+···+xn<1
x1,...,xn>0

ϕ(x1 + · · ·+ xn)xp1−1
1 . . . xpn−1

n dx1 . . . dxn =

=
Γ(p1) . . .Γ(pn)

Γ(p1 + · · ·+ pn)

∫ 1

0

ϕ(u)up1+...pn−1 du .

Hint: consider ∫ 1

0

ds ϕ′(s)

∫
· · ·
∫

x1+···+xn<s
x1,...,xn>0

xp1−1
1 . . . xpn−1

n dx1 . . . dxn .
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Index

almost all points, 174

beta function, 171

Cauchy-Schwarz inequality, 177
continuous almost everywhere, 162

equivalent, 174
exhaustion, 165, 175

gamma function, 169
gravitational constant, 166

Hölder inequality, 177

improper integral
signed, 173, 174
unsigned, 162

improperly integrable, 174
inner product, 176

Lebesgue measure zero, 162
linearity, 174

negligible, 174
Newton’s law, 166

partially defined, 175
Poisson formula, 163

square integrable, 176

triangle inequality, 176, 177

volume of ball, 170, 181

B, 171
[f ], 174
f · 1lG, 162
f+, f−, 173
G, 162
G, 166
Γ, 169
L̃2(G), 176
L̃p(G), 177
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