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12a Planar curves

Recall the notions of relative neighborhood and relative open set.
Let M ⊂ R2.

12a1 Definition. A chart of M is a pair (G,ψ) of an open set G 6= ∅ in R
and a mapping ψ : G→M such that

(a) ψ(G) is (relatively) open in M ;
(b) ψ is a homeomorphism from G to ψ(G);
(c) ψ ∈ C1(G→ R2);
(d) Dψ does not vanish (on G).

If a point of M belongs to ψ(G), we say that (G,ψ) is a chart of M around
this point.

12a2 Definition. A co-chart1 of M is a pair (U,ϕ) of an open set U in R2

and a function ϕ : U → R such that
(a) M ∩ U = {x ∈ U : ϕ(x) = 0} 6= ∅;
(b) ϕ ∈ C1(U);
(c) Dϕ does not vanish on M ∩ U .

If a point of M belongs to U , we say that (U,ϕ) is a co-chart of M around
this point.

In particular, if M is the graph of a function f of class C1 near x0, we
may take ψ(t) =

(
t, f(t)

)
and ϕ(x, y) = y− f(x). The case x = g(y) may be

treated similarly. We’ll see soon that the general case reduces to these two
special cases (locally, but not globally).

1Not a standard terminology.



Tel Aviv University, 2014/15 Analysis-III,IV 201

12a3 Remark. (a) If (G,ψ) is a chart of M and G0 ⊂ G an open subset
(nonempty), then (G0, ψ|G0) is a chart of M ;1

(b) if (U,ϕ) is a co-chart of M and U0 ⊂ U is an open subset (that
intersects M), then (U0, ϕ|U0) is a co-chart of M .

12a4 Exercise. Let h : R2 → R2 be a diffeomorphism. If (G,ψ) is a chart
of M , then (G, h ◦ ψ) is a chart of h(M). If (U,ϕ) is a co-chart of M , then(
h(U), ϕ ◦ h−1

)
is a co-chart of h(M).

Prove it.

12a5 Proposition. The following three conditions on a set M ⊂ R2 and a
point (x0, y0) ∈M are equivalent:

(a) there exists a chart of M around (x0, y0);
(b) there exists a co-chart of M around (x0, y0);
(c) there exists a local diffeomorphism h : R2 → R2 near (x0, y0) such

that
(x, y) ∈M ⇐⇒ h(x, y) ∈ R× {0}

for all (x, y) near (x0, y0).

Proof. By 12a4, (c)=⇒(a) (and (c)=⇒(b)), since the line R×{0} evidently
has a chart (and a co-chart) near every point.

V

M

ψ(G)

chart

W

V

co-chart

graph

From a chart to a co-chart (and graph).

(a)=⇒(b): given G and ψ, ψ(t) =
(
ψ1(t), ψ2(t)

)
, ψ(t0) = (x0, y0), we assume

that ψ′1(t0) 6= 0 (otherwise we swap the coordinates x, y) and apply to ψ1

the inverse function theorem 4c2. Reducing G as needed we ensure that ψ1

is a diffeomorphism from G to an open neighborhood V of x0. Taking into
account that ψ(G) is a neighborhood of (x0, y0) in M , we reduce V and G
(again) and choose a neighborhood W of y0 such that

M ∩ (V ×W ) = ψ(G) ∩ (V ×W ) .

1ψ(G0) is open in ψ(G), and ψ(G) is open in M , therefore ψ(G0) is open in M (think,
why).
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We take U = V ×W , define ϕ : U → R by

ϕ(x, y) = y − ψ2

(
ψ−1

1 (x)
)
,

and check that (U,ϕ) is a co-chart.
(b)=⇒(c): given U and ϕ, we assume that (D2ϕ)(x0,y0) 6= 0 (otherwise we

swap the coordinates x, y). The mapping h : (x, y) 7→ (x, ϕ(x, y)) fits, as was
seen in the proof of Theorem 5c1.

12a6 Definition. A nonempty set M ⊂ R2 is a one-dimensional manifold
(or 1-manifold) if for every (x0, y0) ∈ M there exists a chart of M around
(x0, y0).

“Co-chart” instead of “chart” gives an equivalent definition due to 12a5.

12a7 Definition. Let M ⊂ R2 be a 1-manifold; a function f : M → R is
continuously differentiable if for every chart (G,ψ) of M the function f ◦ ψ
is continuously differentiable on G.

12a8 Exercise. The set C1(M) of all continuously differentiable functions on
M is an algebra; that is, a vector space, and f, g ∈ C1(M) =⇒ fg ∈ C1(M).
Also, if ϕ ∈ C1(R) and f ∈ C1(M) then ϕ ◦ f ∈ C1(M).

Prove it.

12a9 Exercise. Let M ⊂ R2 be a 1-manifold, f : M → R, and for every
x ∈ M there exists a chart (G,ψ) of M around x such that f ◦ ψ ∈ C1(G).
Then f ∈ C1(M).

Prove it.

12a10 Exercise. Which of the following subsets of R2 are 1-manifolds?
Prove your answers, both affirmative and negative.

∗ M1 = R× {0};
∗ M2 = [0, 1]× {0};
∗ M3 = (0, 1)× {0};
∗ M4 = {(0, 0)};
∗ M5 = R× {0, 1};
∗ M6 = R× Z;

∗ M7 = R× {1, 1
2
, 1

3
, . . . };

∗ M8 = M7 ∪M1;

∗ M9 = {(r cosϕ, r sinϕ) : 0 < r < 1, ϕ = 1/r};
∗ M10 = M9 ∪M4;
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∗ M11 = {(r cosϕ, r sinϕ) : 0 < r < 1, ϕ = 1/(1− r)};
∗ M12 = {(x, y) : x2 + y2 = 1};
∗ M13 = M11 ∪M12;

∗ Mp = {(x, y) : xp + yp = 1}; examine all p ∈ (−∞, 0) ∪ (0,∞).

12b Higher dimensions; orientation; tangent space

Let M ⊂ RN , n ∈ {1, . . . , N − 1}, and x0 ∈M .

12b1 Definition. A chart (n-chart) of M is a pair (G,ψ) of an open set
G 6= ∅ in Rn and a mapping ψ : G→M such that

(a) ψ(G) is (relatively) open in M ;
(b) ψ is a homeomorphism from G to ψ(G);
(c) ψ ∈ C1(G→ RN);
(d) for every u ∈ G the linear operator (Dψ)u from Rn to RN is one-to-

one.
If a point of M belongs to ψ(G), we say that (G,ψ) is a chart of M around
this point.

12b2 Definition. A co-chart1 (n-cochart) of M is a pair (U,ϕ) of an open
set U in RN and a mapping ϕ : U → RN−n such that

(a) M ∩ U = {x ∈ U : ϕ(x) = 0} 6= ∅;
(b) ϕ ∈ C1(U → RN−n);
(c) for every x ∈ M ∩ U the linear operator (Dϕ)x from RN to RN−n is

onto.
If a point of M belongs to U , we say that (U,ϕ) is a co-chart of M around
this point.

Clearly, n-charts and n-cocharts are well-defined for a subset of an N -di-
mensional affine space S (and then (Dψ)x : Rn → ~S and (Dϕ)x : ~S → RN−n).

In particular, if M is the graph of a mapping f : Rn → RN−n of class
C1 near x0, that is, M = {(u, f(u)) : u ∈ Rn}, then we may take ψ(u) =
(u, f(u)) and ϕ(u, v) = v − f(u) for u ∈ Rn, v ∈ RN−n.

This is one out of
(
N
n

)
similar cases. Recall Sect. 5d: if a linear operator

maps RN onto RN−n, it does not mean that it is ( A B ) with invertible B.
Some (N −n)× (N −n) minor is not zero, but not just the rightmost minor.
That is, some N − n out of the N variables are functions of the other n

1Not a standard terminology.
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variables; but not just the last N − n variables and the first n variables.

N−n

n N−n

A B

=N−n

N−n

12b3 Exercise. Generalize 12a4.

12b4 Proposition. The following three conditions on a set M ⊂ RN and a
point x0 ∈M are equivalent:

(a) there exists an n-chart of M around x0;
(b) there exists an n-cochart of M around x0;
(c) there exists a local diffeomorphism h : RN → RN near x0 such that

(u, v) ∈M ⇐⇒ h(u, v) ∈ Rn × {0N−n}

for all (u, v) ∈ Rn × RN−n near x0.

I skip the proof; it is a straightforward generalization of 12a5.
As before, the general case reduces (locally) to the

(
N
n

)
special cases; some

N − n variables are functions of the other n variables. In terms of Sect. 5d,
M has a n-chart (or n-cochart) around x0 if and only if M has n degrees of
freedom at x0.

12b5 Exercise. Let (G1, ψ1), (G2, ψ2) be two n-charts of M around x0.
Prove existence of a mapping ϕ : G1 → G2 of class C1 near u1 = ψ−1

1 (x0)
such that ψ1(u) = ψ2(ϕ(u)) for all u near u1, and det(Dϕ)u1 6= 0.1

12b6 Exercise. A relation det(Dϕ)u1 > 0 (for (G1, ψ1), (G2, ψ2), u1 and ϕ
as above) is an equivalence relation between n-charts of M around x0.

Prove it.

Clearly, there exist exactly two equivalence classes (provided that M has
an n-chart around x0, of course). These equivalence classes are called the
two orientations of M at x0.

12b7 Exercise. If M has an n-chart at x0 then M cannot have an m-chart
at x0 for m 6= n. Prove it.2 However, M can have an m-chart for m 6= n at
another point; give an example.

1Hint: M has n degrees of freedom at x0. Values of ϕ outside a neighborhood of u1
are irrelevant.

2Hint: recall 2b13(b).
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12b8 Definition. A nonempty set M ⊂ RN is an n-dimensional manifold
(or n-manifold) if for every x0 ∈ M there exists an n-chart of M around
x0.1 2

“Co-chart” instead of “chart” gives an equivalent definition.
The same applies to a subset M of an N -dimensional affine space.
A relatively open nonempty subset of an n-manifold is an n-manifold.

In particular, for every chart (G,ψ) of M the set ψ(G) is an n-manifold (a
single-chart piece of M), and for every co-chart (U,ϕ) of M the set M ∩ U
is an n-manifold.

In addition, sometimes one defines anN -manifold in RN as just a nonempty
open subset of RN , and a 0-manifold as just a nonempty discrete3 subset of
RN .

12b9 Exercise. Let M1 be an n1-manifold in RN1 , and M2 an n2-manifold
in RN2 ; then M1 ×M2 is an (n1 + n2)-manifold in RN1+N2 .

Prove it.4

12b10 Definition. Let M ⊂ RN be an n-manifold; a function f : M → R
is continuously differentiable if for every chart (G,ψ) of M the function f ◦ψ
is continuously differentiable on G.

12b11 Exercise. Generalize 12a8, 12a9 accordingly.

12b12 Exercise. Define the notion of a function continuous almost every-
where on a manifold. Formulate and prove counterparts of 12a8, 12a9 for
this notion.

12b13 Example. 5 Consider the set M of all 3× 3 matrices A of the form

A =

a2 ab ac
ba b2 bc
ca cb c2

 for a, b, c ∈ R , a2 + b2 + c2 = 1 .

1These are manifolds of class C1; manifolds of class Cm are defined similarly. For M
of class C1 we can define C1(M) but not C2(M). You may reconsider the last item of
12a10: when is Mp of class Cm?

2“In the literature this is usually called a submanifold of Euclidean space. It is possible
to define manifolds more abstractly, without reference to a surrounding vector space.
However, it turns out that practically all abstract manifolds can be embedded into a
vector space of sufficiently high dimension. Hence the abstract notion of a manifold is not
substantially more general than the notion of a submanifold of a vector space.” Sjamaar,
page 69.

3That is, each point (and therefore each subset) is relatively open.
4You may choose one of the three equivalent conditions (a), (b), (c) of 12b4. Or, just

for fun, you may give three proofs! On the other hand, you may prove it for 0 ≤ n1 ≤ N1,
0 ≤ n2 ≤ N2, not just 0 < n1 < N1, 0 < n2 < N2.

5The projective plane in disguise.
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These are orthogonal projections to one-dimensional subspaces of R3. We
treat M as a subset of the six-dimensional space of all symmetric 3 × 3
matrices.

The set M is invariant under transformations A 7→ UAU−1 where U
runs over all orthogonal matrices (linear isometries); these are linear trans-
formations of the six-dimensional space of matrices. If A corresponds to
x = (a, b, c) then UAU−1 corresponds to Ux. For arbitrary A,B ∈ M there
exists U such that UAU−1 = B (“transitive action”).

Thus, M looks the same around all its points (“homogeneous space”). In
order to prove that M is a 2-manifold (in R6) it is sufficient to find a chart
(or co-chart) around a single point of M , say,

A1 =

1 0 0
0 0 0
0 0 0

 ∈M .

12b14 Exercise. Find a 2-chart of M around A1.1

12b15 Exercise. Locally, near A1, four coordinates should be smooth func-
tions of the other two coordinates. Which two? Calculate explicitly these
four functions of two variables.2

Recall the two orientations of M at x0 introduced after 12b6.

12b16 Definition. (a) An orientation of an n-manifold M ⊂ RN is a family
(Ox)x∈M of orientations Ox of M at points x such that for every x0 ∈M and
every (G,ψ) ∈ Ox0 the relation (G,ψ) ∈ Ox holds for all x near x0.

(b) M is orientable if it has (at least one) orientation.

The same applies to M ⊂ S where S is an N -dimensional affine space.
We will see that a sphere is orientable but the Möbius strip (see 12c20)

is not, as well as M of 12b13. However, a single-chart piece of a manifold is
orientable.

An oriented manifold is, by definition, a pair (M,O) of a manifold and
its orientation. By a chart of an oriented manifold (M,O) we mean a chart
(G,ψ) of M such that (G,ψ) ∈ Ox for all x ∈ ψ(G).

If two orientations of M agree at x, then they agree near x (think, why).
Thus, they agree on a relatively open subset of M . Similarly, they disagree
on a relatively open subset of M . These two sets are relatively clopen. If M
is connected, then it has at most two orientations. If M is connected and

1Hint: (b, c) 7→ (
√

1− b2 − c2, b, c) = x 7→ A = ψ(b, c).
2Hint: solve a quadratic equation.
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orientable (in particular, connected and single-chart), then it has exactly
two orientations. For instance, Rn has exactly two orientations; and the
same holds for arbitrary n-dimensional affine (sub)space.

When M = V is an n-dimensional vector subspace of RN (or of arbitrary
N -dimensional vector space), linear charts are convenient: G = Rn and
ψ : Rn → V is a linear bijection. Two such linear charts (Rn, ψ1), (Rn, ψ2)
are related via a matrix ϕ : Rn → Rn such that ψ1 = ψ2 ◦ ϕ, that is,
ϕ = ψ−1

2 ◦ψ1. If detϕ > 0, then these two charts give the same orientation of
V ; if detϕ < 0, they give the two different orientations. Note that the linear
operators ψ : Rn → V correspond bijectively to bases

(
ψ(e1), . . . , ψ(en)

)
of

V (here (e1, . . . , en) is the usual basis of Rn), and two such bases are related
via the matrix ϕ = (ϕi,j)i,j:

ψ1(ek) = ψ2

(
ϕ(ek)

)
= ψ2(ϕ1,ke1+· · ·+ϕn,ken) = ϕ1,kψ2(e1)+· · ·+ϕn,kψ2(en) .

Thus, an orientation of M = V may be thought of as an equivalence class
of bases. The same applies to an n-dimensional affine subspace M = S of
RN (or of arbitrary N -dimensional affine space); the two orientations of S

correspond evidently to the two orientations of the difference space ~S.
If in addition V (or S) is endowed with a Euclidean metric, then it is

convenient to use linear isometries ψ : Rn → V and the corresponding or-
thonormal bases of V (or ~S).

12b17 Example. (a) M = R; there are two orthonormal bases, (1) and
(−1); they give the two orientations of R.

(b) M = R2; an orthonormal basis is either(
(cos θ, sin θ), (cos(θ + π

2
), sin(θ + π

2
))
)

=
(
(cos θ, sin θ), (− sin θ, cos θ)

)
or (

(cos θ, sin θ), (cos(θ − π
2
), sin(θ − π

2
))
)

=
(
(cos θ, sin θ), (sin θ,− cos θ)

)
;

these two cases give the two orientations of R2.
(c) M = R3; an orthonormal basis is either (a, b, a × b) or (a, b,−a × b)

for |a| = |b| = 1, 〈a, b〉 = 0; these two cases give the two orientations of R3. 1

12b18 Definition. Let M be an n-manifold in RN .
(a) A vector h ∈ RN is tangent to M at x0 ∈M if dist(x0 +εh,M) = o(ε)

(as ε→ 0);
(b) the tangent space Tx0M (to M at x0) is the set of all tangent vectors

(to M at x0).

1About relevance of orientations of our three-dimensional space to physics, chemistry
and biology see Wikipedia:Chirality (and follow the links there).

http://en.wikipedia.org/wiki/Chirality
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The same applies to M ⊂ S where S is an N -dimensional affine space;
and then Tx0M ⊂ ~S.1 Though, the distance needs a metric; but o(·) does

not depend on the choice of a norm on ~S.
The next exercise shows (in particular) that the tangent space is indeed

a vector subspace of RN , of dimension n, and may be defined without men-
tioning a distance.

12b19 Exercise. Let (G,ψ) be a chart around x0 = ψ(u0) and (U,ϕ) a
co-chart around x0. Prove that the following three conditions on a vector
h ∈ RN are equivalent:

(a) h is a tangent vector (at x0);
(b) h belongs to the image of the linear operator (Dψ)u0 : Rn → RN ;
(c) h belongs to the kernel of the linear operator (Dϕ)x0 : RN → RN−n.

12b20 Example. Let M ⊂ R2 be the graph of a function f ∈ C1(R). Then
T(x,f(x))M = {

(
λ, λf ′(x)

)
: λ ∈ R}.

12b21 Exercise. Generalize 12b20 to curves and surfaces in R3 (that are
graphs).

If M = S is an affine subspace then TxS = ~S for every x ∈ S; and if
M = V is a vector subspace then TxV = V for every x ∈ V .

If (G,ψ) is a chart of M around x0 = ψ(u0) then (Dψ)u0 : Rn → Tx0M is a
linear chart of Tx0M (“the tangent chart”). For two charts (G1, ψ1), (G2, ψ2)
of M around x0, ψ1 = ψ2◦ϕ, the chain rule gives (Dψ1)u1 = (Dψ2)u2◦(Dϕ)u1 ,
where ψ1(u1) = x0 = ψ2(u2). Clearly, the charts (G1, ψ1) and (G2, ψ2) of
M give the same orientation of M at x0 if and only if the tangent charts(
Rn, (Dψ1)u1

)
and

(
Rn, (Dψ2)u2

)
give the same orientation of Tx0M . This

way the two orientations of M at x0 correspond to the two orientations of
Tx0M .

Thus, an orientation of M may be thought of as a family of orientations
of the tangent spaces TxM , x ∈M .2

12b22 Exercise (cylinder). Let M1 be an n-manifold in RN , and h ∈ RN

satisfy
∀x ∈M1 h /∈ TxM1 .

Consider the set
M = {x+ λh : x ∈M1, λ ∈ R} .

1Geometrically, it looks more natural to define Tx0
M as the affine subspace of all x0+h.

But the version Tx0
M ⊂ ~S is algebraically natural and widely used.

2But not an arbitrary family; indeed, the family (Ox)x∈M in Def. 12b16 is not arbitrary.
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Assume that the mapping (x, λ) 7→ x+λh is a homeomorphism M1×R→M .
Then

(a) M is an (n+ 1)-manifold in RN ;
(b) if (G,ψ1) is a chart of M1, then (G×R, ψ) for ψ : (u, λ) 7→ ψ1(u)+λh

is a chart of M .
Prove it. And show by counterexamples that no one of the two conditions

(h /∈ TxM1, and homeomorphism) can be dropped.

12b23 Exercise (cone). Let M1 be an n-manifold in RN such that

∀x ∈M1 x /∈ TxM1 .

Consider the set
M = {λx : x ∈M1, λ ∈ (0,∞)} .

Assume that the mapping (x, λ) 7→ λx is a homeomorphism M1 × (0,∞)→
M . Then

(a) M is an (n+ 1)-manifold in RN ;
(b) if (G,ψ1) is a chart of M1, then (G×(0,∞), ψ) for ψ : (u, λ) 7→ λψ1(u)

is a chart of M .
Prove it.

12b24 Exercise (surface of revolution or body of revolution).
Let M1 be an n-manifold in R3 (here n = 1 or n = 2) such that

∀(x, y, z) ∈M1 (0,−z, y) /∈ T(x,y,z)M1 .

Consider the set

M = {(x, cy − sz, sy + cz) : (x, y, z) ∈M1, (c, s) ∈ S}

where S = {(c, s) ∈ R2 : c2 + s2 = 1} (the circle). Assume that the mapping(
(x, y, z), (c, s)

)
7→ (x, cy − sz, sy + cz) is a homeomorphism M1 × S → M .

Then
(a) M is an (n+ 1)-manifold in R3;
(b) if (G1, ψ1) is a chart of M1 and (G2, ψ2) is a chart of S, then (G1 ×

G2, ψ) is a chart of M ; here ψ(u1, u2) = (x, cy−sz, sy+cz) whenever ψ1(u1) =
(x, y, z) and ψ2(u2) = (c, s).

Prove it.
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12c Forms on manifolds

12c1 Definition. A differential form of order k (or k-form)1 on an n-man-
ifold M ⊂ RN is a continuous function ω on the set {(x, h1, . . . , hk) : x ∈
M, h1, . . . , hk ∈ TxM} such that for every x ∈ M the function ω(x, ·, . . . , ·)
is an antisymmetric multililear k-form on TxM .

Given a k-form ω on M , the integral
∫

Γ
ω is well-defined for every singular

k-box Γ in M (that is, k-box Γ : B → RN such that Γ(B) ⊂ M); recall
(11e12) and note that (DiΓ)u ∈ TΓ(u)M .

The case k = n is important.
Let us compare two notions, singular n-box in M and n-chart of M . These

are Γ : B → M and ψ : G → M ; both B and G are subsets of Rn; both Γ
and ψ are continuously differentiable; but B is a closed box, while G is an
open set; and ψ is a homeomorphism (and more), while Γ may degenerate
(even be constant). Anyway, let us define

∫
(G,ψ)

ω similarly to
∫

Γ
ω:

(12c2)

∫
(G,ψ)

ω =

∫
G

ω
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
du .

The integrand is continuous, but may be unbounded; also G may be un-
bounded; thus, the integral is interpreted as improper, and may converge or
diverge.

Here is parametrization invariance, similar to (11b6).

12c3 Proposition. Let (G1, ψ1), (G2, ψ2) be two charts of an oriented man-
ifold (M,O). If ψ1(G1) = ψ2(G2) then∫

(G1,ψ1)

ω =

∫
(G2,ψ2)

ω

for every n-form ω on M ; that is, either these two integrals converge and are
equal, or both integrals diverge.

Some observations before the proof.
The space of all antisymmetric multililear n-forms L on Rn (or on arbi-

trary n-dimensional vector space) is one-dimensional (recall the paragraph
before 11e13), thus, an n-form ω on an n-manifold M is basically a (scalar)
function on M . More exactly, such ω corresponds to the scalar function
x 7→ ω

(
x, e1(x), . . . , en(x)

)
where x ∈ M and (e1(x), . . . , en(x)) is a basis of

TxM . Be warned: such a basis, continuous in x, need not exist (on the whole

1These are forms of class C0.
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M) even if M is orientable.1 But clearly, it exists on a single-chart piece of
M .

On Rn, the determinant is an antisymmetric multililear n-form; and there-
fore (by the one-dimensionality), every such form L is

L(a1, . . . , an) = c det(a1, . . . , an) for a1, . . . , an ∈ Rn .

A linear operator Rn → Rn corresponds to a matrix,

Rn 3 x 7→ Ax ∈ Rn ,

and leads to such an antisymmetric multililear n-form L on Rn:

L(a1, . . . , an) = det(Aa1, . . . , Aan) for a1, . . . , an ∈ Rn .

For the usual basis (e1, . . . .en) of Rn we have L(e1, . . . , en) = detA, since
Ae1, . . . , Aen are the columns of the matrix A. By the one-dimensionality,
L(a1, . . . , an) = (detA) det(a1, . . . , an), that is,

(12c4) det(Aa1, . . . , Aan) = (detA) det(a1, . . . , an) .

By the one-dimensionality (again),

(12c5) L(Aa1, . . . , Aan) = (detA)L(a1, . . . , an)

for every antisymmetric multililear n-form L on Rn.
Applying Theorem 9d1 to the unit cube [0, 1]n ⊂ Rn we get the volume

of the parallelotope

P(a1, . . . , an) = A([0, 1]n) = {λ1a1 + · · ·+ λnan : λ1, . . . , λn ∈ [0, 1]} ⊂ Rn

generated by vectors a1 = Ae1, . . . , an = Aen (the columns of the matrix A)
emanating from the vertex 0 (the corner point):

v
(
P(a1, . . . , an)

)
= | det(a1, . . . , an)| .

Taking into account that the sign of det(a1, . . . , an) is related to an orientation
of Rn (as explained before 12b17), one says that det(a1, . . . , an) is the oriented
volume (or signed volume) of the parallelotope generated by a1, . . . , an.

On an n-dimensional vector space V “the” volume (Jordan measure) is
defined up to a (positive) coefficient (recall the end of Sect. 9d). On the

1In particular, it does not exist for the sphere M = S2 ⊂ R3; see Wikipedia:Hairy ball
theorem.

http://en.wikipedia.org/wiki/Hairy_ball_theorem
http://en.wikipedia.org/wiki/Hairy_ball_theorem
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other hand, “the” antisymmetric multililear n-form L on V is defined up to
a coefficient (not just positive). They correspond naturally by the formula

v
(
P(a1, . . . , an)

)
= |L(a1, . . . , an)| ;

each Jordan measure v (a special set function) corresponds to two forms
(±L) that in turn correspond to the two orientations of V .

On an n-dimensional Euclidean vector space E we have a single Jordan
measure and two “normalized” antisymmetric multililear n-forms ±L (cor-
responding to the two orientations of E); L(e1, . . . , en) = ±1 for every or-
thonormal basis of E. In particular, this holds in every n-dimensional vector
subspace of RN .

Proof of Prop. 12c3.
The mapping ϕ = ψ−1

2 ◦ψ1 : G1 → G2 is a homeomorphism (the composition
of two homeomorphisms G1 → ψ1(G1) = ψ2(G2) → G2), and moreover, a
diffeomorphism (since 12b5 applies near every point). By Theorem 10f1 it is
sufficient to prove that

ω
(
ψ1(u1), (D1ψ1)u1 , . . . , (Dnψ1)u1

)
=

= ω
(
ψ2(u2), (D1ψ2)u2 , . . . , (Dnψ2)u2

)
| det(Dϕ)u1 |

whenever u2 = ϕ(u1). Also, det(Dϕ)u1 > 0, since both charts conform to the
given orientation O.

Let x ∈ M , u1 ∈ G1, u2 ∈ G2 satisfy ψ1(u1) = x = ψ2(u2), then ϕ(u1) =
u2. We introduce an antisymmetric multililear n-form

L(a1, . . . , an) = ω
(
x, (Dψ2)u2a1, . . . , (Dψ2)u2an

)
for a1, . . . , an ∈ Rn .

By the chain rule, the relation ψ1 = ψ2 ◦ ϕ implies (Dψ1)u1 = (Dψ2)u2 ◦
(Dϕ)u1 ; therefore,

ω
(
x, (D1ψ1)u1 , . . . , (Dnψ1)u1

)
= ω

(
x, (Dψ1)u1e1, . . . , (Dψ1)u1en

)
=

= ω
(
x, (Dψ2)u2(Dϕ)u1e1, . . . , (Dψ2)u2(Dϕ)u1en

)
=

= L
(
(Dϕ)u1e1, . . . , (Dϕ)u1en

)
=
(
det(Dϕ)u1

)
L(e1, . . . , en) =

=
(
det(Dϕ)u1

)
ω
(
x, (D1ψ2)u2 , . . . , (Dnψ2)u2

)
by (12c5).

Thus, we may write
∫
ψ(G)

ω instead of
∫

(G,ψ)
ω. Also, we may write

∫
U
ω

whenever a relatively open set U ⊂ M is such that U = ψ(G) for some
n-chart (G,ψ) of (M,O). However, the orientation of M is essential. The
opposite orientation leads to the opposite value of the integral.



Tel Aviv University, 2014/15 Analysis-III,IV 213

12c6 Definition. An n-form µ on an oriented n-manifold (M,O) in RN is
the volume form, if for every x ∈ M the antisymmetric multililear n-form
µ(x, ·, . . . , ·) on TxM is normalized and corresponds to the orientation Ox.

“Normalized” means that it corresponds to the Jordan measure on the
Euclidean subspace TxM of the Euclidean space RN . “Corresponds to the
orientation Ox” means that for some (therefore, every) chart (G,ψ) ∈ Ox,

µ
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
> 0 where u = ψ−1(x) .

The same applies to a manifold in an N -dimensional Euclidean affine
space (but fails in the absence of a Euclidean metric).

Clearly, such µ is unique. Is it clear that µ exists? Surely, µ(x, ·, . . . , ·)
is well-defined for each x; but is it continuous in all the variables (including
x)? An affirmative answer will be given (after Example 12c17).

Having the volume form µ on (M,O) we define the n-dimensional volume

(12c7) v(U) =

∫
(G,ψ)

µ ∈ (0,∞]

whenever U = ψ(G) for an n-chart (G,ψ) of (M,O).
Also, for a function f : M → R continuous almost everywhere we define1

(12c8)

∫
U

f =

∫
G

f
(
ψ(u)

)
µ
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
du ;

the integral is interpreted as improper, and may converge or diverge.

12c9 Exercise. Formulate and prove parametrization invariance for
∫
U
f

(similar to 12c3).2

12c10 Example. Let M ⊂ R2 be the graph of a function f ∈ C1(R). The
whole M is covered by the chart R = G+ 3 x 7→ ψ+(x) = (x, f(x)) ∈ M ;
denote by O+ the corresponding orientation of M , and by O− the other
orientation. The two volume forms on M are µ±

(
(x, f(x)), (λ, λf ′(x))

)
=

±λ
√

1 + f ′2(x) (clearly, continuous functions of x and λ); thus,

v
(
ψ+(G)

)
=

∫
G

µ+

(
(x, f(x)), (1, f ′(x))

)
dx =

∫
G

√
1 + f ′2(x) dx

1Surely, such
∫
U
f is never interpreted as

∫
RN f · 1lU (unless n = N); indeed, U cannot

be a Jordan set of non-zero volume (since U◦ = ∅). On the other hand, for n = N , this∫
U
f is the same as the improper integral of Sect. 10 (just use the trivial chart). Many

authors include n into the notation; say, Vn(U) rather than v(U), and
∫
U
f dVn rather

than
∫
U
f . When N = 3, one often uses d` (or ds) for n = 1; dA (or dS, or dσ) for n = 2;

and dv for n = 3.
2For a continuous f we may just apply 12c3 to the n-form fµ.
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is the 1-dimensional volume (just the length) of a part of the curve M . Note
that

(12c11) v
(
{(x, f(x)) : a < x < b}

)
=

∫ b

a

√
1 + f ′2(x) dx

is an additive function of a box (a, b) ⊂ R, and x 7→
√

1 + f ′2(x) is the
derivative of this box function. Informally,

(d`)2 = (dx)2 + (dy)2 , where y = f(x) .

Another chart R = G− 3 x 7→ ψ−(x) = (−x, f(−x)) ∈ M corresponds
to O−; we have v

(
ψ−(G)

)
=
∫
G
µ−
(
(−x, f(−x)), (−1,−f ′(−x))

)
dx =∫

G

√
1 + f ′2(−x) dx; taking G = (−b,−a) we get (12c11) again. The same

length via the other orientation.

Can we generalize 12c10 to a surface M in R3 (the graph of a function
f ∈ C1(R2))? We know the tangent space (recall 12b21) T(x,y,f(x,y))M , it is
spanned by two vectors, (1, 0, (D1f)(x,y)) and (0, 1, (D2f)(x,y)), but they are
not orthogonal. How to know that a form is normalized? We could apply
the orthogonalization process, but it leads to unpleasant formulas already for
n = 2 (and even worse for higher n). Fortunately a better way exists.

For arbitrary n vectors a1, . . . , an ∈ Rn,(
det(a1, . . . , an)

)
2 =

(
det(A)

)
2 = det(AtA) =

= det
(
〈ai, aj〉

)
i,j =

∣∣∣∣∣∣∣∣
〈a1, a1〉 . . . 〈a1, an〉
〈a2, a1〉 . . . 〈a2, an〉
. . . . . . . . . . . . . . . . . . . . .
〈an, a1〉 . . . 〈an, an〉

∣∣∣∣∣∣∣∣ ;

here A = ( a1 . . . an ) is the matrix whose columns are the vectors a1, . . . , an;
accordingly, AtA is the matrix of scalar products (think, why), the so-
called Gram matrix, and its determinant is called the Gram determinant,
or Gramian of a1, . . . , an. We see that the volume of a parallelotope is the
root of the Gramian,

(12c12) v
(
P(a1, . . . , an)

)
=
√

det
(
〈ai, aj〉

)
i,j

in Rn, and therefore, in every n-dimensional Euclidean vector space. In
particular, in every n-dimensional subspace of RN .

Given a one-to-one linear operator B : Rn → RN , we have vn(B(E)) =
cvn(E) for all Jordan sets E ⊂ Rn, with some c > 0 that depends on B (but



Tel Aviv University, 2014/15 Analysis-III,IV 215

does not depend on E). Taking a parallelotope E = P(a1, . . . , an) we have
B(E) = P(Ba1, . . . , Ban). Thus, the ratio√

det
(
〈Bai, Baj〉

)
i,j

| det(a1, . . . , an)|
does not depend on a basis (a1, . . . , an) of Rn .

In particular,

(12c13)
√

det
(
〈Bei, Bej〉

)
i,j does not depend

on an orthonormal basis (e1, . . . , en) of Rn .

Let µ be a volume form on (M,O), and (G,ψ) a chart of (M,O). By
(12c12), vn

(
P((D1ψ)u, . . . , (Dnψ)u)

)
= Jψ(u), where

Jψ(u) =
√

det
(
〈(Diψ)u, (Djψ)u〉

)
i,j

is the (generalized) Jacobian of ψ. Clearly, Jψ : G → (0,∞) is continuous.
Normalization of µ becomes

(12c14) µ
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
= Jψ(u) .

By (12c7) and (12c2),

(12c15) v(U) =

∫
ψ(G)

µ =

∫
G

Jψ(u) du .

By (12c8),

(12c16)

∫
U

f =

∫
G

f(ψ(u))Jψ(u) du .

Here U = ψ(G) for an n-chart (G,ψ) of (M,O).
Now we are in position to generalize 12c10.

12c17 Example. Let M ⊂ R3 be the graph of a function f ∈ C1(R2);
that is, M = {(x, y, f(x, y)) : x, y ∈ R}. The whole M is covered by the
chart R2 = G 3 (x, y) 7→ ψ(x, y) = (x, y, f(x, y)) ∈ M ; denote by O the
corresponding orientation of M . We have

(D1ψ)(x,y) =
(
1, 0, (D1f)(x,y)

)
; (D2ψ)(x,y) =

(
0, 1, (D2f)(x,y)

)
;

J2
ψ(x, y) =

∣∣∣∣1 + (D1f)2 D1f ·D2f
D1f ·D2f 1 + (D2f)2

∣∣∣∣ =

= 1 + (D1f)2 + (D2f)2 + (D1f)2(D2f)2 − (D1f)2(D2f)2 =

= 1 + (D1f)2 + (D2f)2 = 1 + |∇f(x, y)|2 .
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The volume form µ must satisfy

µ
(
(x, y, f(x, y)), (1, 0, (D1f)(x,y)), (0, 1, (D2f)(x,y))

)
=
√

1 + |∇f(x, y)|2 .

Given h, k ∈ T(x,y,f(x,y))M , we have h = (h1, h2, h3) = h1(1, 0, (D1f)(x,y)) +
h2(0, 1, (D2f)(x,y)) (think, why), and the same for k; thus,

µ
(
(x, y, f(x, y)), h, k

)
= (h1k2 − k1h2)µ

(
·, (1, 0, D1f), (0, 1, D2f)

)
=

=
√

1 + |∇f(x, y)|2
∣∣∣∣h1 h2

k1 k2

∣∣∣∣ ;

clearly, a continuous function of x, y, h and k. Existence of the volume form
is thus verified (for the considered case), and

v
(
ψ(G)

)
=

∫
G

√
1 + |∇f(x, y)|2 dxdy

is the 2-dimensional volume (just the area) of a part of the surface M . Once
again,

(12c18) v
(
ψ(B)

)
=

∫
B

Jψ

is an additive function of a box B ⊂ R2, and Jψ is its derivative. Informally,

(dA)2 = (dxdy)2 + (dxdz)2 + (dydz)2 , where z = f(x, y) .

The other orientation leads to the same area.

Existence of the volume form in general is proved similarly. Locally, M
is the graph {(x, f(x))} of a mapping f : Rn → RN−n. Using a chart (G,ψ),
ψ(x) =

(
x, f(x)

)
, we see that µ(ψ(x), h1, . . . , hn) is the (continuous) Jψ(x)

multiplied by a polynomial (in fact, just the determinant) of the projections
on h1, . . . , hn from T(x,f(x)) ⊂ RN onto Rn.

The case n = N−1 (a hypersurface) is important. In this case f : Rn → R
has the gradient ∇f , and we wonder, whether the formula J2

ψ = 1 + |∇f |2
still holds, or was it a good luck in low dimensions.

12c19 Lemma. Jψ =
√

1 + |∇f |2.

Proof. We have Dkψ = ek+(Dkf)eN for k = 1, . . . , n. According to (12c13),
we are free to choose an orthonormal basis in Rn. We choose it such that
∇f = |∇f |e1. Then (D1ψ)(x,f(x)) = e1 + |∇f(x)|eN , (D2ψ)(x,f(x)) = e2, . . . ,
(Dnψ)(x,f(x)) = en; these vectors being orthogonal, we get the determinant of

a diagonal matrix: J2
ψ =

∣∣e1 + |∇f(x)|eN
∣∣2 · |e2|2 . . . |en|2 = 1 + |∇f(x)|2.
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12c20 Exercise. Consider a Möbius strip1 (without the edge),

M = {Γ(s, θ) : s ∈ (−1, 1), θ ∈ [0, 2π]} ,

Γ(s, θ) =

( (R+rs cos θ
2

) cos θ

(R+rs cos θ
2

) sin θ

rs sin θ
2

)
,

for given R > r > 0. Prove that it is a non-orientable 2-manifold in R3. 2

Two facts without proofs: every 1-manifold in RN is orientable; every
compact 2-manifold in R3 is orientable.

12c21 Exercise. Continuing 12b13 prove that the compact 2-manifold M ⊂
R6 is non-orientable.3

12c22 Exercise. Let f ∈ C1(R), Ma be the graph of f(·) +a for a ∈ R, and
g ∈ C(R2) compactly supported. Prove that

(a)
∫
R da

∫
Ma
g2 ≥

∫
R2 g

2;
(b) the equality holds if and only if ∀x, y f ′(x)g(x, y) = 0.

12c23 Exercise. Find Jψ given ψ(ϕ, θ) = (sin θ cosϕ, sin θ sinϕ, cos θ). Com-
pare your answer with (9b3).

12c24 Exercise. Find Jψ given ψ(x) =
(
x,
√

1− |x|2
)
∈ Rn+1 for x ∈ Rn,

|x| < 1.
Answer: 1/

√
1− |x|2.

12c25 Exercise. Consider spherical caps Ma = {x : |x| = 1, xN > a} in RN

(for 0 < a < 1).

(a) v(Ma) =

∫
|u|2<1−a2

du√
1− |u|2

(n-dimensional integral, n = N − 1);

(b) v(Ma) = nVn

∫ √1−a2

0

rn−1 dr√
1− r2

, where Vn = 2πn/2

nΓ(n/2)
is the volume of

the n-dimensional unit ball;
(c) v(Ma)

NVN/2
→ 0 as N →∞ (but not uniformly in a, of course);

(d) (Archimedes) v(Ma) = 2π(1− a) for N = 3.
Prove it.4

1Images from Wikipedia.
2Hint: think about the function θ 7→ µ

(
Γ(0, θ), D1Γ(0, θ), D2Γ(0, θ)

)
.

3Hint: similar to 12c20. (In fact, a part of M is diffeomorphic to the Möbius strip.)
4Hint: (a) use 12c24; (b) recall 10b7.
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Here is a probabilistic interpretation. Let a point (x1, . . . , xN) on the unit
sphere in RN be chosen at random, uniformly;

(c) if N is large, then xN is usually small;
(d) if N = 3, then xN is distributed uniformly.
Geometric interpretation of Item (d) is Archimedes’ Hat-Box Theorem.1

12c26 Exercise. Consider a half-space G = RN−1 × (0,∞) ⊂ RN , semi-
spheres Mr = {x ∈ G : |x| = r} for r > 0, and a compactly supported
f ∈ C(G). Prove that

(a)

∫
Mr

f =

∫
|u|<r

r√
r2 − |u|2

f
(
u,
√
r2 − |u|2

)
du;

(b)

∫ ∞
0

dr

∫
Mr

f =

∫
G

f .

12c27 Exercise (product). Let M1 be an n1-manifold in RN1 and M2 an
n2-manifold in RN2 . By 12b9, the set M = M1 ×M2 is an n-manifold in
RN where n = n1 + n2 and N = N1 + N2. Let (G1, ψ1) be a chart of M1

and (G2, ψ2) a chart of M2; consider the product-chart (G,ψ) of M , that is,
G = G1 ×G2 and ψ(u1, u2) =

(
ψ1(u1), ψ2(u2)

)
. Prove that

(a) Jψ(u1, u2) = Jψ1(u1)Jψ2(u2);
(b) v(U1 × U2) = v(U1)v(U2) ∈ (0,∞], where U1 = ψ1(G1), U2 = ψ2(G2).

12c28 Exercise (scaling). Let M be an n-manifold in RN , and s ∈ (0,∞).
By 12b3, the set sM = {sx : x ∈M} is an n-manifold. Let (G,ψ) be a chart
of M ; consider the scaled chart (G, sψ) of sM . Prove that

(a) Jsψ(u) = snJψ(u);
(b) v(sU) = snv(U) ∈ (0,∞], where U = ψ(G).

12c29 Exercise (motion). Let M be an n-manifold in RN , and T : RN →
RN an isometric affine mapping. By 12b3, the set T (M) is an n-manifold.
Let (G,ψ) be a chart of M ; consider the corresponding chart (G, T ◦ ψ) of
T (M). Prove that

(a) JT◦ψ(u) = Jψ(u);
(b) v(T (U)) = v(U) ∈ (0,∞], where U = ψ(G).

1Weisstein, Eric W. ”Archimedes’ Hat-Box Theorem.” From MathWorld – A Wolfram
Web Resource.

http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html
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12c30 Exercise (cylinder). Let M1, h,M, (G1, ψ1), (G × R, ψ) be as in
12b22(b). Then

Jψ(u, λ) = Jψ1(u) dist(h, Tψ1(u)M1) .

In particular, if 〈h, ·〉 is constant on M1, then h ⊥ TxM1, thus,

Jψ(u, λ) = |h|Jψ1(u) .

Prove it.1

12c31 Exercise (cone). LetM1,M, (G,ψ1), (G×(0,∞), ψ) be as in 12b23(b).
Then

Jψ(u, λ) = λnJψ1(u) dist(x, TxM1) where x = ψ1(u) .

In particular, if ∀x ∈M1 |x| = c, then x ⊥ TxM1, thus,

Jψ(u, λ) = cλnJψ1(u) .

Prove it.

12c32 Exercise (surface of revolution or body of revolution).
Let M1, n,M, S, (G1, ψ1), (G2, ψ2), (G1 ×G2, ψ) be as in 12b24(b). Then

Jψ(u1, u2) = Jψ1(u1) dist((0,−z, y), T(x,y,z)M1) where (x, y, z) = ψ1(u1) .

In particular, if M1 ⊂ R2×{0}, then also T(x,y,z)M1 ⊂ R2×{0}; (0,−z, y) =
(0, 0, y) ⊥ R2 × {0}; thus,

Jψ(u1, u2) = |y|Jψ1(u1) where (x, y, 0) = ψ1(u1) .

Prove it.

1Hint: first, try N = 2, n = 1.
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parametrization invariance, 210
product, 218

revolution, 209, 219

scaling, 218
single-chart, 205

tangent space, 207
tangent vector, 207

volume, 213
volume form, 213∫
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