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Single-chart pieces of a manifold are combined via partitions of unity.

13a Partition of unity

13a1 Definition. (a) A k-form ω on an n-manifold M ⊂ RN is compactly
supported if there exists a compact set K ⊂M that supports ω in the sense
that ω(x, h1, . . . , hk) = 0 for all x ∈M \K and h1, . . . , hk ∈ TxM .

(b) ω is a single-chart form if there exist a compact set K ⊂ M that
supports ω and a chart (G,ψ) of M such that K ⊂ ψ(G).

The same applies to continuous functions on M (they are 0-forms).
Recall that

∫
(M,O)

ω is defined (in Sect. 12c) whenever (M,O) is an ori-

ented n-manifold and ω a single-chart n-form on M . The linearity,

(13a2)

∫
(M,O)

(c1ω1 + c2ω2) = c1

∫
(M,O)

ω1 + c2

∫
(M,O)

ω2 ,

is evident provided that both forms ω1, ω2 have compact supports within the
same chart.

Every compact subset of M can be covered by finitely many charts. They
overlap. We could try to construct a partition of the compact set into simple-
chart sets. But it is better to split ω into single-chart forms, using the so-
called “partition of unity”.1

13a3 Lemma. Let M ⊂ RN be an n-manifold and K ⊂ M a compact set.
Then there exist single-chart continuous functions ρ1, . . . , ρi : M → [0, 1]
such that ρ1 + · · ·+ ρi = 1 on K.

Proof. For every x ∈ K the function fx : y 7→
(
εx−|y−x|

)
+ is single-chart

if εx is small enough; it is also continuous, and (strictly) positive in the open
εx-neighborhood of x. These neighborhoods are an open covering of K; we

1For now, partition of unity into continuous functions. Later, partition into C1 func-
tions will be needed. (See 13b11. Ultimately, partitions into C∞ functions exist, but we
do not need them.)
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choose a finite subcovering and get single-chart functions f1, . . . , fi : M →
[0,∞) whose sum f = f1 + · · ·+ fi is (strictly) positive on K. We take ε > 0
such that f(·) ≥ ε on K and note that functions ρ1, . . . , ρi : M → [0,∞)
defined by

ρj(x) =
fj(x)

max(f(x), ε)

have the required properties.

It follows that every compactly supported k-form on M is the sum of
some single-chart k-forms,

ω = ω1 + · · ·+ ωi , ωj = ρjω

(that is, ωj(x, h1, . . . , hk) = ρj(x)ω(x, h1, . . . , hk)).
For k = n we can define (assuming that O is an orientation of M)

(13a4)

∫
(M,O)

(ω1 + · · ·+ ωi) =

∫
(M,O)

ω1 + · · ·+
∫

(M,O)

ωi

if this is correct; that is, we need

(13a5)

∫
(M,O)

ω1 + · · ·+
∫

(M,O)

ωi =

∫
(M,O)

ω̃1 + · · ·+
∫

(M,O)

ω̃ĩ

whenever ω1 + · · · + ωi = ω̃1 + · · · + ω̃ĩ. This equality will be proved after
some preparation.

All compactly supported k-forms on M are a vector space (infinite-dimen-
sional, of course). Forms compactly supported by a given chart are a vector
subspace; and these subspace, together, span the whole space. Therefore

(13a6) if two linear functionals on compactly supported forms

are equal on all single-chart forms, then they are equal.

In particular, this applies to continuous functions (0-forms).
Given single-chart n-forms ω1, . . . , ωi, we introduce the functional

L : f 7→
∫

(M,O)

fω1 + · · ·+
∫

(M,O)

fωi

on compactly supported continuous functions f : M → R; it is linear, since
each

∫
(M,O)

fωj is linear by (13a2). By (13a2) (again),

L(f) =

∫
(M,O)

fω where ω = ω1 + · · ·+ ωi
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for single-chart f (for non-single-chart f the right-hand side is generally not
defined yet). Given also ω = ω̃1 + · · ·+ ω̃ĩ, we introduce L̃ and note that

L(f) =

∫
(M,O)

fω = L̃(f)

for single-chart f . By (13a6), L = L̃. Choosing f such that f(·) = 1 on the
union of supports of ω1, . . . , ωi, ω̃1, . . . , ω̃ĩ we get (13a5).

We see that (13a4) is indeed a correct definition of
∫

(M,O)
ω whenever ω

is a compactly supported n-form on M .
Now we can define the n-dimensional volume of a compact oriented n-man-

ifold (M,O) by

v(M,O) =

∫
(M,O)

µ(M,O) ∈ (0,∞)

where µ(M,O) is the volume form on (M,O). However, the Möbius strip
should have an area, too!

We want to define

(13a7)

∫
M

f =

∫
(G,ψ)

fµ(G,ψ) =

∫
G

(f ◦ ψ)Jψ

for a single-chart f ∈ C(M); here (G,ψ) is a chart such that f is compactly
supported within ψ(G), and µ(G,ψ) is the volume form on the n-manifold ψ(G)
(oriented, even if M is non-orientable). To this end we need a counterpart
of Prop. 12c3: ∫

(G1,ψ1)

fµ(G1,ψ1) =

∫
(G2,ψ2)

fµ(G2,ψ2)

whenever (G1, ψ1), (G2, ψ2) are charts such that ψ1(G1) = ψ2(G2) supports
f . We do it similarly to the proof of 12c3, but this time we split the relatively
open set G̃ = ψ1(G1) = ψ2(G2) in two relatively open sets G̃−, G̃+ according
to the sign of detDϕ (having ψ−1

2 = ϕ ◦ ψ−1
1 on G̃). It remains to take into

account that µ(G1,ψ1) = µ(G2,ψ2) on G̃+ but µ(G1,ψ1) = −µ(G2,ψ2) on G̃−.
We see that (13a7) is indeed a correct definition of

∫
M
f for a single-chart

f ∈ C(M). Now, similarly to (13a4), we define

(13a8)

∫
M

f =

∫
M

f1 + · · ·+
∫
M

fi

whenever f = f1 + · · ·+ fi with single-chart fj ∈ C(M).

13a9 Exercise. (a) Prove that (13a8) is a correct definition of
∫
M
f for all

compactly supported f ∈ C(M);
(b) formulate and prove linearity and monotonicity of the integral.
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Consider a function f : M → R continuous almost everywhere.1 If f is
single-chart, we define ∫

M

f =

∫
G

(f ◦ ψ)Jψ = (12c8)

for a chart (G,ψ) that supports f ; by 12c9 the integral does not depend on
the chart. But now it is treated as improper, and may converge (then f is
called integrable) or diverge. This integral is a linear functional on the vector
subspace of integrable functions supported by a given chart. Similarly to
(13a5) it extends to a linear functional on compactly supported f (continuous
almost everywhere, of course). And then, by exhaustion, we get rid of the
compact support.

Accordingly, we have the (n-dimensional) Jordan measure on M , and sets
of volume zero. A single point is of volume zero, of course.

13a10 Exercise. (a) Every compact subset of an n-manifold in RN (for
n < N) is of (N -dimensional) volume zero in RN .2

(b) Let M be an n-manifold in RN ; M1 an n1-manifold in RN ; n1 < n; and
M1 ⊂ M . Then every compact subset of M1 is of (n-dimensional) volume
zero in M .

Prove it.3

13a11 Example. Consider the sphereM = {(x, y, z) : x2+y2+z2 = 1} ⊂ R3

and the 2-chart (G,ψ) of the sphere, called the spherical coordinates:

G = (−π, π)× (0, π) , ψ(ϕ, θ) = (sin θ cosϕ, sin θ sinϕ, cos θ) .

The circle {(x, 0, z) : x2 + z2 = 1} ⊂M is a set of volume zero by 13a10(b).
Therefore the semicircle M \ ψ(G) = {(x, 0, z) : x2 + z2 = 1, x ≤ 0} is of
volume zero. Using 12c15 and 12c23 we calculate the area of the sphere; not
unexpectedly, we get

v(M) =

∫
G

Jψ =

∫ π

−π
dϕ

∫ π

0

sin θ dθ = 4π .

13a12 Exercise. Prove that the area of the (non-compact) Möbius strip
12c20 is 4πrR

(
1 +O

(
r2

R2

))
.

13a13 Example (product). Let M1 be an n1-manifold in RN1 and M2 an
n2-manifold in RN2 . Then, using 12c27,

v(M1 ×M2) = v(M1)v(M2) ∈ (0,∞] .

1Recall 12b12.
2Why just compact? Wait for 13b8.
3Hint: (a) locally, a graph; (b) ψ−1 ◦ ψ1.
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13a14 Example (scaling). Let M be an n-manifold in RN , and s ∈ (0,∞).
Then, using 12c28,

v(sM) = snv(M) ∈ (0,∞] .

This is a generalization of the special case v(sE) = snv(E) of 6g12. In con-
trast, we have no such generalization of the more general formula v(T (E)) =
s1 . . . snv(E) of 6g12. Indeed, everyone knows the length of a circle, but the
length of an ellipse is an elliptic integral!1

13a15 Example (motion). Let M be an n-manifold in RN , and T : RN →
RN an isometric affine mapping. Then, using 12c29,

v(T (M)) = v(M) ∈ [0,∞] .

Also, ∫
T (M)

f ◦ T−1 =

∫
M

f

(in the appropriate sense) for every f : M → R continuous almost every-
where. In particular, (a) if f ◦ T−1 = f then

∫
T (M)

f =
∫
M
f ; and (b) if

T (M) = M then
∫
M
f ◦ T−1 =

∫
M
f .

13a16 Example (cylinder). LetM1, h,M be as in 12b22, but with (a, b) ⊂
R rather than the whole R; and let 〈h, ·〉 be constant on M1. Then, using
12c30,

v(M) = (b− a)|h|v(M1) .

13a17 Example (cone). Let M1 and M be as in 12b23, but with (a, b) ⊂
(0,∞) rather than the whole (0,∞); and let ∀x ∈ M1 |x| = c. Then, using
12c31,

v(M) =
c

n+ 1
(bn+1 − an+1)v(M1) .

13a18 Example (surface of revolution or body of revolution).
Let M1, n,M be as in 12b24, and M1 ⊂ R2 × {0}. Then, using 12c32,

v(M) = 2π

∫
M1

|y| .

Assuming in addition that M1 ⊂ R× (0,∞)×{0} we get the Pappus-Guldin
centroid theorem:2 3

1Wikipedia:Ellipse#Circumference.
2See “Pappus’s centroid theorem” in Wikipedia.
3Centroid, defined in Sect. 9b (before 9b8), generalizes readily to manifolds.

http://en.wikipedia.org/wiki/Ellipse#Circumference
http://en.wikipedia.org/wiki/Pappus%27s_centroid_theorem
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(for n = 1) The surface area of a surface of revolution generated by rotating
a plane curve about an external axis on the same plane is equal to the
product of the arc length of the curve and the distance traveled by its
geometric centroid.

(for n = 2) The volume of a solid of revolution generated by rotating a plane
figure about an external axis on the same plane is equal to the product
of the area of the figure and the distance traveled by its geometric
centroid.

13a19 Exercise. (a) Find the integral of the function x 7→ x2
i over the

sphere x2
1 + · · ·+ x2

N = 1 without ANY computation.1

(b) Prove that v(Ma)
NVN

≤ 1
2a2N

(here Ma is the spherical cap as in 12c25).

13a20 Exercise. Find the area of the part of the cylinder x2 + y2 = 1 in R3

situated inside the cylinder x2 + z2 = 1 (that is, satisfying x2 + z2 < 1). 2

13a21 Exercise. Find (a) the area of the part of the sphere x2 +y2 +z2 = 1
in R3 situated inside the cylinder x2 + y2 = x; and (b) the area of the part
of the cylinder inside the sphere.3

13a22 Exercise. The density of a “material” sphere of radius R is propor-
tional to the distance to the vertical diameter. Find the centroid of the upper
hemisphere.4

13a23 Exercise. Find the centroid of the (homogeneous) conic surface 0 <
z =

√
x2 + y2 < 1. 5

Vector-valued functions may be integrated as well. Given f : M → R`,
f : x 7→

(
f1(x), . . . , f`(x)

)
, we define

(13a24)

∫
M

f =

(∫
M

f1, . . . ,

∫
M

f`

)
provided that these ` integrals are well-defined. Accordingly, for f : M → V
where V is an `-dimensional vector space, we define

∫
M
f by

(13a25) L

(∫
M

f

)
=

∫
M

L ◦ f for all linear L : V → R ,

provided that the right-hand side is well-defined for all L.

1Hint: use 13a15.
2Answer: 8.
3Answer: (a) 2π − 4; (b) 8.
4Answer: (0, 0, 4

3πR).
5Answer: (0, 0, 2

3 ).
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13b Integral of derivative

Everyone knows that

(13b1)

∫ b

a

f ′(x) dx = f(b)− f(a) .

And in particular,

(13b2)

∫
R
f ′(x) dx = 0 if f ∈ C1(R) has a bounded support.

Interestingly, (13b1) may be thought of as (13b2) applied to the function
f · 1l[a,b]. Yes, this function is not differentiable (and moreover, not continu-
ous), but let us approximate it:

f(a)

f(b)

a−ε a b b+ε

1
ε
f(a)

− 1
ε
f(b)

f(a) +

∫ b

a

f ′(x) dx− f(b) = 0 .

This simple idea becomes much more interesting in higher dimensions. The
equality (13b1) has no evident n-dimensional counterpart, but (13b2) has:

(13b3)

∫
Rn

∇f = 0 if f ∈ C1(Rn) has a bounded support.

Given a geometric body E ⊂ Rn, we approximate its
indicator 1lE and take the gradient. In the boundary
layer of thickness ε we get the inwards normal vector of
length 1/ε. In the limit (for ε→ 0+) we see that the in-
tegral over ∂E of the (inwards) normal unit vector must
vanish. This is indeed true and useful. However, the
limiting procedure, helpful for intuition, is less helpful
for the proof (which happens often in mathematics).

Now we finish this informal prelude and start the formal theory.
We take the case n = N − 1; that is, we consider an n-dimensional

manifold M in Rn+1, often called a hypersurface. In this case, two sides of
M will be defined locally (but not globally; think about the Möbius strip),
after some preparation.
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Given x0 ∈M , we consider germs1 [σ] (at x0) of functions σ : RN \M → R
that are continuous near x0 and satisfy σ(·) = ±1 near x0.

13b4 Lemma. There exist exactly 4 such germs; two are constant; the other
two are not, and these two are mutually opposite ([σ] and [−σ]).

Proof. The conditions on σ (and M) are invariant under local homeomor-
phisms. By 12b4(c), WLOG we assume that M is the hyperplane Rn × {0}.
We take σ of the germ and ε > 0 such that σ is continuous and equal ±1 on
the set {x ∈ RN \M : |x− x0| < ε}, and note that this set has exactly two
connected components.

From now on, [σ] stands for one of the two non-constant germs; let us
call it side indicator.

13b5 Definition. A function f : RN \M → R is continuous up to M , if it
is continuous (on RN \M) and for every x0 ∈M the limits

f−(x) = lim
y→x,σ(y)=−1

f(y) and f+(x) = lim
y→x,σ(y)=+1

f(y)

exist for all x ∈M near x0.

In this case the germs [f−], [f+] (of functions on M) are well-defined and
continuous. The difference f+(x0)− f−(x0) of these “one-sided limits” at x0

is the jump of f at x0. Its sign depends on the sign of σ.
The same applies when M is an n-dimensional manifold in an (n+ 1)-di-

mensional affine space. In contrast, the unit normal vector and the singular
gradient, defined below, require Euclidean metric.

The tangent space TxM , being a hyperplane in RN , is

TxM = {h : 〈h,nx〉 = 0}

for some unit vector nx ∈ RN , the so-called unit normal vector. It is well-
defined up to the sign. When using together nx and the side indicator we
always assume that they conform:

σ(x+ λnx) =

{
−1 for small λ < 0,

+1 for small λ > 0.

Thus we have a germ of a mapping x 7→ nx. It is continuous due to an explicit
formula given in the following exercise. (However, a continuous mapping
x 7→ nx on the whole M exists if and only if M is orientable; we’ll return to
this point much later.)

1Recall Sect. 1c.
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13b6 Exercise. Let M be locally the graph,

{(x1, . . . , xN) : xN = g(x1, . . . , xn)} ,

of a continuously differentiable function g. Then the formula

σ(x1, . . . , xN) =

{
−1 for xN < g(x1, . . . , xn),

+1 for xN > g(x1, . . . , xn)

defines a side indicator, and the formula

nx =
1√

1 + |∇g|2
(
−(D1g), . . . ,−(Dng), 1

)
defines the corresponding unit normal vector.

Prove it.1

Here is a more convenient notation for the one-sided limits:

f(x− 0nx) = f−(x) and f(x+ 0nx) = f+(x) .

13b7 Definition. The singular gradient2 ∇sng f(x) at x ∈ M of a function
f : RN \M → R continuous up to M is the vector

∇sng f(x) =
(
f(x+ 0nx)− f(x− 0nx)

)
nx .

Note that the singular gradient does not depend on the sign of σ (and
nx). It is a continuous mapping ∇sng f : M → RN . (Think, what happens if
M is the Möbius strip.)

A compact subset of an n-manifold in RN is of (N -dimensional) volume
zero3 (recall 13a10(a)). However, this may fail for a bounded subset. When a
manifold M is not a closed set,4 it may be rather wild near a point of M \M .

13b8 Example. A bounded 1-manifold in R2 need not be a set of area zero.
Similarly to Example 8b9, we start with a sequence of pairwise disjoint

closed intervals [s1, t1], [s2, t2], · · · ⊂ (0, 1) such that
∑

k(tk − sk) = a < 1
and the open set G = (s1, t1) ∪ (s2, t2) ∪ . . . is dense in (0, 1).5 The set
M0 = { sk+tk

2
: k = 1, 2, . . . } of the centers of these intervals is a 0-manifold

1Hint: d
dλ

∣∣
λ=0

ϕ(x+ λnx) where ϕ(x1, . . . , xN ) = xN − g(x1, . . . , xn).
2Not a standard terminology.
3Except for the case n = N , of course.
4Be warned: “The notion of closed manifold is unrelated with that of a closed set.”

Wikipedia:Closed manifold#Contrasting terms
5Its complement [0, 1] \G is sometimes called a fat Cantor set.

http://en.wikipedia.org/wiki/Closed_manifold#Contrasting_terms
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in R (a discrete set). Its closure contains [0, 1]\G; thus, v∗(M0) = v∗(M0) =
1− a > 0.

The set M1 = M0 × (0, 1) is a 1-manifold in R2 (recall 12b9), not of area
zero.

13b9 Theorem. Let M ⊂ Rn+1 be an n-manifold, K ⊂ M a compact
subset, and f : Rn+1 \K → R a function such that

(a) f is continuously differentiable (on Rn+1 \K);
(b) f |Rn+1\M is continuous up to M ;

(c) f has a bounded support, and ∇f is bounded (on Rn+1 \K).
Then ∫

Rn+1\K
∇f +

∫
M

∇sng f = 0 .

13b10 Remark. First, both integrands being vector-valued, both integrals
are treated as in (13a24)–(13a25). Second, K is of volume zero, and (c)
implies integrability of∇f ·1lRn+1\K (think, why).1 Third, ∇sng f is continuous
and compactly supported (by K) on M (think, why).

13b11 Lemma. Let (U1, . . . , U`) be an open covering of a compact set K ⊂
RN . Then there exist functions ρ1, . . . , ρi ∈ C1(RN) such that ρ1+· · ·+ρi = 1
on K and each ρj has a compact support within some Um.

Proof. Similar to the proof of Lemma 13a3, with the following modifica-
tions. First, the sets U1, . . . , U` are used instead of charts. Second, functions
fx : y 7→ (ε2

x − |y − x|2)2
+ are used instead of y 7→ (εx − |y − x|)+, in order to

ensure continuous differentiability.

x x+εx

fx

ε
f

f+ ε
2
(1− f

ε
)2+

Third (for the same reason), f(x) + ε
2

(
1− f(x)

ε

)
2
+ is used in the denominator

of ρk instead of max(f(x), ε).

Still, N = n+ 1, and M,K, f are as in Theorem 13b9.

13b12 Lemma. Let h ∈ RN be such that

∀x ∈ K h /∈ TxM .

1Lebesgue’s criterion 8f1 applies. But really, a much simpler argument suffices, similar
to that of 6f2, since “volume zero” is much stronger than “Lebesgue measure zero”.
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Then 〈
h,

∫
RN\K

∇f +

∫
M

∇sng f

〉
= 0 .

Proof. WLOG, h = (0, . . . , 0, 1) is the last vector of the usual basis of RN

(otherwise, downgrade RN to a Euclidean vector space, and upgrade back to
RN as needed).

For every x ∈ K we take a co-chart (U,ϕ) of M around x. By 12b19(c),
(Dϕ)xh 6= 0, that is, (DNϕ)x 6= 0. The implicit function theorem 5c1 gives
us an open set U ⊂ Rn and an open interval V ⊂ R such that x ∈ U ×V and
M ∩ (U × V ) is the graph of a function U → V (of class C1). Such U × V
are an open covering of K. We take a finite subcovering W1, . . . ,W`, add
one more open set W0 = RN \K, and get a finite open covering of a closed
ball B that supports f . Lemma 13b11 gives ρ1, . . . , ρi ∈ C1(RN) such that
ρ1 + · · ·+ ρi = 1 on B and each ρj has a compact support within some Wm.
Taking into account linearity of integrals and gradients we reduce the claim
for f to the same claim for ρ1f, . . . , ρif . Thus, WLOG, we may assume that
f has a compact support either within RN \K or within some U × V .

If f has a compact support within RN \K then we extend f to K as 0
and get f ∈ C1(RN), ∇sng f = 0,

∫
RN\K ∇f =

∫
RN ∇f = 0 by (13b3).

It remains to consider f that has a compact support within some U × V ,
V = (a, b), such that M ∩ (U × V ) is the graph of some g ∈ C1(U), g : U →
(a, b). On one hand, taking into account that ∇f is integrable,∫

RN\K
〈h,∇f〉 =

∫
U×(a,b)\K

DNf =

=

∫
U

du1 . . . dun

(∫ g(u)

a

+

∫ b

g(u)

)
dt
∂

∂t
f(u1, . . . , un, t) =

=

∫
U

(
f(u, g(u)−)− f(u, g(u)+)

)
du .

On the other hand, using the side indicator

σ(u, t) =

{
−1 for t < g(u),

+1 for t > g(u)
for u ∈ U and t ∈ (a, b) ,

we have for u ∈ U and x = (u, g(u))

nx =
1√

1 + |∇g(u)|2
(
−(D1g)u, . . . ,−(Dng)u, 1

)
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(recall 13b6); thus,

〈h,nx〉 =
1√

1 + |∇g(u)|2
;

f(x− 0nx) = f
(
u, g(u)−

)
, f(x+ 0nx) = f

(
u, g(u)+

)
;

〈h,∇sng f(x)〉 =
f
(
u, g(u)+

)
− f

(
u, g(u)−

)√
1 + |∇g(u)|2

;

and finally, using 12c19,∫
M

〈h,∇sng f〉 =

∫
U

f
(
u, g(u)+

)
− f

(
u, g(u)−

)√
1 + |∇g(u)|2

√
1 + |∇g(u)|2 =

=

∫
U

(
f(u, g(u)+)− f(u, g(u)−)

)
du .

Proof of Theorem 13b9. Every point x0 ∈ M has a neighborhood U such
that1

|〈nx,ny〉| ≥
1

2
for all x, y ∈M ∩ U

(since y 7→ ny is continuous near x). A partition of unity (used similarly to
the proof of 13b12) reduces the claim for f to the same claim for ρf where
ρ ∈ C1(RN) has a compact support either within RN \ K or within some
U . The former case is trivial (as before); consider the latter case: ρ has a
compact support within U . We introduce K̃ = K ∩U , extend ρf to RN \ K̃
as 0 on K \ K̃, and observe that K̃ and ρf satisfy the conditions of Theorem
13b9. Thus (renaming K̃ and ρf into K and f), WLOG,

|〈nx,ny〉| ≥
1

2
for all x, y ∈ K .

We choose x0 ∈ K and note that every h ∈ RN such that |h − nx0| < 1/2
satisfies the condition of Lemma 13b12, since

h ∈ TxM =⇒ 〈h,nx〉 = 0 =⇒ |〈nx0 ,nx〉| = |〈nx0−h,nx〉| <
1

2
=⇒ x /∈ K .

By 13b12, the vector
∫
RN\M ∇f +

∫
M
∇sng f is orthogonal to all these h, and

therefore, equal to zero.

1Any number of (0, 1) may be used instead of 1/2.
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Often f = uv where u, v both satisfy the same conditions (a,b,c) of The-
orem 13b9. Then ∇f = u∇v + v∇u (by the product rule 2b8), thus,

(13b13)

∫
RN\K

u∇v = −
∫
RN\K

v∇u−
∫
M

∇sng(uv) ;

this is a kind of high-dimensional integration by parts. And, of course,

(13b14)

∫
RN

u∇v = −
∫
RN

v∇u

for u, v ∈ C1(RN) such that uv is compactly supported.
Often, a hypersurface M is a boundary ∂G = G \ G of an open set

G ⊂ RN . It may seem that in this case M must be orientable, with two sides
(globally), inner and outer; but this is generally wrong. A manifold M (not
just a hypersurface) is a boundary of some G if and only if M is a closed
set. Here is why. On one hand, ∂G is always closed. On the other hand,
given a closed M , we may take G = RN \M and get ∂G = M (even for the
non-orientable compact M of 12b13). Boundedness of G does not help; if
G = B \M where B ⊃ M is an open ball, then ∂G consists of M and the
sphere ∂B.

In fact, if a hypersurface is a closed set, then it is orientable;1 but even
in this case both sides may be inner for a given G (try G = RN \ M or
G = B \M again).

An open set G ⊂ RN is called regular, if (G)◦ = G; that is, the interior of
the closure of G is equal to G. (Generally it cannot be less than G, but can
be more than G; a simple example: G = R \ {0}.) Equivalently, G is regular
if (and only if) ∂G = ∂(RN \ G); that is, the boundary of the exterior of G
is equal to the boundary of G.

From now on (till the end of 13b), G ⊂ RN is a bounded regular open set,
and ∂G = M ⊂ RN a (necessarily compact) hypersurface (that is, n-manifold
for n = N − 1).

It follows that ∂G is of volume zero; by 8d4(b), G is Jordan measurable.
The function

σ(x) =

{
−1 for x ∈ G,
+1 for x /∈ G

is a side indicator on the whole M . The corresponding outward unit normal
vector nx satisfies

x+ λnx ∈ G for small λ < 0 ,

x+ λnx /∈ G for small λ > 0 .

1See for instance “Orientability of hypersurfaces in Rn” by H. Samelson, Proc. Amer.
Math. Soc. 22:1 (1969) 301–302.
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Let f : G → R be continuous, f |G ∈ C1(G), with ∇f bounded (on G).
Then the function f̃ : RN \M → R defined by

f̃(x) =

{
f(x) for x ∈ G,
0 for x /∈ G

is continuous up to M , and

f̃(x− 0nx) = f(x) , f̃(x+ 0nx) = 0 ;

∇sng f̃(x) = −f(x)nx .

By Theorem 13b9 (applied to f̃ and K = M),

(13b15)

∫
G

∇f =

∫
M

fn .

In particular, for f(·) = 1,

(13b16)

∫
M

n = 0 ;

and for a linear function f : x 7→ 〈h, x〉,

(13b17)

∫
M

〈h, ·〉n = v(G)h for h ∈ RN .

Interestingly, (13b17) for N = 3 is basically Archimedes’ principle: the up-
ward buoyant force that is exerted on a body immersed in a fluid, is equal
to the weight of the fluid that the body displaces.1 Here is why. At a point
(x, y, z) ∈ R2 × (−∞, 0) ⊂ R3, the depth below the surface of water being
(−z), the hydrostatic pressure is ρg(−z), where ρ is the water density, and
g ≈ 9.8 m/s2 is the gravitational acceleration. Infinitesimally, the force per
unit area is ρg(−z)(−n(x,y,z)) = 〈h, (x, y, z)〉n(x,y,z) where h = ρg(0, 0, 1).
The total force is

∫
M
〈h, ·〉n = v(G)h = ρgv(G)(0, 0, 1), the weight of the

mass ρv(G) of the displaced water, directed upwards.

13c Curvilinear iterated integral

Recall several facts.

∗ The iterated integral approach (Sect. 7) decomposes an integral over the
plane into integrals over parallel lines. It also decomposes an integral
over 3-dimensional space into integrals over parallel planes.2

1Wikipedia:Archimedes’ principle.
2Or alternatively, parallel lines. In this course we restrict ourselves to dimension n+ 1;

for dimension n+m see the “Coarea formula” in Encyclopedia of Math.

http://en.wikipedia.org/wiki/Archimedes'_principle
http://www.encyclopediaofmath.org/index.php/Coarea_formula
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∗ The idea of a curvilinear iterated integral was discussed a bit in Remark
7d13.

∗ A 3-dimensional integral decomposes into integrals over spheres, see
12c26(b).

∗ However, a naive attempt to decompose an integral over the plane into
integrals over curves y = f(x)+a fails (see 12c22); a new factor appears,
like Jacobian.

Thus, we want to understand, whether or not a 2-dimensional integral
decomposes into integrals over curves ϕ(·) = const, and what about a new
factor; and what happens in dimension 3 (and more).

13c1 Theorem. Let G ⊂ Rn+1 be an open set, ϕ ∈ C1(G),
∀x ∈ G ∇ϕ(x) 6= 0, and f ∈ C(G) compactly supported. Then for every
c ∈ ϕ(G) the set Mc = {x ∈ G : ϕ(x) = c} is an n-manifold in Rn+1, the
function c 7→

∫
Mc
f on ϕ(G) is continuous and compactly supported, and∫

ϕ(G)

dc

∫
Mc

f =

∫
G

f |∇ϕ| .

13c2 Remark. The open sets G ⊂ Rn+1 and ϕ(G) ⊂ R need not be Jordan
measurable, but still, the integrals are well-defined, since f is supported by
some compact K ⊂ G, and the function c 7→

∫
Mc
f is supported by the

compact ϕ(K) ⊂ ϕ(G).

The new factor |∇ϕ| shows roughly, how many hypersurfaces Mc intersect
an infinitesimal neighborhood of a point.

The set Mc is an n-manifold, just because (G,ϕ(·) − c) is a co-chart of
the whole Mc. But continuity of the function c 7→

∫
Mc
f is a harder matter.

13c3 Remark. A function c 7→ v(Mc) need not be
continuous on ϕ(G). For a counterexample try G =
{(x, y) : y < g(x)} ⊂ R2 and ϕ(x, y) = y.

g

G

13c4 Lemma. The function c 7→
∫
Mc
f on ϕ(G) is continuous.

Proof. If x ∈ G satisfies (DNϕ)x 6= 0, then the mapping h : (x̃1, . . . , x̃N) 7→(
x̃1, . . . , x̃n, ϕ(x̃1, . . . , x̃N)

)
is a local diffeomorphism near x (recall the proof

of the implicit function theorem), and we may take open neighborhoods U of
x, V of (x1, . . . , xn) and W of ϕ(x) such that h is a diffeomorphism between
U and V ×W .

If (DNϕ)x = 0, we just use another coordinate in the same way.
Using a partition of unity (similarly to the proof of 13b12) we see that,

WLOG, f is supported by U such that h : U → V ×W is a diffeomorphism.
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Now, Mc∩U is the graph of the function gc defined by h−1(x1, . . . , xn, c) =(
x1, . . . , xn, gc(x1, . . . , xn)

)
. Using 12c19,∫

Mc

f =

∫
V

f
(
x1, . . . , xn, gc(x1, . . . , xn)

)√
1 + |∇gc(x1, . . . , xn)|2 dx1 . . . dxn .

The integrand is uniformly continuous on the relevant compact set, therefore
the integral is continuous.

13c5 Lemma. ∫
ϕ(G)

dc

∫
Mc

f

|∇ϕ|
∇ϕ =

∫
G

f∇ϕ

for G,ϕ, f and Mc as in Theorem 13c1.

Proof. Let K ⊂ G be a compact set that supports f . Clearly, ϕ is bounded
on K. WLOG, there exists C > 0 such that 0 < ϕ(·) < C on K (since we may
add a large constant to ϕ). WLOG, f ∈ C1(G), since it can be approximated
uniformly by functions of class C1 supported by a small neighborhood of K
(and the volume of the relevant part of Mc is bounded in c).

Given c ∈ (0, C) ∩ ϕ(G), we introduce Gc = {x ∈ G : ϕ(x) > c},
Kc = K ∩Mc (empty, if c /∈ ϕ(K)), and define fc : RN \Kc → R by

fc(x) =

{
f(x) if x ∈ Gc,

0 otherwise

for x ∈ RN \Kc. Clearly, fc is continuously differentiable (on RN \Kc), with
bounded gradient, and

∇fc(x) =

{
∇f(x) if x ∈ Gc,

0 otherwise

for x ∈ RN \Kc.
Using the side indicator

σ(x) =

{
−1 if ϕ(x) < c,

+1 if ϕ(x) > c

and the unit normal vector

nx =
1

|∇ϕ(x)|
∇ϕ(x) ,
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we see that fc is continuous up to Mc,

fc(x− 0nx) = 0 , fc(x+ 0nx) = f(x) ;

∇sng fc(x) = f(x)nx =
f(x)

|∇ϕ(x)|
∇ϕ(x) .

By Theorem 13b9, ∫
RN\Kc

∇fc +

∫
Mc

∇sng fc = 0 ,

that is, ∫
Gc

∇f +

∫
Mc

f

|∇ϕ|
∇ϕ = 0 .

Now we have to integrate it in c. We apply the iterated integral to the
function G × (0, C) → RN , (x, c) 7→ 1lGc(x)∇f(x), integrable since it is
discontinuous only on the set {

(
x, ϕ(x)

)
: x ∈ K} of volume zero; we get∫ C

0

dc

∫
Gc

dx∇f(x) =

∫
G

dx∇f(x)

∫ C

0

1lGc(x)︸ ︷︷ ︸
ϕ(x)

=

∫
G

ϕ∇f .

By (13b14),
∫
G
ϕ∇f = −

∫
G
f∇ϕ. It remains to note that

∫
Gc
∇f = 0 for

c ∈ (0, C) \ ϕ(G), since in this case fc ∈ C1(G).

Proof of Theorem 13c1. Using a partition of unity (similarly to the proof
of 13b12) we see that, WLOG, there exists h ∈ RN such that |h| = 1 and
Dhϕ > 0 on a compact K ⊂ G that supports f . Applying Lemma 13c5 to
the function f |∇ϕ|

〈h,∇ϕ〉 we get∫
ϕ(G)

dc

∫
Mc

f |∇ϕ|
〈h,∇ϕ〉

∇ϕ
|∇ϕ|

=

∫
G

f |∇ϕ|
〈h,∇ϕ〉

∇ϕ .

It remains to take the scalar product by h.

13c6 Exercise. Apply Theorem 13c1 to G = R2, ϕ(x, y) = y − sinx; com-
pare the result with 7b9. Do they agree?

13c7 Exercise. (a) Apply Theorem 13c1 to G = R2 \ {0}, ϕ(x) = |x|;
compare the result with 9b2 (polar coordinates). Do they agree?

(b) The same for spherical coordinates (recall 9b3).
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13c8 Exercise. (a)

∫ ∞
0

dr

∫
|·|=r

f =

∫
|·|>0

f

for all compactly supported f ∈ C(RN \ {0}).
(b) Generalize it (formulate accurately, and prove) for all integrable f on

RN .1

Taking f(x) = 1 for |x| < 1, otherwise 0, and using (10d7), we get∫ 1

0
v(Sr) dr = v(B1) = 2πN/2

NΓ(N/2)
where Sr = {x : |x| = r} is a sphere, and

B1 = {x : |x| < 1} a ball. By 13a14, v(Sr) = rN−1v(S1). Thus, v(B1) =∫ 1

0
rN−1v(S1) dr = 1

N
v(S1);

(13c9) v(S1) =
2πN/2

Γ(N/2)
.

13c10 Exercise. Find the (N − 1)-dimensional volume of the simplex M =
{x ∈ (0,∞)N : x1 + · · ·+ xN = 1} in RN . 2

13c11 Exercise. Integrate the function x 7→ xp11 . . . xpNN over the hypersur-
face S+ = {x ∈ (0,∞)N : |x| = 1} (the positive part of the sphere) in RN for
p1, . . . , pN ∈ (−1,∞). 3

13c12 Exercise. Find

∫
Rn

dx

(1 + |x|2)p
for p ∈

(
n
2
,∞
)
. 4

1Hint: (a) ϕ(x) = |x|; (b) similar to Theorem 7d1.
2Answer:

√
n/(n− 1)!. Hint: similar to (13c9); use 10g1 for p1 = · · · = pn = 1.

3Answer:
Γ(

p1+1
2 )...Γ(

pN+1

2 )

2N−1Γ(
p1+···+pN+N

2 )
. Hint:

∫
(0,∞)N

e−|x|
2

xp11 . . . xpNN dx.

4Answer: πn/2
Γ(p−n

2 )

Γ(p) . Hint: use (10d8). Really, you can do it without manifolds, in

the spirit of 10b7.
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