14 Divergence, flux, Laplacian

14a What is the problem 240
14b Integral of derivative (again) 242
14c Divergence and flux 243
14d Divergence of gradient: Laplacian 245
14e Laplacian at a singular point 247

Divergence and flux are widely used in order to relate volume integrals and surface integrals in a geometrically natural way.

14a What is the problem

The "integral of derivative" (13b3) deserves a generalization. The most straightforward generalization is

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} D f=0 \quad \text { if } f \in C^{1}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right) \text { has a bounded support; } \tag{14a1}
\end{equation*}
$$

but this is boring. Indeed, $(D f)_{x}$ may be thought of as a matrix whose rows are gradients of the coordinate functions $f_{1}, \ldots, f_{m} \in C^{1}\left(\mathbb{R}^{n}\right)$ of f (recall Sect. 2e), and 14a1) is just (13b3) applied rowwise.

Restricting ourselves to the case $m=n$, we may think about $\operatorname{det}(D f)$; definitely an interesting function of $D f$. We cannot expect $\int \operatorname{det}(D f)$ to vanish, since the determinant is a nonlinear function of a matrix. But we know (recall 2e9) that

$$
\begin{equation*}
\operatorname{det}(I+H)=1+\operatorname{tr}(H)+o(H) \tag{14a2}
\end{equation*}
$$

for small H. The trace being a linear function of a matrix, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \operatorname{tr}(D f)=0 \quad \text { if } f \in C^{1}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right) \text { has a bounded support. } \tag{14a3}
\end{equation*}
$$

Now the question is, what is $\operatorname{tr}(D f)$ good for?
Consider a one-parameter family of diffeomorphisms $\varphi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given for $t \in \mathbb{R}$; we assume that the mapping $(x, t) \mapsto \varphi_{t}(x)$ belongs to $C^{2}\left(\mathbb{R}^{n+1} \rightarrow\right.$ \mathbb{R}^{n}), and $\varphi_{0}(x)=x$ for all $x \in \mathbb{R}^{n}$. Then $\left(D \varphi_{0}\right)_{0}=I$ and $\left(D \varphi_{t}\right)_{0}=$ $I+t A+o(t)$ where $A=\left.\frac{d}{d t}\right|_{t=0}\left(D \varphi_{t}\right)_{0}$; thus, $\operatorname{det}\left(D \varphi_{t}\right)_{0}=1+t \operatorname{tr} A+o(t)$ for small t. If $\operatorname{tr} A>0$, then $\operatorname{det}\left(D \varphi_{t}\right)_{0}>1$ for small $t>0$, which means that
$v\left(\varphi_{t}(U)\right)>v(U)$ for a small enough neighborhood U of 0 in \mathbb{R}^{n}. Moreover, $v\left(\varphi_{t}(U)\right) \approx(1+t \operatorname{tr} A) v(U)$.

In mechanics, a flowing matter may be described this way; every point x flows to another point $\varphi_{t}(x)$ during the time interval $(0, t)$. A small drop of the flowing matter inflates if $\operatorname{tr} A>0$ and deflates if $\operatorname{tr} A<0$. The rate of this inflation/deflation is $\operatorname{tr} A$.

The vector $F(x)=\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} \varphi_{t}(x)$ is the velocity of the flow at a point x and the instant 0 . This mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called the velocity field of the flow. We have

$$
A=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(D \varphi_{t}\right)_{0}=\left(D\left(\left.\frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0} \varphi_{t}\right)\right)_{0}=(D F)_{0}
$$

thus, the inflation/deflation rate at the origin is $\operatorname{tr} A=\operatorname{tr}(D F)_{0}$, and similarly, at a point x it is $\operatorname{tr}(D F)_{x}$.

The velocity field is a vector field. The word "field" in "vector field" is not related to the algebraic notion of a field. Rather, it is related to the physical notion of a force field (gravitational, for example), or the velocity field of a moving matter (usually liquid or gas). Mathematically, a vector field formally is just a mapping $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$; less formally, a vector is attached to each point.

A vector field on an affine space is a mapping from this space to its difference space. Note that the determinant is well-defined in a (finite-dimensional) vector space; metric is irrelevant. The same holds for the trace.

14a4 Definition. The divergence of a mapping ("vector field") $F \in C^{1}\left(\mathbb{R}^{n} \rightarrow\right.$ \mathbb{R}^{n}) is the function ("scalar field") div $F \in C\left(\mathbb{R}^{n}\right)$,

$$
\operatorname{div} F=\operatorname{tr}(D F)
$$

That is, for $F(x)=\left(F_{1}(x), \ldots, F_{n}(x)\right)$ we have

$$
\begin{aligned}
\operatorname{div} F & =D_{1} F_{1}+\cdots+D_{n} F_{n}=\left(\nabla F_{1}\right)_{1}+\cdots+\left(\nabla F_{n}\right)_{n} ; \\
\operatorname{div} F\left(x_{1}, \ldots, x_{n}\right) & =\frac{\partial}{\partial x_{1}} F_{1}\left(x_{1}, \ldots, x_{n}\right)+\cdots+\frac{\partial}{\partial x_{n}} F_{n}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Once again: if F is a velocity field, then $\operatorname{div} F$ is the inflation/deflation rate.
For a vector field $F \in C^{1}(V \rightarrow V)$ on an n-dimensional vector space V, still, $\operatorname{div} F=\operatorname{tr}(D F)$; here $(D F)_{x}: V \rightarrow V$.

For a vector field $F \in C^{1}(S \rightarrow \vec{S})$ on an n-dimensional affine space S, also, $\operatorname{div} F=\operatorname{tr}(D F)$; here $(D F)_{x}: \vec{S} \rightarrow \vec{S}$.

Clearly,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \operatorname{div} F=0 \quad \text { if } F \text { has a bounded support. } \tag{14a5}
\end{equation*}
$$

Similarly to the singular gradient (treated in Sect. 13b), we want to introduce singular divergence; and then, similarly to Theorem 13b9, we want to generalize 14a5) to a vector field continuous up to a surface.

14b Integral of derivative (again)

Similarly to Sect. 13b we consider a hypersurface, that is, an n-dimensional manifold M in $\mathbb{R}^{N}, N=n+1$. Similarly to 13 b 5 , for a vector field F : $\mathbb{R}^{N} \backslash \bar{M} \rightarrow \mathbb{R}^{N}$ we define the notion "continuous up to M ". Clearly, $F=$ $\left(F_{1}, \ldots, F_{N}\right)$ is continuous up to M if and only if F_{1}, \ldots, F_{N} are continuous up to M (as defined by 13b5). The one-sided limits F_{-}, F_{+}are now vectorvalued, and the jump $F_{+}\left(x_{0}\right)-F_{-}\left(x_{0}\right)$ is a vector; its sign depends on the side indicator. Recall the unit normal vector $\mathbf{n}_{x} \in \mathbb{R}^{N}$; its sign also depends on the side indicator. Here is a definition similar to 13b7. As before, we denote $F\left(x-0 \mathbf{n}_{x}\right)=F_{-}(x)$ and $F\left(x+0 \mathbf{n}_{x}\right)=F_{+}(x)$.
14b1 Definition. The singular divergence ${ }^{1} \operatorname{div}_{\mathrm{sng}} F(x)$ at $x \in M$ of a mapping $F: \mathbb{R}^{N} \backslash \bar{M} \rightarrow \mathbb{R}^{N}$ continuous up to M is the number

$$
\operatorname{div}_{\text {sng }} F(x)=\left\langle F\left(x+0 \mathbf{n}_{x}\right)-F\left(x-0 \mathbf{n}_{x}\right), \mathbf{n}_{x}\right\rangle .
$$

As before, the singular divergence does not depend on the side indicator (and \mathbf{n}_{x}). It is a continuous function $\operatorname{div}_{\text {sng }} F: M \rightarrow \mathbb{R}$.

Less formally, the singular divergence is the jump of the normal component of the vector field.

Here is the singular counterpart of the formula

$$
\operatorname{div} F=\sum_{k}\left(\nabla F_{k}\right)_{k}
$$

14b2 Lemma.

$$
\operatorname{div}_{\mathrm{sng}} F=\sum_{k=1}^{N}\left(\nabla_{\mathrm{sng}} F_{k}\right)_{k}
$$

Proof.

$$
\begin{aligned}
& \sum_{k}\left(\nabla_{\text {sng }} F_{k}(x)\right)_{k}=\sum_{k}\left(\left(F_{k}\left(x+0 \mathbf{n}_{x}\right)-F_{k}\left(x-0 \mathbf{n}_{x}\right)\right) \mathbf{n}_{x}\right)_{k}= \\
& =\sum_{k}\left(F\left(x+0 \mathbf{n}_{x}\right)-F\left(x-0 \mathbf{n}_{x}\right)\right)_{k}\left(\mathbf{n}_{x}\right)_{k}= \\
& \quad=\left\langle F\left(x+0 \mathbf{n}_{x}\right)-F\left(x-0 \mathbf{n}_{x}\right), \mathbf{n}_{x}\right\rangle=\operatorname{div}_{\text {sng }} F(x)
\end{aligned}
$$

[^0]A theorem, similar to 13b9, follows easily.
14b3 Theorem. Let $M \subset \mathbb{R}^{n+1}$ be an n-manifold, $K \subset M$ a compact subset, and $F: \mathbb{R}^{n+1} \backslash K \rightarrow \mathbb{R}^{n+1}$ a mapping such that
(a) F is continuously differentiable (on $\mathbb{R}^{n+1} \backslash K$);
(b) $\left.F\right|_{\mathbb{R}^{n+1} \backslash \bar{M}}$ is continuous up to M;
(c) F has a bounded support, and $D F$ is bounded (on $\mathbb{R}^{n+1} \backslash K$).

Then

$$
\int_{\mathbb{R}^{n+1} \backslash K} \operatorname{div} F+\int_{M} \operatorname{div}_{\text {sng }} f=0 .
$$

Proof. We have $F(x)=\left(F_{1}(x), \ldots, F_{N}(x)\right)$, and Theorem 13 b 9 applies to each F_{k}, giving

$$
\int_{\mathbb{R}^{n+1} \backslash K} \nabla F_{k}+\int_{M} \nabla_{\text {sng }} F_{k}=0 .
$$

It remains to take the k-th coordinate, and sum up over k.

14c Divergence and flux

We return to the case treated before, in the end of Sect. $13 \mathrm{~b}: G \subset \mathbb{R}^{N}$ is a bounded regular open set, and $\partial G \subset \mathbb{R}^{N}$ a (necessarily compact) hypersurface (that is, n-manifold for $n=N-1$). Recall the outward unit normal vector \mathbf{n}_{x} for $x \in \partial G$.
14c1 Definition. For a continuous $F: \partial G \rightarrow \mathbb{R}^{n}$, the (outward) flux of (the vector field) F through ∂G is

$$
\int_{\partial G}\langle F, \mathbf{n}\rangle .
$$

(The integral is interpreted according to (13a8).)
If a vector field F on \mathbb{R}^{3} is the velocity field of a fluid, then the flux of F through a surface is the amount ${ }^{1}$ of fluid flowing through the surface (per unit time). ${ }^{2}$ If the fluid is flowing parallel to the surface then, evidently, the flux is zero.

We continue similarly to Sect. 13b. Let $F: \bar{G} \rightarrow \mathbb{R}^{N}$ be continuous, $\left.F\right|_{G} \in C^{1}\left(G \rightarrow \mathbb{R}^{N}\right)$, with $D F$ bounded (on G). Then the mapping \tilde{F} : $\mathbb{R}^{N} \backslash \partial G \rightarrow \mathbb{R}^{N}$ defined by

$$
\tilde{F}(x)= \begin{cases}F(x) & \text { for } x \in G \\ 0 & \text { for } x \notin \bar{G}\end{cases}
$$

[^1]is continuous up to ∂G, and
\[

$$
\begin{gathered}
\tilde{F}\left(x-0 \mathbf{n}_{x}\right)=F(x), \quad \tilde{F}\left(x+0 \mathbf{n}_{x}\right)=0 ; \\
\operatorname{div} \text { sng } \\
\tilde{F}(x)=-\left\langle F(x), \mathbf{n}_{x}\right\rangle .
\end{gathered}
$$
\]

By Theorem 14 b 3 (applied to \tilde{F} and $K=\partial G$),

$$
\begin{equation*}
\int_{G} \operatorname{div} F=\int_{\partial G}\langle F, \mathbf{n}\rangle, \tag{14c2}
\end{equation*}
$$

just the flux. The divergence theorem, formulated below, is thus proved. ${ }^{1}$
14c3 Theorem (Divergence theorem). Let $G \subset \mathbb{R}^{n+1}$ be a bounded regular open set, ∂G an n-manifold, $F: \bar{G} \rightarrow \mathbb{R}^{n+1}$ continuous, $\left.F\right|_{G} \in C^{1}(G \rightarrow$ \mathbb{R}^{n+1}), with $D F$ bounded on G.

Then the integral of $\operatorname{div} F$ over G is equal to the (outward) flux of F through ∂G.

In particular, if $\operatorname{div} F=0$, then $\int_{\partial G}\langle F, \mathbf{n}\rangle=0$.
14c4 Exercise. (a) For every $f \in C^{1}(G)$, boundedness of ∇f on G ensures that f extends to \bar{G} by continuity (and therefore is bounded).
(b) For every $F \in C^{1}\left(G \rightarrow \mathbb{R}^{n+1}\right)$, boundedness of $D F$ on G ensures that F extends to \bar{G} by continuity (and therefore is bounded).
Prove it. ${ }^{2}$
In such cases we'll always mean this extension.
14c5 Exercise. $\operatorname{div}(f F)=f \operatorname{div} F+\langle\nabla f, F\rangle$ whenever $f \in C^{1}(G)$ and $F \in C^{1}\left(G \rightarrow \mathbb{R}^{N}\right)$

Prove it.
Thus, the divergence theorem, applied to $f F$ when $f \in C^{1}(G)$ with bounded ∇f, and $F \in C^{1}\left(G \rightarrow \mathbb{R}^{N}\right)$ with bounded $D F$, gives a kind of integration by parts, similar to (13b13):

$$
\begin{equation*}
\int_{G}\langle\nabla f, F\rangle=\int_{\partial G} f\langle F, \mathbf{n}\rangle-\int_{G} f \operatorname{div} F . \tag{14c6}
\end{equation*}
$$

In particular, if $\operatorname{div} F=0$, then $\int_{G}\langle\nabla f, F\rangle=\int_{\partial G} f\langle F, \mathbf{n}\rangle$

[^2]
14d Divergence of gradient: Laplacian

Some (but not all) vector fields are gradients of scalar fields.
14d1 Definition. (a) The Laplacian Δf of a function $f \in C^{2}(G)$ on an open set $G \subset \mathbb{R}^{n}$ is

$$
\Delta f=\operatorname{div} \nabla f
$$

(b) f is harmonic, if $\Delta f=0$.

We have $\nabla f=\left(D_{1} f, \ldots, D_{n} f\right)$, thus, $\operatorname{div} \nabla f=D_{1}\left(D_{1} f\right)+\cdots+D_{n}\left(D_{n} f\right) ;$ in this sense,

$$
\Delta=D_{1}^{2}+\cdots+D_{n}^{2}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}
$$

the so-called Laplace operator, or Laplacian.
Any n-dimensional Euclidean affine space may be used instead of \mathbb{R}^{n}. Indeed, the gradient is well-defined in such space, and the divergence is welldefined even without Euclidean metric.

The divergence theorem 14 c 3 gives the so-called first Green formula

$$
\begin{equation*}
\int_{G} \Delta f=\int_{\partial G}\langle\nabla f, \mathbf{n}\rangle=\int_{\partial G} D_{\mathbf{n}} f \tag{14d2}
\end{equation*}
$$

where $\left(D_{\mathbf{n}} f\right)(x)=\left(D_{\mathbf{n}_{x}} f\right)_{x}$ is the directional derivative of f at x in the normal direction \mathbf{n}_{x}. Here $f \in C^{2}(G)$, with bounded second derivatives.

Here is another instance of integration by parts. Let $u \in C^{1}(G)$, with bounded gradient, and $v \in C^{2}(G)$, with bounded second derivatives. Applying 14c6) to $f=u$ and $F=\nabla v$ we get $\int_{G}\langle\nabla u, \nabla v\rangle=\int_{\partial G} u\langle\nabla v, \mathbf{n}\rangle-\int_{G} u \Delta v$, that is,

$$
\begin{equation*}
\int_{G}(u \Delta v+\langle\nabla u, \nabla v\rangle)=\int_{\partial G}\langle u \nabla v, \mathbf{n}\rangle=\int_{\partial G} u D_{\mathbf{n}} v \tag{14d3}
\end{equation*}
$$

the second Green formula. It follows that

$$
\begin{equation*}
\int_{G}(u \Delta v-v \Delta u)=\int_{\partial G}\left(u D_{\mathbf{n}} v-v D_{\mathbf{n}} u\right), \tag{14d4}
\end{equation*}
$$

the third Green formula; here $u, v \in C^{2}(G)$, with bounded second derivatives. In particular,

$$
\int_{\partial G} u D_{\mathbf{n}} v=\int_{\partial G} v D_{\mathbf{n}} u \text { for harmonic } u, v .
$$

Rewriting (14d4) as

$$
\begin{equation*}
\int_{G} u \Delta v=\int_{G} v \Delta u-\int_{\partial G} v D_{\mathbf{n}} u+\int_{\partial G}\left(D_{\mathbf{n}} v\right) u \tag{14d5}
\end{equation*}
$$

we may say that really $\int\left(u \mathbb{1}_{G}\right) \Delta v=\int v \Delta\left(u \mathbb{1}_{G}\right)$ where $\Delta\left(u \mathbb{1}_{G}\right)$ consists of the usual Laplacian $(\Delta u) \mathbb{1}_{G}$ sitting on G and the singular Laplacian sitting on ∂G, of two terms, so-called single layer $\left(-D_{\mathbf{n}} u\right)$ and double layer $u D_{\mathbf{n}}$. Why two layers? Because the Laplacian (unlike gradient and divergence) involves second derivatives.
14d6 Exercise. Consider homogeneous polynomials on \mathbb{R}^{2} :

$$
f(x, y)=\sum_{k=0}^{m} c_{k} x^{k} y^{m-k}
$$

For $m=1,2$ and 3 find all harmonic functions among these polynomials. ${ }^{1}$
14d7 Exercise. On \mathbb{R}^{2},
(a) a function of the form

$$
f(x, y)=\sum_{k=1}^{m} c_{k} \mathrm{e}^{a_{k} x+b_{k} y} \quad\left(a_{k}, b_{k}, c_{k} \in \mathbb{R}\right)
$$

is harmonic only if it is constant;
(b) a function of the form

$$
f(x, y)=\mathrm{e}^{a x} \cos b y
$$

is harmonic if and only if $|a|=|b| .^{2}$
Prove it.
14d8 Exercise. Consider $f: \mathbb{R}^{N} \backslash\{0\} \rightarrow \mathbb{R}$ of the form $f(x)=g(|x|)$ for a given $g \in C^{2}(0, \infty)$. Prove that ${ }^{3}$
(a) $f \in C^{2}\left(\mathbb{R}^{N} \backslash\{0\}\right)$;
(b) $f(r+\varepsilon, \delta, 0, \ldots, 0)=g(r)+g^{\prime}(r) \varepsilon+\frac{1}{2}\left(g^{\prime \prime}(r) \varepsilon^{2}+\frac{1}{r} g^{\prime}(r) \delta^{2}\right)+o\left(\varepsilon^{2}+\delta^{2}\right)$;
(c) $\Delta f(x)=g^{\prime \prime}(|x|)+\frac{N-1}{|x|} g^{\prime}(|x|)$.

Thus, f is harmonic if and only if $g^{\prime \prime}(r)+\frac{N-1}{r} g^{\prime}(r)=0$ for all r; that is: $\left(\log g^{\prime}(r)\right)^{\prime}=-\frac{N-1}{r}=-(N-1)(\log r)^{\prime} ; \log g^{\prime}(r)=-(N-1) \log r+$ const; $g^{\prime}(r)=$ const $\cdot r^{-(N-1)} ; g(r)=$ const $_{1} \cdot r^{-(N-2)}+$ const $_{2}$;

$$
f(x)= \begin{cases}\frac{c_{1}}{|x|^{N-2}}+c_{2} & \text { if } N \neq 2 \tag{14d9}\\ c_{1} \log |x|+c_{2} & \text { if } N=2\end{cases}
$$

[^3]
14e Laplacian at a singular point

The function $g(x)=1 /|x|^{N-2}$ is harmonic on $\mathbb{R}^{N} \backslash\{0\}$, thus, for every $f \in C^{2}$ compactly supported within $\mathbb{R}^{N} \backslash\{0\}$,

$$
\int g \Delta f=\int f \Delta g=0
$$

It appears that for $f \in C^{2}\left(\mathbb{R}^{N}\right)$ with a compact support,

$$
\int g \Delta f=\text { const } \cdot f(0)
$$

in this sense g has a kind of singular Laplacian at the origin.

14e1 Lemma.

$$
\int_{\mathbb{R}^{N}} \frac{\Delta f(x)}{|x|^{N-2}} \mathrm{~d} x=-(N-2) \frac{2 \pi^{N / 2}}{\Gamma(N / 2)} f(0)
$$

for every $N>2$ and $f \in C^{2}\left(\mathbb{R}^{N}\right)$ with a compact support.
This improper integral converges, since $1 /|x|^{N-2}$ is improperly integrable near 0 (recall $10 \mathrm{~b} 7(\mathrm{c})$). The coefficient $\frac{2 \pi^{N / 2}}{\Gamma(N / 2)}$ is the $(N-1)$-dimensional volume of the unit sphere (recall (13c9)).
Proof. For arbitrary $\varepsilon>0$ we consider the function $g_{\varepsilon}(x)=1 /(\max (|x|, \varepsilon))^{N-2}$, and $g(x)=1 /|x|^{N-2}$. Clearly, $\int\left|g_{\varepsilon}-g\right| \rightarrow 0($ as $\varepsilon \rightarrow 0)$, and $\int\left|g_{\varepsilon}-g\right||\Delta f| \rightarrow$ 0 , thus, $\int g_{\varepsilon} \Delta f \rightarrow \int g \Delta f$. We take $R \in(0, \infty)$ such that $f(x)=0$ for $|x| \geq$ R, introduce regular open sets $G_{1}=\{x:|x|<\varepsilon\}, G_{2}=\{x: \varepsilon<|x|<R\}$, and apply (14d4), taking into account that $\Delta g_{\varepsilon}=0$ on G_{1} and G_{2} :

$$
\int g_{\varepsilon} \Delta f=\left(\int_{G_{1}}+\int_{G_{2}}\right) g_{\varepsilon} \Delta f=\left(\int_{\partial G_{1}}+\int_{\partial G_{2}}\right)\left(g_{\varepsilon} D_{\mathbf{n}} f-f D_{\mathbf{n}} g_{\varepsilon}\right)
$$

however, these $D_{\mathbf{n}}$ must be interpreted differently under $\int_{\partial G_{1}}$ and $\int_{\partial G_{2}}$:

$$
\begin{aligned}
& \int_{\partial G_{1}} g_{\varepsilon} D_{\mathbf{n}_{1}} f=\int_{|x|=\varepsilon} \frac{1}{\varepsilon^{N-2}} D_{\mathbf{n}} f, \\
& \int_{\partial G_{2}} g_{\varepsilon} D_{\mathbf{n}_{2}} f=\int_{|x|=\varepsilon} \frac{1}{\varepsilon^{N-2}} D_{-\mathbf{n}} f
\end{aligned}
$$

where \mathbf{n} is the outward normal of G_{1} and inward normal of G_{2}; these two summands cancel each other. Further, $\int_{\partial G_{1}} f D_{\mathbf{n}_{1}} g_{\varepsilon}=\int_{|x|=\varepsilon} f \cdot 0=0$ since g_{ε} is constant on G_{1}; and

$$
\int_{\partial G_{2}} f D_{\mathbf{n}_{2}} g_{\varepsilon}=\int_{|x|=\varepsilon} f \cdot \frac{N-2}{\varepsilon^{N-1}},
$$

since $g_{\varepsilon}(x)=1 /|x|^{N-2}$ on G_{2}, and $f(x)=0$ when $|x|=R$. Finally,

$$
\int g_{\varepsilon} \Delta f=-(N-2) \frac{1}{\varepsilon^{N-1}} \int_{|x|=\varepsilon} f=-(N-2) \frac{2 \pi^{N / 2}}{\Gamma(N / 2)} f_{\varepsilon}
$$

where f_{ε} is the mean value of f on the ε-sphere. By continuity, $f_{\varepsilon} \rightarrow f(0)$ as $\varepsilon \rightarrow 0$; and, as we know, $\int g_{\varepsilon} \Delta f \rightarrow \int g \Delta f$.

14e2 Remark. For $N=2$ the situation is similar:

$$
\int_{\mathbb{R}^{2}} \Delta f(x) \log |x| \mathrm{d} x=2 \pi f(0)
$$

for every compactly supported $f \in C^{2}\left(\mathbb{R}^{2}\right)$.
When the boundary consists of a hypersurface and an isolated point, we get a combination of 14d5) and 14e1: a singular point and two layers.

14e3 Remark. Let $G \subset \mathbb{R}^{N}$ be a bounded regular open set, ∂G an n-manifold, $f \in C^{2}(G)$ with bounded second derivatives, and $0 \in G$. Then

$$
\begin{aligned}
\int_{G} \frac{\Delta f(x)}{|x|^{N-2}} \mathrm{~d} x & =-(N-2) \frac{2 \pi^{N / 2}}{\Gamma(N / 2)} f(0)- \\
& -\int_{\partial G}\left(x \mapsto f(x) D_{\mathbf{n}} \frac{1}{|x|^{N-2}}\right)+\int_{\partial G}\left(x \mapsto\left(D_{\mathbf{n}} f(x)\right) \frac{1}{|x|^{N-2}}\right)
\end{aligned}
$$

The proof is very close to that of 14 e 1 . The case $N=2$ is similar to 14 e 2 , of course.

The case $G=\{x:|x|<R\}$ is especially interesting. Here $\partial G=\{x$: $|x|=R\} ;$ on ∂G,

$$
\frac{1}{|x|^{N-2}}=\frac{1}{R^{N-2}} \quad \text { and } \quad D_{\mathbf{n}_{x}} \frac{1}{|x|^{N-2}}=-\frac{N-2}{R^{N-1}}
$$

thus,
$\int_{|x|<R} \frac{\Delta f(x)}{|x|^{N-2}} \mathrm{~d} x=-(N-2) \frac{2 \pi^{N / 2}}{\Gamma(N / 2)} f(0)+\frac{N-2}{R^{N-1}} \int_{|\cdot|=R} f+\frac{1}{R^{N-2}} \int_{|\cdot|=R} D_{\mathbf{n}} f$.
Taking into account that $\int_{|\cdot|=R} D_{\mathbf{n}} f=\int_{|\cdot|<R} \Delta f$ by (14d2) we get

$$
(N-2) \frac{2 \pi^{N / 2}}{\Gamma(N / 2)} f(0)=-\int_{|x|<R}\left(\frac{1}{|x|^{N-2}}-\frac{1}{R^{N-2}}\right) \Delta f(x) \mathrm{d} x+\frac{N-2}{R^{N-1}} \int_{|\cdot|=R} f
$$

for $N>2$; and similarly,

$$
2 \pi f(0)=-\int_{|x|<R}(\log R-\log |x|) \Delta f(x) \mathrm{d} x+\frac{1}{R} \int_{|\cdot|=R} f
$$

for $N=2$. In particular, for a harmonic f,

$$
f(0)=\frac{\Gamma(N / 2)}{2 \pi^{N / 2}} \frac{1}{R^{N-1}} \int_{|\cdot|=R} f=\frac{\int_{|\cdot|=R} f}{\int_{|\cdot|=R} 1}
$$

for $N \geq 2$; the following result is thus proved (and holds also for $N=1$, trivially).

14e4 Proposition (Mean value property). For every harmonic function on a ball, with bounded second derivatives, its value at the center of the ball is equal to its mean value on the boundary of the ball. ${ }^{1}$

14 e 5 Remark. Now it is easy to understand why harmonic functions occur in physics ("the stationary heat equation"). Consider a homogeneous material solid body (in three dimensions). Fix the temperature on its boundary, and let the heat flow until a stationary state is reached. Then the temperature in the interior is a harmonic function (with the given boundary conditions).

14e6 Remark. Can the mean value property be generalized to a nonspherical boundary? We leave this question to more special courses (PDE, potential theory). But here is the idea. In 14 e 3 we may replace $\int_{G} \frac{\Delta f(x)}{|x|^{N-2}} \mathrm{~d} x$ with $\int_{G}\left(\frac{1}{|x|^{N-2}}+g(x)\right) \Delta f(x) \mathrm{d} x$ where g is a harmonic function satisfying $\frac{1}{|x|^{N-2}}+g(x)=0$ for all $x \in \partial G$ (if we are lucky to have such g). Then the double layer $\int_{\partial G}\left(D_{\mathbf{n}} v\right) u$ in 14d5), and the corresponding term in 14e3, disappears, and we get

$$
(N-2) \frac{2 \pi^{N / 2}}{\Gamma(N / 2)} f(0)=\int_{\partial G}\left(x \mapsto f(x) D_{\mathbf{n}}\left(\frac{1}{|x|^{N-2}}+g(x)\right)\right) .
$$

14e7 Exercise (Maximum principle for harmonic functions).
Let u be a harmonic function on a connected open set $G \subset \mathbb{R}^{N}$. If $\sup _{x \in G} u(x)=$ $u\left(x_{0}\right)$ for some $x_{0} \in G$ then u is constant.

Prove it. ${ }^{2}$

[^4]It appears that
(14e8) $\Delta f(x)=2 N \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}}(($ mean of f on $\{y:|y-x|=\varepsilon\})-f(x))$.
14e9 Exercise. (a) Prove that, for $N>2$,

$$
\frac{1}{R^{2}} \int_{|x|<R}\left(\frac{1}{|x|^{N-2}}-\frac{1}{R^{N-2}}\right) \mathrm{d} x \quad \text { does not depend on } R ;
$$

and for $N=2, \frac{1}{R^{2}} \int_{|x|<R}(\log R-\log |x|) \mathrm{d} x$ does not depend on R. (No need to calculate these integrals.) ${ }^{1}$
(b) For f of class C^{2} near the origin, prove that the mean value of f on $\{x:|x|=\varepsilon\}$ is $f(0)+c_{N} \varepsilon^{2} \Delta f(0)+o\left(\varepsilon^{2}\right)$ as $\varepsilon \rightarrow 0$, for some $c_{2}, c_{3}, \cdots \in \mathbb{R}$ (not dependent on f).
(c) Applying (b) to $f(x)=|x|^{2}$, find c_{2}, c_{3}, \ldots and prove 14 e 8).

14e10 Exercise. (a) For every f integrable (properly) on $\{x:|x|<R\}$,

$$
\frac{\int_{|\cdot|<R} f}{\int_{|\cdot|<R} 1}=\int_{0}^{R} \frac{\int_{|\cdot|=r} f}{\int_{|\cdot|=r} 1} \frac{\mathrm{~d} r^{N}}{R^{N}} .
$$

(b) For every bounded harmonic function on a ball, its value at the center of the ball is equal to its mean value on the ball.

Prove it. ${ }^{2}$
14e11 Proposition. (Liouville's theorem for harmonic functions)
Every harmonic function $\mathbb{R}^{N} \rightarrow[0, \infty)$ is constant.
Proof. (Nelson's short proof)
For arbitrary $x, y \in \mathbb{R}^{N}$ and $R>0$ we have

$$
\begin{aligned}
f(x)= & \frac{\int_{|z-x|<R} f(z) \mathrm{d} z}{\int_{|z-x|<R} \mathrm{~d} z} \leq \frac{\int_{|z-y|<R+|x-y|} f(z) \mathrm{d} z}{\int_{|z-x|<R} \mathrm{~d} z}= \\
& =\left(\frac{R+|x-y|}{R}\right)^{N} \frac{\int_{|z-y|<R+|x-y|} f(z) \mathrm{d} z}{\int_{|z-y|<R+|x-y|} \mathrm{d} z}=\left(\frac{R+|x-y|}{R}\right)^{N} f(y),
\end{aligned}
$$

since the R-neighborhood of x is contained in the $(R+|x-y|)$-neighborhood of y. In the limit $R \rightarrow \infty$ we get $f(x) \leq f(y)$; similarly, $f(y) \leq f(x)$.

[^5]
Index

divergence, 241
divergence theorem, 244
flux, 243
Green formula
first, 245
second, 245
third, 245
harmonic, 245
heat, 249
Laplacian, 245
layer, 246
Liouville's theorem, 250
maximum principle, 249
mean value property, 249
singular divergence, 242
trace, 240
vector field, 241
velocity field, 241
$\Delta, 245$
div, 241
$\operatorname{div}_{\text {sng }}, 242$
tr, 240

[^0]: ${ }^{1}$ Not a standard terminology.

[^1]: ${ }^{1}$ The volume is meant, not the mass. However, these are proportional if the density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ of the matter is constant (which often holds for fluids).
 ${ }^{2}$ See also mathinsight.

[^2]: ${ }^{1}$ Divergence is often explained in terms of sources and sinks (of a moving matter). But be careful; the flux of a velocity field is the amount (per unit time) as long as "amount" means "volume". If by "amount" you mean "mass", then you need the vector field of momentum, not velocity; multiply the velocity by the density of the matter. However, the problem disappears if the density is constant (which often holds for fluids).
 ${ }^{2}$ Hint: recall the proof of 13 b 4 .

[^3]: ${ }^{1}$ In fact, they are $\operatorname{Re}(x+\mathrm{i} y)^{m}, \operatorname{Im}(x+\mathrm{i} y)^{m}$ and their linear combinations.
 ${ }^{2}$ That is, $f(x, y)=\operatorname{Re}\left(\mathrm{e}^{x+\mathrm{i} y}\right)$.
 ${ }^{3}$ Hint: (a,b) $|x|=\sqrt{|x|^{2}}$; (c) rotation invariance.

[^4]: ${ }^{1}$ In fact, the mean value property is also sufficient for harmonicity, even if differentiability is not assumed.
 ${ }^{2}$ Hint: the set $\left\{x_{0}: u\left(x_{0}\right)=\sup _{x \in G} u(x)\right\}$ is both open and closed in G.

[^5]: ${ }^{1}$ Hint: change of variable.
 ${ }^{2}$ Hint: (a) recall 13c8.

