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Divergence and flux are widely used in order to relate volume integrals
and surface integrals in a geometrically natural way.

14a What is the problem

The “integral of derivative” (13b3) deserves a generalization. The most
straightforward generalization is

(14a1)

∫
Rn

Df = 0 if f ∈ C1(Rn → Rm) has a bounded support;

but this is boring. Indeed, (Df)x may be thought of as a matrix whose rows
are gradients of the coordinate functions f1, . . . , fm ∈ C1(Rn) of f (recall
Sect. 2e), and (14a1) is just (13b3) applied rowwise.

Restricting ourselves to the case m = n, we may think about det(Df);
definitely an interesting function of Df . We cannot expect

∫
det(Df) to

vanish, since the determinant is a nonlinear function of a matrix. But we
know (recall 2e9) that

(14a2) det(I +H) = 1 + tr(H) + o(H)

for small H. The trace being a linear function of a matrix, we have

(14a3)

∫
Rn

tr(Df) = 0 if f ∈ C1(Rn → Rn) has a bounded support.

Now the question is, what is tr(Df) good for?
Consider a one-parameter family of diffeomorphisms ϕt : Rn → Rn given

for t ∈ R; we assume that the mapping (x, t) 7→ ϕt(x) belongs to C2(Rn+1 →
Rn), and ϕ0(x) = x for all x ∈ Rn. Then (Dϕ0)0 = I and (Dϕt)0 =
I + tA+ o(t) where A = d

dt

∣∣
t=0

(Dϕt)0; thus, det(Dϕt)0 = 1 + t trA+ o(t) for
small t. If trA > 0, then det(Dϕt)0 > 1 for small t > 0, which means that
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v
(
ϕt(U)

)
> v(U) for a small enough neighborhood U of 0 in Rn. Moreover,

v
(
ϕt(U)

)
≈ (1 + t trA)v(U).

In mechanics, a flowing matter may be described this way; every point x
flows to another point ϕt(x) during the time interval (0, t). A small drop of
the flowing matter inflates if trA > 0 and deflates if trA < 0. The rate of
this inflation/deflation is trA.

The vector F (x) = d
dt

∣∣
t=0
ϕt(x) is the velocity of the flow at a point x and

the instant 0. This mapping F : Rn → Rn is called the velocity field of the
flow. We have

A =
d

dt

∣∣∣
t=0

(Dϕt)0 =
(
D
( d

dt

∣∣∣
t=0
ϕt

))
0

= (DF )0 ,

thus, the inflation/deflation rate at the origin is trA = tr(DF )0, and simi-
larly, at a point x it is tr(DF )x.

The velocity field is a vector field. The word “field” in “vector field” is
not related to the algebraic notion of a field. Rather, it is related to the
physical notion of a force field (gravitational, for example), or the velocity
field of a moving matter (usually liquid or gas). Mathematically, a vector
field formally is just a mapping Rn → Rn; less formally, a vector is attached
to each point.

A vector field on an affine space is a mapping from this space to its differ-
ence space. Note that the determinant is well-defined in a (finite-dimensional)
vector space; metric is irrelevant. The same holds for the trace.

14a4 Definition. The divergence of a mapping (“vector field”) F ∈ C1(Rn →
Rn) is the function (“scalar field”) divF ∈ C(Rn),

divF = tr(DF ) .

That is, for F (x) =
(
F1(x), . . . , Fn(x)

)
we have

divF = D1F1 + · · ·+DnFn = (∇F1)1 + · · ·+ (∇Fn)n ;

divF (x1, . . . , xn) =
∂

∂x1

F1(x1, . . . , xn) + · · ·+ ∂

∂xn
Fn(x1, . . . , xn) .

Once again: if F is a velocity field, then divF is the inflation/deflation rate.
For a vector field F ∈ C1(V → V ) on an n-dimensional vector space V ,

still, divF = tr(DF ); here (DF )x : V → V .

For a vector field F ∈ C1(S → ~S) on an n-dimensional affine space S,

also, divF = tr(DF ); here (DF )x : ~S → ~S.
Clearly,

(14a5)

∫
Rn

divF = 0 if F has a bounded support.
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Similarly to the singular gradient (treated in Sect. 13b), we want to intro-
duce singular divergence; and then, similarly to Theorem 13b9, we want to
generalize (14a5) to a vector field continuous up to a surface.

14b Integral of derivative (again)

Similarly to Sect. 13b we consider a hypersurface, that is, an n-dimensional
manifold M in RN , N = n + 1. Similarly to 13b5, for a vector field F :
RN \M → RN we define the notion “continuous up to M”. Clearly, F =
(F1, . . . , FN) is continuous up to M if and only if F1, . . . , FN are continuous
up to M (as defined by 13b5). The one-sided limits F−, F+ are now vector-
valued, and the jump F+(x0) − F−(x0) is a vector; its sign depends on the
side indicator. Recall the unit normal vector nx ∈ RN ; its sign also depends
on the side indicator. Here is a definition similar to 13b7. As before, we
denote F (x− 0nx) = F−(x) and F (x+ 0nx) = F+(x).

14b1 Definition. The singular divergence1 divsng F (x) at x ∈M of a map-
ping F : RN \M → RN continuous up to M is the number

divsng F (x) = 〈F (x+ 0nx)− F (x− 0nx),nx〉 .

As before, the singular divergence does not depend on the side indicator
(and nx). It is a continuous function divsng F : M → R.

Less formally, the singular divergence is the jump of the normal compo-
nent of the vector field.

Here is the singular counterpart of the formula

divF =
∑
k

(∇Fk)k .

14b2 Lemma.

divsng F =
N∑
k=1

(
∇sng Fk)k .

Proof.∑
k

(
∇sng Fk(x))k =

∑
k

((
Fk(x+ 0nx)− Fk(x− 0nx)

)
nx
)
k =

=
∑
k

(
F (x+ 0nx)− F (x− 0nx)

)
k(nx)k =

= 〈F (x+ 0nx)− F (x− 0nx),nx〉 = divsng F (x) .

1Not a standard terminology.
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A theorem, similar to 13b9, follows easily.

14b3 Theorem. Let M ⊂ Rn+1 be an n-manifold, K ⊂ M a compact
subset, and F : Rn+1 \K → Rn+1 a mapping such that

(a) F is continuously differentiable (on Rn+1 \K);
(b) F |Rn+1\M is continuous up to M ;

(c) F has a bounded support, and DF is bounded (on Rn+1 \K).
Then ∫

Rn+1\K
divF +

∫
M

divsng f = 0 .

Proof. We have F (x) =
(
F1(x), . . . , FN(x)

)
, and Theorem 13b9 applies to

each Fk, giving ∫
Rn+1\K

∇Fk +

∫
M

∇sng Fk = 0 .

It remains to take the k-th coordinate, and sum up over k.

14c Divergence and flux

We return to the case treated before, in the end of Sect. 13b: G ⊂ RN is a
bounded regular open set, and ∂G ⊂ RN a (necessarily compact) hypersur-
face (that is, n-manifold for n = N − 1). Recall the outward unit normal
vector nx for x ∈ ∂G.

14c1 Definition. For a continuous F : ∂G→ Rn, the (outward) flux of (the
vector field) F through ∂G is ∫

∂G

〈F,n〉 .

(The integral is interpreted according to (13a8).)
If a vector field F on R3 is the velocity field of a fluid, then the flux of

F through a surface is the amount1 of fluid flowing through the surface (per
unit time).2 If the fluid is flowing parallel to the surface then, evidently, the
flux is zero.

We continue similarly to Sect. 13b. Let F : G → RN be continuous,
F |G ∈ C1(G → RN), with DF bounded (on G). Then the mapping F̃ :
RN \ ∂G→ RN defined by

F̃ (x) =

{
F (x) for x ∈ G,
0 for x /∈ G

1The volume is meant, not the mass. However, these are proportional if the density
(kg/m3) of the matter is constant (which often holds for fluids).

2See also mathinsight.

http://mathinsight.org/surface_integral_vector_field_introduction
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is continuous up to ∂G, and

F̃ (x− 0nx) = F (x) , F̃ (x+ 0nx) = 0 ;

divsng F̃ (x) = −〈F (x),nx〉 .

By Theorem 14b3 (applied to F̃ and K = ∂G),

(14c2)

∫
G

divF =

∫
∂G

〈F,n〉 ,

just the flux. The divergence theorem, formulated below, is thus proved.1

14c3 Theorem (Divergence theorem). Let G ⊂ Rn+1 be a bounded regular
open set, ∂G an n-manifold, F : G → Rn+1 continuous, F |G ∈ C1(G →
Rn+1), with DF bounded on G.

Then the integral of divF over G is equal to the (outward) flux of F
through ∂G.

In particular, if divF = 0, then
∫
∂G
〈F,n〉 = 0.

14c4 Exercise. (a) For every f ∈ C1(G), boundedness of ∇f on G ensures
that f extends to G by continuity (and therefore is bounded).

(b) For every F ∈ C1(G→ Rn+1), boundedness of DF on G ensures that
F extends to G by continuity (and therefore is bounded).
Prove it.2

In such cases we’ll always mean this extension.

14c5 Exercise. div(fF ) = f divF + 〈∇f, F 〉 whenever f ∈ C1(G) and
F ∈ C1(G→ RN)

Prove it.

Thus, the divergence theorem, applied to fF when f ∈ C1(G) with
bounded ∇f , and F ∈ C1(G → RN) with bounded DF , gives a kind of
integration by parts, similar to (13b13):

(14c6)

∫
G

〈∇f, F 〉 =

∫
∂G

f〈F,n〉 −
∫
G

f divF .

In particular, if divF = 0, then
∫
G
〈∇f, F 〉 =

∫
∂G
f〈F,n〉

1Divergence is often explained in terms of sources and sinks (of a moving matter). But
be careful; the flux of a velocity field is the amount (per unit time) as long as “amount”
means “volume”. If by “amount” you mean “mass”, then you need the vector field of
momentum, not velocity; multiply the velocity by the density of the matter. However, the
problem disappears if the density is constant (which often holds for fluids).

2Hint: recall the proof of 13b4.
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14d Divergence of gradient: Laplacian

Some (but not all) vector fields are gradients of scalar fields.

14d1 Definition. (a) The Laplacian ∆f of a function f ∈ C2(G) on an
open set G ⊂ Rn is

∆f = div∇f .

(b) f is harmonic, if ∆f = 0.

We have∇f = (D1f, . . . , Dnf), thus, div∇f = D1(D1f)+· · ·+Dn(Dnf);
in this sense,

∆ = D2
1 + · · ·+D2

n =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

,

the so-called Laplace operator, or Laplacian.
Any n-dimensional Euclidean affine space may be used instead of Rn.

Indeed, the gradient is well-defined in such space, and the divergence is well-
defined even without Euclidean metric.

The divergence theorem 14c3 gives the so-called first Green formula

(14d2)

∫
G

∆f =

∫
∂G

〈∇f,n〉 =

∫
∂G

Dnf ,

where
(
Dnf

)
(x) =

(
Dnxf

)
x is the directional derivative of f at x in the

normal direction nx. Here f ∈ C2(G), with bounded second derivatives.
Here is another instance of integration by parts. Let u ∈ C1(G), with

bounded gradient, and v ∈ C2(G), with bounded second derivatives. Apply-
ing (14c6) to f = u and F = ∇v we get

∫
G
〈∇u,∇v〉 =

∫
∂G
u〈∇v,n〉−

∫
G
u∆v,

that is,

(14d3)

∫
G

(u∆v + 〈∇u,∇v〉) =

∫
∂G

〈u∇v,n〉 =

∫
∂G

uDnv ,

the second Green formula. It follows that

(14d4)

∫
G

(u∆v − v∆u) =

∫
∂G

(uDnv − vDnu) ,

the third Green formula; here u, v ∈ C2(G), with bounded second derivatives.
In particular, ∫

∂G

uDnv =

∫
∂G

vDnu for harmonic u, v .



Tel Aviv University, 2014/15 Analysis-III,IV 246

Rewriting (14d4) as

(14d5)

∫
G

u∆v =

∫
G

v∆u−
∫
∂G

vDnu+

∫
∂G

(Dnv)u

we may say that really
∫

(u1lG)∆v =
∫
v∆(u1lG) where ∆(u1lG) consists of

the usual Laplacian (∆u)1lG sitting on G and the singular Laplacian sitting
on ∂G, of two terms, so-called single layer (−Dnu) and double layer uDn.
Why two layers? Because the Laplacian (unlike gradient and divergence)
involves second derivatives.

14d6 Exercise. Consider homogeneous polynomials on R2:

f(x, y) =
m∑
k=0

ckx
kym−k .

For m = 1, 2 and 3 find all harmonic functions among these polynomials.1

14d7 Exercise. On R2,
(a) a function of the form

f(x, y) =
m∑
k=1

cke
akx+bky (ak, bk, ck ∈ R)

is harmonic only if it is constant;
(b) a function of the form

f(x, y) = eax cos by

is harmonic if and only if |a| = |b|.2
Prove it.

14d8 Exercise. Consider f : RN \ {0} → R of the form f(x) = g(|x|) for a
given g ∈ C2(0,∞). Prove that3

(a) f ∈ C2(RN \ {0});
(b) f(r+ε, δ, 0, . . . , 0) = g(r)+g′(r)ε+ 1

2

(
g′′(r)ε2 + 1

r
g′(r)δ2

)
+o(ε2 +δ2);

(c) ∆f(x) = g′′(|x|) + N−1
|x| g

′(|x|).

Thus, f is harmonic if and only if g′′(r) + N−1
r
g′(r) = 0 for all r; that is:(

log g′(r)
)′ = −N−1

r
= −(N − 1)(log r)′; log g′(r) = −(N − 1) log r + const;

g′(r) = const · r−(N−1); g(r) = const1 · r−(N−2) + const2;

(14d9) f(x) =

{
c1

|x|N−2 + c2 if N 6= 2;

c1 log |x|+ c2 if N = 2.

1In fact, they are Re (x + iy)m, Im (x + iy)m and their linear combinations.
2That is, f(x, y) = Re

(
ex+iy

)
.

3Hint: (a,b) |x| =
√
|x|2; (c) rotation invariance.
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14e Laplacian at a singular point

The function g(x) = 1/|x|N−2 is harmonic on RN \{0}, thus, for every f ∈ C2

compactly supported within RN \ {0},∫
g∆f =

∫
f∆g = 0 .

It appears that for f ∈ C2(RN) with a compact support,∫
g∆f = const · f(0) ;

in this sense g has a kind of singular Laplacian at the origin.

14e1 Lemma. ∫
RN

∆f(x)

|x|N−2
dx = −(N − 2)

2πN/2

Γ(N/2)
f(0)

for every N > 2 and f ∈ C2(RN) with a compact support.

This improper integral converges, since 1/|x|N−2 is improperly integrable

near 0 (recall 10b7(c)). The coefficient 2πN/2

Γ(N/2)
is the (N − 1)-dimensional

volume of the unit sphere (recall (13c9)).

Proof. For arbitrary ε > 0 we consider the function gε(x) = 1/
(
max(|x|, ε)

)
N−2,

and g(x) = 1/|x|N−2. Clearly,
∫
|gε−g| → 0 (as ε→ 0), and

∫
|gε−g||∆f | →

0, thus,
∫
gε∆f →

∫
g∆f . We take R ∈ (0,∞) such that f(x) = 0 for |x| ≥

R, introduce regular open sets G1 = {x : |x| < ε}, G2 = {x : ε < |x| < R},
and apply (14d4), taking into account that ∆gε = 0 on G1 and G2:∫

gε∆f =

(∫
G1

+

∫
G2

)
gε∆f =

(∫
∂G1

+

∫
∂G2

)(
gεDnf − fDngε

)
;

however, these Dn must be interpreted differently under
∫
∂G1

and
∫
∂G2

:∫
∂G1

gεDn1f =

∫
|x|=ε

1

εN−2
Dnf ,∫

∂G2

gεDn2f =

∫
|x|=ε

1

εN−2
D−nf

where n is the outward normal of G1 and inward normal of G2; these two
summands cancel each other. Further,

∫
∂G1

fDn1gε =
∫
|x|=ε f · 0 = 0 since gε

is constant on G1; and∫
∂G2

fDn2gε =

∫
|x|=ε

f · N − 2

εN−1
,
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since gε(x) = 1/|x|N−2 on G2, and f(x) = 0 when |x| = R. Finally,∫
gε∆f = −(N − 2)

1

εN−1

∫
|x|=ε

f = −(N − 2)
2πN/2

Γ(N/2)
fε ,

where fε is the mean value of f on the ε-sphere. By continuity, fε → f(0) as
ε→ 0; and, as we know,

∫
gε∆f →

∫
g∆f .

14e2 Remark. For N = 2 the situation is similar:∫
R2

∆f(x) log |x| dx = 2πf(0)

for every compactly supported f ∈ C2(R2).

When the boundary consists of a hypersurface and an isolated point, we
get a combination of (14d5) and 14e1: a singular point and two layers.

14e3 Remark. Let G ⊂ RN be a bounded regular open set, ∂G an n-man-
ifold, f ∈ C2(G) with bounded second derivatives, and 0 ∈ G. Then∫

G

∆f(x)

|x|N−2
dx = −(N − 2)

2πN/2

Γ(N/2)
f(0)−

−
∫
∂G

(
x 7→ f(x)Dn

1

|x|N−2

)
+

∫
∂G

(
x 7→ (Dnf(x))

1

|x|N−2

)
.

The proof is very close to that of 14e1. The case N = 2 is similar to 14e2, of
course.

The case G = {x : |x| < R} is especially interesting. Here ∂G = {x :
|x| = R}; on ∂G,

1

|x|N−2
=

1

RN−2
and Dnx

1

|x|N−2
= −N − 2

RN−1
;

thus,∫
|x|<R

∆f(x)

|x|N−2
dx = −(N−2)

2πN/2

Γ(N/2)
f(0)+

N − 2

RN−1

∫
|·|=R

f+
1

RN−2

∫
|·|=R

Dnf .

Taking into account that
∫
|·|=RDnf =

∫
|·|<R ∆f by (14d2) we get

(N − 2)
2πN/2

Γ(N/2)
f(0) = −

∫
|x|<R

( 1

|x|N−2
− 1

RN−2

)
∆f(x) dx+

N − 2

RN−1

∫
|·|=R

f
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for N > 2; and similarly,

2πf(0) = −
∫
|x|<R

(
logR− log |x|

)
∆f(x) dx+

1

R

∫
|·|=R

f

for N = 2. In particular, for a harmonic f ,

f(0) =
Γ(N/2)

2πN/2
1

RN−1

∫
|·|=R

f =

∫
|·|=R f∫
|·|=R 1

for N ≥ 2; the following result is thus proved (and holds also for N = 1,
trivially).

14e4 Proposition (Mean value property). For every harmonic function on
a ball, with bounded second derivatives, its value at the center of the ball is
equal to its mean value on the boundary of the ball.1

14e5 Remark. Now it is easy to understand why harmonic functions occur
in physics (“the stationary heat equation”). Consider a homogeneous mate-
rial solid body (in three dimensions). Fix the temperature on its boundary,
and let the heat flow until a stationary state is reached. Then the tem-
perature in the interior is a harmonic function (with the given boundary
conditions).

14e6 Remark. Can the mean value property be generalized to a non-
spherical boundary? We leave this question to more special courses (PDE,

potential theory). But here is the idea. In 14e3 we may replace
∫
G

∆f(x)
|x|N−2 dx

with
∫
G

(
1

|x|N−2 + g(x)
)

∆f(x) dx where g is a harmonic function satisfying
1

|x|N−2 + g(x) = 0 for all x ∈ ∂G (if we are lucky to have such g). Then

the double layer
∫
∂G

(Dnv)u in (14d5), and the corresponding term in 14e3,
disappears, and we get

(N − 2)
2πN/2

Γ(N/2)
f(0) =

∫
∂G

(
x 7→ f(x)Dn

( 1

|x|N−2
+ g(x)

))
.

14e7 Exercise (Maximum principle for harmonic functions).
Let u be a harmonic function on a connected open setG ⊂ RN . If supx∈G u(x) =
u(x0) for some x0 ∈ G then u is constant.

Prove it.2

1In fact, the mean value property is also sufficient for harmonicity, even if differentia-
bility is not assumed.

2Hint: the set {x0 : u(x0) = supx∈G u(x)} is both open and closed in G.
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It appears that

(14e8) ∆f(x) = 2N lim
ε→0

1

ε2

((
mean of f on {y : |y − x| = ε}

)
− f(x)

)
.

14e9 Exercise. (a) Prove that, for N > 2,

1

R2

∫
|x|<R

( 1

|x|N−2
− 1

RN−2

)
dx does not depend on R;

and for N = 2, 1
R2

∫
|x|<R

(
logR− log |x|

)
dx does not depend on R. (No need

to calculate these integrals.) 1

(b) For f of class C2 near the origin, prove that the mean value of f on
{x : |x| = ε} is f(0) + cNε

2∆f(0) + o(ε2) as ε → 0, for some c2, c3, · · · ∈ R
(not dependent on f).

(c) Applying (b) to f(x) = |x|2, find c2, c3, . . . and prove (14e8).

14e10 Exercise. (a) For every f integrable (properly) on {x : |x| < R},∫
|·|<R f∫
|·|<R 1

=

∫ R

0

∫
|·|=r f∫
|·|=r 1

drN

RN
.

(b) For every bounded harmonic function on a ball, its value at the center of
the ball is equal to its mean value on the ball.

Prove it.2

14e11 Proposition. (Liouville’s theorem for harmonic functions)
Every harmonic function RN → [0,∞) is constant.

Proof. (Nelson’s short proof)
For arbitrary x, y ∈ RN and R > 0 we have

f(x) =

∫
|z−x|<R f(z) dz∫
|z−x|<R dz

≤

∫
|z−y|<R+|x−y| f(z) dz∫

|z−x|<R dz
=

=

(
R + |x− y|

R

)N ∫
|z−y|<R+|x−y| f(z) dz∫
|z−y|<R+|x−y| dz

=

(
R + |x− y|

R

)N
f(y) ,

since the R-neighborhood of x is contained in the (R+ |x−y|)-neighborhood
of y. In the limit R→∞ we get f(x) ≤ f(y); similarly, f(y) ≤ f(x).

1Hint: change of variable.
2Hint: (a) recall 13c8.
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