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Terms “boundary” and “derivative” get new meaning, and become dual
to each other.

15a Chains
Recall the integral [.w defined by (11el2).

15al Definition. A (singular) k-chain (in R") is a formal linear combination
of singular k-boxes.

That is,
C=cl1+--+cly,

where ¢1,...,¢, € R, and I'1,...,I', are singular k-boxes. More formally,
this is a real-valued function with finite support on the (huge!) set of all
singular k-boxes;

cg=C(4),...,¢, =C(T,); C(I') =0 for all other I'.

Clearly, all k-chains are a (huge) vector space, with a basis indexed by all
singular k-boxes. Less formally we say that the singular k-boxes are the
basis, and each singular box is (a special case of) a chain: ' =1-T.

/w:cl/ w—i—---—l—cp/ w
c I Ty

for every k-chain C' = ¢iI'y 4 - - - + ¢,I', and every k-form w.

15a2 Definition.

Note that the integral is bilinear; fcw is linear in C' for every w (by
construction), and linear in w for every C' (since [.w evidently is linear in
w).
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15a3 Definition. Two k-chains C4, Cy are equivalent if
/ w= / w for all k-forms w (of class C?).
C Cy

Let B C R* be a box, P its partition, and I' : B — R" a singular box.

Then
L~ T,

beP

since I' — [,w is an additive function of a singular box.

Recall that singular 1-boxes are C''-paths.

By 11c13, equivalent paths are equivalent 1-chains.
By 11cl1, the 1-chain v + 7_; is equivalent to 0; here y_; is the inverse

path.

(recall 11e2)

A
> ¢, D ACD+ BC ~ AC+ BCD ~ AC + BC + CD
B

15b Order 0 and order 1

The case k = 0 is included as follows. The space R° consists, by definition,
of a single point 0. The only 0-dimensional box is {0}. A singular 0-box in
R™ is thus {z} for some z € R".! A 0-form on R" is a function w : R* — R

(of class C™). And
| w=vt).
{=}

Well, more formally, it is {(0,)}.
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of course. Accordingly, [ w = ciw(z1) + -+ + ¢w(x,) for a 0-chain C' =
ci{x} + - 4 cp{zp}

15b1 Exercise. If two 0-chains are equivalent then they are equal.
Prove it.

The boundary of a singular 1-box v : [tg, t1] — R™ is, by definition, the

0-chain

Oy = {7(t)} = {r(t0)}
a linear combination of two singular 0-boxes (not to be confused with ~(¢;) —
7(to)). Thus,

/a w=w(y(t1)) —w(v(ty)) for a 0-form w.

The boundary of a 1-chain C' = ¢;y1 +- - - + ¢y, is, by definition, the 0-chain
0C = 1071 + - - - + ¢,07,. For example,

the boundary of A>C%—Q is —{A} —{B}+{C}+{D};

the boundary of @ G @

Note that the map C' +— 9C' is linear (by construction).

Given a 0-form w of class C! on R™, that is, a contmuously differentiable
function w : R™ — R, its derivative Dw may be thought of as a 1-form of
class CY on R", denoted dw;

(15b2) (dw)(x, h) = (Dw)u(h) = (Dpw), -

15b3 Proposition. (Stokes’ theorem for k = 1)
Let C be a 1-chain in R", and w a 0-form of class C*' on R"™. Then

/dw:/w
c ac

Proof. By linearity in C' it is sufficient to prove it for C' = v (a single 1-box,
that is, a path v : [tg, t;] — R™). We have

[ao= [ asts0) a0 = [0ty

to

- /t:l (%w( (t))> dt = w(y(t1)) —w(v(t)) = /va_
[
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15b4 Corollary.
Cl ~ Cg implies 801 = 802

for arbitrary 1-chains C, Cy in R"™.

Indeed, [y, w= [, dw= [, dw= [, w for every O-form w of class C".
Similarly to [I5b1]it follows that 0C; = OCh.

The case k = 1 is special; for higher k we’ll see (in 16e9) that Cy ~ Cs
implies 0C; ~ 0Cy but not 0C; = 9C5. Nothing like holds for higher
k.

It is easy to prove that C; ~ Cy = 9C; ~ 0Cs for k = 1 without
The only problem is that C'(R") # C°(R™). However, C'(R") is dense in
C°(R™) (recall 7d28).

15¢ Order 1 and order 2
The boundary of a singular 2-box I' is, by definition, the 1-chain

D C

Plag + e +Tlep +Tlpa =T|ap +T|sc = T'lpc —Tap .

A B

This is not really a definition of a 1-chain, since I did not specify the four
1-dimensional boxes (which is very easy to do); but its equivalence class is
well-defined, and this is all we need for the following question.

Given a 1-form w, can we construct a 2-form, call it dw, such that | o dw =
facw for all 2-chains C?

We have a function I' — farw of a singular box; this is an additive
function, since the map I' — 0T is additive (up to equivalence).

We want to differentiate this additive function in the hope that its derivative
exists and is a 2-form dw.
Note that

(15¢c1) 0(0T') ~ 0 for a singular 2-box I'

(try it for T' of 11e2 and 11e3). By [15b3| [,.dw = fa(ar)w = 0 for every
O-form w of class C'. Tt should be [ d(dw) = [;.dw = 0 for all T, that is,
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d(dw) = 0 for every O-form w of class C2.1 A wonder: the second derivative of
a O-form is always zero, irrespective of the second derivatives of the function!
Indeed, exterior derivative is very similar to the usual derivative for O-forms,
but very dissimilar for 1-forms.

Existence of dw is the point of Stokes’ theorem [15¢3l For now we’ll find
a necessary condition on dw that ensures its uniqueness and provides an
explicit formula.

Given a point x € R" and two vectors h,k € R", we consider small
singular boxes I'. : [0,1] x [0, 1] — R,

Ce(ug,u9) =z + curh + eusk;

an additive function on I'. should be of order €2 as ¢ — 0+; we divide it by
2 and calculate the limit:

1

2
€” Jor.

1 /! I
W= —2/ w(z + eurh, eh) du1+—2/ w(z + eh + cugk, ek) dus—
9 0 € 0

I 1 [
= w(x + eurh + ek, eh) duy — = / w(z + eugk, ek) duy =
0 0

du1+
3

+/1 w(z + eh + eugk, k) — w(x + cugk, k)
0 €

B /1 w(x + eurh, h) — w(x + curh + €k, h)
0

duy — — (Dkw(-, h))x—i—(th(-, k))m ,

assuming w € C!. Taking into account that

= dw — (dw)(z, h, k)

2
g T.

(for arbitrary 2-form in place of dw) we see that the needed dw (if exists) is
as follows.

15c2 Definition. The exterior derivative of a 1-form w of class C! is the
2-form dw defined by

(dw)(-, h, k) = Dpw(-, k) — Dyw(-, h) .

15¢3 Theorem. (Stokes’ theorem for k = 2)
Let C be a 2-chain in R”, and w a 1-form of class C* on R”. Then

/dw:/ w.
c ac

IThis fact will be proved for all forms of all orders, see 16e4(b).
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This is a special case of Theorem (1513 to be proved much later.

15c4 Exercise. For a 1-form w = f(x,y)dz + g(z,y) dy on R? (or an open
subset of R?) prove that (dw)(-, h, k) = (D1g — Dof) det(h, k), that is, dw =
(D1g — Do f) s, where pi is the volume form on R2.

15¢5 Exercise. For the form w = =292 (treated in Sect. 11d) on R?\ {0}

2 +y2

prove that dw = 0, but fv w # 0 for some 7; does it contradict [15c3);

15¢6 Exercise. For the form w = =% (mentioned in Sect. 11d) on R
prove that dw = py. Reconsider 11d2 in the light of

15d Order N — 1: forms and vector fields

Recall two types of integral over an n-manifold:
x of an n-form w, f(M,O) w, defined by (12¢2)-(13a4);

« of a function f, [, f, defined by (13a7)-(13a8);

they are related by
[ =] oo,
M (M,0)

where fi(a7,0) is the volume form; that is, [,, f = f(M@) w where w = fu(,0)-
Interestingly, every n-form w on an orientable n-manifold M C RV is f H(M,0)
for some f € C'(M). This is a consequence of the one-dimensionality® of the
space of all antisymmetric multilinear n-forms on the tangent space T,M.
We have f(z) = w(x,eq,...,e,) for some (therefore, every) orthonormal
basis (eq,...,e,) of T, M that conforms to O,. But if w is defined on the
whole RY (not just on M), it does not lead to a function f on the whole
RY: indeed, in order to find f(x) we need not just x but also T, M (and its
orientation).

The case n = N is simple: every N-form w on RY (or on an open subset
of RY) is fuy (for some continuous f), where uy is the volume form on RY;
that is,

MN(xahh"'ahN) :det(hlaahN)v
w(z, hy,...,hx) = f(z)det(hy,..., hn);

flz) =w(z,er,...,en).

We turn to the case n = N — 1.

1Recall Sect. 11e and 12c.
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The space of all antisymmetric multilinear n-forms L on RY is of dimen-
sion (ZZ ) = N. Here is a useful linear one-to-one correspondence between
such L and vectors h € RV:

Vi, oo b Db, hy) = det(h, by, .. hy) .
Introducing the cross-product hy X --- X h, by!
Vh (hohy % -+ % hy) = det(h, b, ..., hy)
(it is a vector orthogonal to hy,..., h,), we get
L(hy, ... hy) = (h,hy X -+ X hy) .

Doing so at every point, we get a linear one-to-one correspondence between
n-forms w on RY and vector fields F' on R":

(15d1) w(@,hy,y ... hy) = (F(x),hy X -+ X hy) .

Similarly, (n — 1)-forms w on an oriented n-dimensional manifold (M, Q) in
RY (not just N —n = 1) are in a linear one-to-one correspondence with
tangent vector fields F' on M, that is, F € C(M — RY) such that Vz €
M F(z) € T,M.

Let M C RY be an orientable n-manifold (still, n = N — 1), w and F as
in . We know that w|y = fryar,0) for some f. How is f related to F7
Given x € M, we take an orthonormal basis (ey,...,e,) of T, M, note that
€1 X --+ X e, = ng is a unit normal vector to M at x, and

(F(x),ng,) = (F(x),e1 X -+ X ep) =w(x,e1,...,6,) =
= f(@)uoo)(x, €1, .. en) = £f(2).

In order to get “+” rather than “+” we need a coordination between the
orientation O and the normal vector n,. Let the basis (e1,...,e,) of T,M
conform to the orientation O, (of M at x, or equivalently, of T, M, recall
Sect. 12b), then pn,0)(z,e1,...,e,) = +1. The two unit normal vectors
being +e; X - -+ X e,, we say that n, = e; X --- X e, conforms to the given
orientation, and get?

(F(7),n,) = f(2); wly = (F,n)uuro) -

'For N = 3 the cross-product is a binary operation, but for N > 3 it is not. In
fact, it is possible to define the corresponding associative binary operation (the so-called
exterior product, or wedge product), not on vectors but on the so-called multivectors, see
“Multivector”| and |“Exterior algebra” in Wikipedia.

“Not unexpectedly, in order to find f(z) we need not just z but also n,.
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Integrating this over M, we get nothing but the flux! Recall 14cl: the flux
of ' through M is [, (F,n), that is, [, o (F,m)uare) = [pewlv =
f(M’O) w. Well, 14cl treats a more special case: M = JG, and n is directed
outwards. Let us generalize it a little.

15d2 Definition. Let M/ C R"*! be an orientable n-manifold, F : M —
R™! a mapping continuous almost everywhere, and O an orientation of M.
The flux of (the vector field) F' through (the oriented hypersurface) (M, O)

) | (rom)

where n is the unit normal vector to M that conforms to O. (The integral
is treated as improper, and may converge or diverge.)

Thus,

(15d3) /(M,O)w: /M (F,n)

whenever (M, Q) is an oriented hypersurface, n conforms to O, and F' cor-

responds to w according to (15d1]).
Recall I5c4HI5c6

15d4 Exercise. For a 1-form w = f(x,y) dz + g(z,y) dy on R? (or an open
subset of R?) prove that the corresponding vector field is F' = (Fy, Fy) =
(9,—f), and dw = (div F') us.

15d5 Exercise. For the form w = %ﬁ/ﬁdl’ on R?\ {0} find the correspond-
ing vector field F' and prove that F' is the gradient of the radial harmonic
function (14d9).

15d6 Exercise. For the form w = M on R? find the corresponding
vector field F. Is F the gradient of some function? Of some harmonic
function? Find the flux of F' through the boundary of the triangle from
11d2.

15d7 Exercise. On R3\ {0}, consider the gradient F of the radial harmonic
function (14d9) (for ¢; = 1, ¢o = 0), and the corresponding 2-form w. Find
the integral of w over the sphere {x : |x| = r}.
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15e Boundary

We want to apply the divergence theorem to the open cube B = (0,1)", but
for now we cannot, since the boundary 0B is not a manifold. Rather, 0B
consists of 2N disjoint cubes of dimension n = N — 1 (“hyperfaces”) and a
finite number! of cubes of dimensions 0,1,...,n — 1.

For example, {1} x (0,1)™ is a hyperface.

Each hyperface is an n-manifold, and has exactly two orientations. Also,
the outward unit normal vector n, is well-defined at every point x of a
hyperface.

For example, n, = e; for every z € {1} x (0,1)".

For a function f on OB we define |, opJ as the sum of integrals over the
2N hyperfaces; that is,

(15el) /dBf ZZ/ /fxl,...,xN)dej,

i=1 x;= (0,1) JijFi

provided that these integrals are well-defined, of course.
For a vector field F' € C(0B — RY) we define the flux of F' through 0B
as [,5(F,n). Note that

(15e2) / ZZ 2:1;2—1/ / (21, an) [ day .

i=1 x;= ©0,1)" YR E)

It is surprisingly easy to prove the divergence theorem for the cube. (Just
from scratch; no need to use 14¢3, nor 13b9.)

15e3 Proposition. Let F € C'((0,1)Y — R"), with DF bounded. Then
the integral of div I’ over (0,1)" is equal to the (outward) flux of F' through
the boundary.

(As before, boundedness of DF ensures that F extends to [0,1]Y by
continuity; recall 14c4.)

Proof.

1
/ DlFl(.CEl,...,[BN) diL‘l = Fl(l,.CEQ,...,LL‘N> — Fl(o,.’L‘Q,...,.CEN) =
0

- Z (22, — (21, ..., 28);

x1=0,1

n fact, 3V — 1 — 2N.
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/ /DF1 23}1—1/ /lel,...,QZN)dZCQ...dIEN;

x1=0,1

(0,1)»
simllarly, foreacht=1,..., N,
/ /DF— le—l/ / Hdm];
(0,1)N =01 0,1y Jig#
it remains to sum over 1. [

The same holds for every box B, of course.

Let a vector field F' correspond to an n-form w according to . We
want to think of the flux [, (F,n) as [, w; for now we cannot, since 9B is
not an n-manifold, nor an n-chain. However, we may treat B as a singular
N-box I' : B — RY, I'(x) = z, and then, according to Sections , , 0B
may be treated as an n-chain in two cases, N = 1 and N = 2. Here is the
corresponding construction for arbitrary N.

The 2N hyperfaces of (0,1)V

Hi,={(z1,...,2n) €]0,1]" :2; =a} fori=1,...,.Nanda=0,1.

For each hyperface H;, we choose the orientation O;, that conforms to n,
in the sense introduced above: n, = h; x - - - x h,, for some (therefore, every)
orthonormal basis (hy,...,h,) of the tangent space (to the hyperface) that
conforms to O, ,. Note that n, = hy X --- X h,, means det(ny, hy,...,h,) =
+1.

Denoting by (ey,...,ey) the usual basis of RY we try the basis
(€1,...,€i-1,€i41,...,en) of the tangent space {z : z; = 0} to H;,. We
observe that det(e;, e1,...,€;1,€i41,...,ex) = (—=1)"1 n, = (2a—1)e;, and
conclude that the basis (eq, ..., €;_1, €11, ..., en) conforms to O, , if and only
if (—1)""!(2a — 1) = +1. Thus, the n-chart A, , of H,, defined by

Aoty ooyuy) = (Ug, ..o Uim1, G U, .. uy)  for uw e (0,1)"

conforms to O, if and only if (—1)"'(2a — 1) = +1. Treating each A,
(extended to [0, 1]™) as a singular n-cube, we define the n-chain 0B as follows:

(15e4) Z > (=) 20— DA,

i=1 a=0,1

Now we have

(15¢5) /an:/aB<F,n>
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whenever w and F are related via (15d1]).! This equality results from
(1) (20 — 1)/ o= / o= / (F,n)
Ai,a, (Hi,aaoi,a) Hi,a,

by summation over ¢ and a.
For a singular cube I': [0,1]Y — R™ we define OI" as the n-chain

(15e6) or =Y "> (-1)""(2a— 1)l oA,.

i=1 a=0,1

Note that (15ed]) is the special case for I'(x) = z.
Here is what we get for N =2 and N = 3:

D c
Llag +T|sc +Tlep +T|pa =T|ap +T|sc — Tlpc —T'|ap
A B
Ulapes +Tlerar + Tlapre+ F%E ="
+ Ulprac +Tlagup +Tlpecar =
= —T|aep + Ulerer — Ulaprs+
+Tprce —Ulapue +Tlsear - B—/‘///A c//’D

A cube is only one example of a bounded regular open set G C R"*!
such that 0G is not an n-manifold and still, the divergence theorem holds as
JodivE = faG\Z(F, n) for some closed set Z C 9G such that 0G \ Z is an
n-manifold. In such cases we’ll say that the divergence theorem holds for G
and 0G \ Z. For the cube, G \ Z is the union of the 2N hyperfaces, and Z
is the union of cubes of smaller (than N — 1) dimensions.

15e7 Exercise (PRODUCT). Let G; C RM 7, C 0G;, and Gy C RN
Zy C 0G,. If the divergence theorem holds for G1, 0G; \ Z; and for Gs,
Gy \ Zy, then it holds for G, G \ Z where G = G| x Gy C RMTN2 and
oG \ Z = ((8G1 \ Zl) X Gg) (] (Gl X (8G2 \ Z2))

Prove it.?

An N-box is the product of N intervals, of course. Also, a cylinder
{(x,y,2) : 2 + y* < 12,0 < z < a} is the product of a disk and an interval.

1[83 w is the integral of the n-form w over the n-chain 9B defined by (15e4]); faB<F7 n)

is the flux defined by (|15e2]).
2Hint: divF = (DlFl + 4 DNlFNl) + (DN1+1FN1+1 + o4 DN1+N2FN1+N2)-
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15f Exterior derivative

In order to find the formula for the exterior derivative dw of a form of ar-
bitrary order, we could generalize the approach of Sect. [I[5¢ However, a
shorter way is available, via divergence.

Let w be a (k — 1)-form on RY. Assuming existence of a k-form dw on
RY such that [.dw = [, w for all singular k-boxes I', we want to find
dw(x,hy,... hg). It is sufficient to find dw(z,e;,...,e;) for 1 < iy <

- < iy < N; here (ey,...,ey) is the usual basis of RY. Let us find
dw(z,eq,. .., e); other cases are similar.
Vectors €1,...,e, span the k-dimensional subspace {z : x4 = -+ =

zy =0} = R¥ ¢ RY. We need only the restriction w|gr, and re-denote this
restriction by w.

Being a (k — 1)-form on R*, the form w corresponds to a vector field
F : R* — RF according to (15d1)).

For every cube B C R*, by [15d3| and|15e3L Jopw = [yp(F,n) = [,divF.

Being a k-form on RF, the form dw is fu for some f € C(Rk) here
pi is the volume form on R*. Thus, [,dw = [, f. The needed equality
Jpdw = [,pw becomes [, f = [,divF (for all B), that is, f = divF. It
remains to express this equality in terms of w and dw.

We have

Fi(z) = (F(2),e1) = (F(x),e2 X - X e) = w(x, €2,...,€);
Fy(z) = (F(x),e5) = (F(x),—e1 X eg X -++ X e) = —w(z,€1,€3,...,€k);

and so on. Hence,

divF = DFy+ -+ DpF, =
= Diw(-, €9,...,e1)—Dow(-,€1,€3,...,€5)+ -—i—(—l)k_lew(-, €1y Ch1) -

On the other hand,
dW(I, ST ek) = f(x>:uk(el7 s 7€k) = f(x) - leF(ZE) :

Finally,

dUJ(', €1,... ,6k) =
= Diw(-,e9,...,ex)—Daw(-,e1,e3,...,ep)+ (=D Dpw(- el ... ex 1) .

The same holds for e;,, ..., e;, , and moreover, for arbitrary hy,..., hy € RY,
since both sides of this equality are antisymmetric multilinear forms.
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15f1 Definition. The ezterior derivative of a (k — 1)-form w of class C? is
the k-form dw defined by

k
(dw)(s s hi) =Y (=) Dy (e by iy, B, ).

=1

For an n-form w on RY, N = n+ 1, and B = [0,1]", we have dw =
(div F')py, thus, [ dw = [, div F, whence

(15£2) /Bdw:/an

for all n-forms w on R, which is Stokes’ theorem for nonsingular cubes.

15f3 Theorem. (Stokes’ theorem)
Let C be a k-chain in RN, and w a (k — 1)-form of class C! on RY. Then

/dw—/ac

(To be proved later, in Sect. 16d.)

15f4 Exercise. The divergence theorem holds for G € R and 9G \ Z
(recall and the paragraph before it) if and only if [, dw = |, oz @ for

all n-forms w on R™+1,

Prove it.
Index
boundary, [254] normal vector conforms to orientation, [258
0-box,
Stokes’ theorem,
chain,

0-chain, 254] tangent vector field,
cross-product,
o(or),

divergence theorem for cube, o,

. . d(dw),
equivalent chains, 253
exterior derivative, 256} [264] Cak;’ 256}
flux, Hiq, [26]]
0-form, [253 hy X -+ X hy,

fcw7

hyperface, 260] 1 257]
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