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Terms “boundary” and “derivative” get new meaning, and become dual
to each other.

15a Chains

Recall the integral
∫

Γ
ω defined by (11e12).

15a1 Definition. A (singular) k-chain (in Rn) is a formal linear combination
of singular k-boxes.

That is,
C = c1Γ1 + · · ·+ cpΓp ,

where c1, . . . , cp ∈ R, and Γ1, . . . ,Γp are singular k-boxes. More formally,
this is a real-valued function with finite support on the (huge!) set of all
singular k-boxes;

c1 = C(Γ1), . . . , cp = C(Γp) ; C(Γ) = 0 for all other Γ .

Clearly, all k-chains are a (huge) vector space, with a basis indexed by all
singular k-boxes. Less formally we say that the singular k-boxes are the
basis, and each singular box is (a special case of) a chain: Γ = 1 · Γ.

15a2 Definition. ∫
C

ω = c1

∫
Γ1

ω + · · ·+ cp

∫
Γp

ω

for every k-chain C = c1Γ1 + · · ·+ cpΓp and every k-form ω.

Note that the integral is bilinear;
∫
C
ω is linear in C for every ω (by

construction), and linear in ω for every C (since
∫

Γ
ω evidently is linear in

ω).
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15a3 Definition. Two k-chains C1, C2 are equivalent if∫
C1

ω =

∫
C2

ω for all k-forms ω (of class C0) .

Let B ⊂ Rk be a box, P its partition, and Γ : B → Rn a singular box.
Then

Γ ∼
∑
b∈P

Γ|b ,

since Γ 7→
∫

Γ
ω is an additive function of a singular box.

∼

∼

Recall that singular 1-boxes are C1-paths.
By 11c13, equivalent paths are equivalent 1-chains.
By 11c11, the 1-chain γ + γ−1 is equivalent to 0; here γ−1 is the inverse

path.

(recall 11e2)

A

B

C D ACD +BC ∼ AC +BCD ∼ AC +BC + CD

∼ ∼

15b Order 0 and order 1

The case k = 0 is included as follows. The space R0 consists, by definition,
of a single point 0. The only 0-dimensional box is {0}. A singular 0-box in
Rn is thus {x} for some x ∈ Rn.1 A 0-form on Rn is a function ω : Rn → R
(of class Cm). And ∫

{x}
ω = ω(x) ,

1Well, more formally, it is {(0, x)}.
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of course. Accordingly,
∫
C
ω = c1ω(x1) + · · · + cpω(xp) for a 0-chain C =

c1{x1}+ · · ·+ cp{xp}.
15b1 Exercise. If two 0-chains are equivalent then they are equal.

Prove it.

The boundary of a singular 1-box γ : [t0, t1] → Rn is, by definition, the
0-chain

∂γ = {γ(t1)} − {γ(t0)} ,
a linear combination of two singular 0-boxes (not to be confused with γ(t1)−
γ(t0)). Thus, ∫

∂γ

ω = ω(γ(t1))− ω(γ(t0)) for a 0-form ω .

The boundary of a 1-chain C = c1γ1 + · · ·+ cpγp is, by definition, the 0-chain
∂C = c1∂γ1 + · · ·+ cp∂γp. For example,

the boundary of
A

B

C D
is − {A} − {B}+ {C}+ {D} ;

the boundary of ∼ ∼ is 0 .

Note that the map C 7→ ∂C is linear (by construction).
Given a 0-form ω of class C1 on Rn, that is, a continuously differentiable

function ω : Rn → R, its derivative Dω may be thought of as a 1-form of
class C0 on Rn, denoted dω;

(15b2) (dω)(x, h) = (Dω)x(h) = (Dhω)x .

15b3 Proposition. (Stokes’ theorem for k = 1)
Let C be a 1-chain in Rn, and ω a 0-form of class C1 on Rn. Then∫

C

dω =

∫
∂C

ω .

Proof. By linearity in C it is sufficient to prove it for C = γ (a single 1-box,
that is, a path γ : [t0, t1]→ Rn). We have∫

γ

dω =

∫ t1

t0

dω
(
γ(t), γ′(t)

)
dt =

∫ t1

t0

(Dω)γ(t)(γ
′(t)) dt =

=

∫ t1

t0

( d

dt
ω(γ(t))

)
dt = ω(γ(t1))− ω(γ(t0)) =

∫
∂γ

ω .
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15b4 Corollary.
C1 ∼ C2 implies ∂C1 = ∂C2

for arbitrary 1-chains C1, C2 in Rn.

Indeed,
∫
∂C1

ω =
∫
C1
dω =

∫
C2
dω =

∫
∂C2

ω for every 0-form ω of class C1.
Similarly to 15b1 it follows that ∂C1 = ∂C2.

The case k = 1 is special; for higher k we’ll see (in 16e9) that C1 ∼ C2

implies ∂C1 ∼ ∂C2 but not ∂C1 = ∂C2. Nothing like 15b1 holds for higher
k.

It is easy to prove that C1 ∼ C2 =⇒ ∂C1 ∼ ∂C2 for k = 1 without 15b1.
The only problem is that C1(Rn) 6= C0(Rn). However, C1(Rn) is dense in
C0(Rn) (recall 7d28).

15c Order 1 and order 2

The boundary of a singular 2-box Γ is, by definition, the 1-chain

Γ|AB + Γ|BC + Γ|CD + Γ|DA = Γ|AB + Γ|BC − Γ|DC − Γ|AD .
A B

D C

This is not really a definition of a 1-chain, since I did not specify the four
1-dimensional boxes (which is very easy to do); but its equivalence class is
well-defined, and this is all we need for the following question.

Given a 1-form ω, can we construct a 2-form, call it dω, such that
∫
C
dω =∫

∂C
ω for all 2-chains C?
We have a function Γ 7→

∫
∂Γ
ω of a singular box; this is an additive

function, since the map Γ 7→ ∂Γ is additive (up to equivalence).

∼

We want to differentiate this additive function in the hope that its derivative
exists and is a 2-form dω.

Note that

(15c1) ∂(∂Γ) ∼ 0 for a singular 2-box Γ

(try it for Γ of 11e2 and 11e3). By 15b3,
∫
∂Γ
dω =

∫
∂(∂Γ)

ω = 0 for every

0-form ω of class C1. It should be
∫

Γ
d(dω) =

∫
∂Γ
dω = 0 for all Γ, that is,
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d(dω) = 0 for every 0-form ω of class C2. 1 A wonder: the second derivative of
a 0-form is always zero, irrespective of the second derivatives of the function!
Indeed, exterior derivative is very similar to the usual derivative for 0-forms,
but very dissimilar for 1-forms.

Existence of dω is the point of Stokes’ theorem 15c3. For now we’ll find
a necessary condition on dω that ensures its uniqueness and provides an
explicit formula.

Given a point x ∈ Rn and two vectors h, k ∈ Rn, we consider small
singular boxes Γε : [0, 1]× [0, 1]→ Rn,

Γε(u1, u2) = x+ εu1h+ εu2k ;

an additive function on Γε should be of order ε2 as ε→ 0+; we divide it by
ε2 and calculate the limit:

1

ε2

∫
∂Γε

ω =
1

ε2

∫ 1

0

ω(x+ εu1h, εh) du1 +
1

ε2

∫ 1

0

ω(x+ εh+ εu2k, εk) du2−

− 1

ε2

∫ 1

0

ω(x+ εu1h+ εk, εh) du1 −
1

ε2

∫ 1

0

ω(x+ εu2k, εk) du2 =

=

∫ 1

0

ω(x+ εu1h, h)− ω(x+ εu1h+ εk, h)

ε
du1+

+

∫ 1

0

ω(x+ εh+ εu2k, k)− ω(x+ εu2k, k)

ε
du2 → −

(
Dkω(·, h)

)
x+
(
Dhω(·, k)

)
x ,

assuming ω ∈ C1. Taking into account that

1

ε2

∫
Γε

dω → (dω)(x, h, k)

(for arbitrary 2-form in place of dω) we see that the needed dω (if exists) is
as follows.

15c2 Definition. The exterior derivative of a 1-form ω of class C1 is the
2-form dω defined by

(dω)(·, h, k) = Dhω(·, k)−Dkω(·, h) .

15c3 Theorem. (Stokes’ theorem for k = 2)
Let C be a 2-chain in Rn, and ω a 1-form of class C1 on Rn. Then∫

C

dω =

∫
∂C

ω .

1This fact will be proved for all forms of all orders, see 16e4(b).
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This is a special case of Theorem 15f3, to be proved much later.

15c4 Exercise. For a 1-form ω = f(x, y) dx+ g(x, y) dy on R2 (or an open
subset of R2) prove that (dω)(·, h, k) = (D1g −D2f) det(h, k), that is, dω =
(D1g −D2f)µ2, where µ2 is the volume form on R2.

15c5 Exercise. For the form ω = −y dx+x dy
x2+y2

(treated in Sect. 11d) on R2\{0}
prove that dω = 0, but

∫
γ
ω 6= 0 for some γ; does it contradict 15c3?

15c6 Exercise. For the form ω = −y dx+x dy
2

(mentioned in Sect. 11d) on R2

prove that dω = µ2. Reconsider 11d2 in the light of 15c3.

15d Order N − 1: forms and vector fields

Recall two types of integral over an n-manifold:

∗ of an n-form ω,
∫

(M,O)
ω, defined by (12c2)-(13a4);

∗ of a function f ,
∫
M
f , defined by (13a7)-(13a8);

they are related by ∫
M

f =

∫
(M,O)

fµ(M,O) ,

where µ(M,O) is the volume form; that is,
∫
M
f =

∫
(M,O)

ω where ω = fµ(M,O).

Interestingly, every n-form ω on an orientable n-manifold M ⊂ RN is fµ(M,O)

for some f ∈ C(M). This is a consequence of the one-dimensionality1 of the
space of all antisymmetric multilinear n-forms on the tangent space TxM .
We have f(x) = ω(x, e1, . . . , en) for some (therefore, every) orthonormal
basis (e1, . . . , en) of TxM that conforms to Ox. But if ω is defined on the
whole RN (not just on M), it does not lead to a function f on the whole
RN ; indeed, in order to find f(x) we need not just x but also TxM (and its
orientation).

The case n = N is simple: every N -form ω on RN (or on an open subset
of RN) is fµN (for some continuous f), where µN is the volume form on RN ;
that is,

µN(x, h1, . . . , hN) = det(h1, . . . , hN) ;

ω(x, h1, . . . , hN) = f(x) det(h1, . . . , hN) ;

f(x) = ω(x, e1, . . . , eN) .

We turn to the case n = N − 1.

1Recall Sect. 11e and 12c.
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The space of all antisymmetric multilinear n-forms L on RN is of dimen-
sion

(
N
n

)
= N . Here is a useful linear one-to-one correspondence between

such L and vectors h ∈ RN :

∀h1, . . . , hn L(h1, . . . , hn) = det(h, h1, . . . , hn) .

Introducing the cross-product h1 × · · · × hn by1

∀h 〈h, h1 × · · · × hn〉 = det(h, h1, . . . , hn)

(it is a vector orthogonal to h1, . . . , hn), we get

L(h1, . . . , hn) = 〈h, h1 × · · · × hn〉 .

Doing so at every point, we get a linear one-to-one correspondence between
n-forms ω on RN and vector fields F on RN :

(15d1) ω(x, h1, . . . , hn) = 〈F (x), h1 × · · · × hn〉 .

Similarly, (n− 1)-forms ω on an oriented n-dimensional manifold (M,O) in
RN (not just N − n = 1) are in a linear one-to-one correspondence with
tangent vector fields F on M , that is, F ∈ C(M → RN) such that ∀x ∈
M F (x) ∈ TxM .

Let M ⊂ RN be an orientable n-manifold (still, n = N − 1), ω and F as
in (15d1). We know that ω|M = fµ(M,O) for some f . How is f related to F?
Given x ∈ M , we take an orthonormal basis (e1, . . . , en) of TxM , note that
e1 × · · · × en = nx is a unit normal vector to M at x, and

〈F (x),nx〉 = 〈F (x), e1 × · · · × en〉 = ω(x, e1, . . . , en) =

= f(x)µ(M,O)(x, e1, . . . , en) = ±f(x) .

In order to get “+” rather than “±” we need a coordination between the
orientation O and the normal vector nx. Let the basis (e1, . . . , en) of TxM
conform to the orientation Ox (of M at x, or equivalently, of TxM , recall
Sect. 12b), then µ(M,O)(x, e1, . . . , en) = +1. The two unit normal vectors
being ±e1 × · · · × en, we say that nx = e1 × · · · × en conforms to the given
orientation, and get2

〈F (x),nx〉 = f(x) ; ω|M = 〈F,n〉µ(M,O) .

1For N = 3 the cross-product is a binary operation, but for N > 3 it is not. In
fact, it is possible to define the corresponding associative binary operation (the so-called
exterior product, or wedge product), not on vectors but on the so-called multivectors, see
“Multivector” and “Exterior algebra” in Wikipedia.

2Not unexpectedly, in order to find f(x) we need not just x but also nx.

http://en.wikipedia.org/wiki/Multivector
http://en.wikipedia.org/wiki/Exterior_algebra
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Integrating this over M , we get nothing but the flux! Recall 14c1: the flux
of F through M is

∫
M
〈F,n〉, that is,

∫
(M,O)

〈F,n〉µ(M,O) =
∫

(M,O)
ω|M =∫

(M,O)
ω. Well, 14c1 treats a more special case: M = ∂G, and n is directed

outwards. Let us generalize it a little.

15d2 Definition. Let M ⊂ Rn+1 be an orientable n-manifold, F : M →
Rn+1 a mapping continuous almost everywhere, and O an orientation of M .
The flux of (the vector field) F through (the oriented hypersurface) (M,O)
is ∫

M

〈F,n〉

where n is the unit normal vector to M that conforms to O. (The integral
is treated as improper, and may converge or diverge.)

Thus,

(15d3)

∫
(M,O)

ω =

∫
M

〈F,n〉

whenever (M,O) is an oriented hypersurface, n conforms to O, and F cor-
responds to ω according to (15d1).

Recall 15c4–15c6.

15d4 Exercise. For a 1-form ω = f(x, y) dx+ g(x, y) dy on R2 (or an open
subset of R2) prove that the corresponding vector field is F = (F1, F2) =
(g,−f), and dω = (divF )µ2.

15d5 Exercise. For the form ω = −y dx+x dy
x2+y2

on R2 \{0} find the correspond-
ing vector field F and prove that F is the gradient of the radial harmonic
function (14d9).

15d6 Exercise. For the form ω = −y dx+x dy
2

on R2 find the corresponding
vector field F . Is F the gradient of some function? Of some harmonic
function? Find the flux of F through the boundary of the triangle from
11d2.

15d7 Exercise. On R3 \{0}, consider the gradient F of the radial harmonic
function (14d9) (for c1 = 1, c2 = 0), and the corresponding 2-form ω. Find
the integral of ω over the sphere {x : |x| = r}.
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15e Boundary

We want to apply the divergence theorem to the open cube B = (0, 1)N , but
for now we cannot, since the boundary ∂B is not a manifold. Rather, ∂B
consists of 2N disjoint cubes of dimension n = N − 1 (“hyperfaces”) and a
finite number1 of cubes of dimensions 0, 1, . . . , n− 1.

For example, {1} × (0, 1)n is a hyperface.
Each hyperface is an n-manifold, and has exactly two orientations. Also,

the outward unit normal vector nx is well-defined at every point x of a
hyperface.

For example, nx = e1 for every x ∈ {1} × (0, 1)n.
For a function f on ∂B we define

∫
∂B
f as the sum of integrals over the

2N hyperfaces; that is,

(15e1)

∫
∂B

f =
N∑
i=1

∑
xi=0,1

∫
· · ·
∫

(0,1)n

f(x1, . . . , xN)
∏
j:j 6=i

dxj ,

provided that these integrals are well-defined, of course.
For a vector field F ∈ C(∂B → RN) we define the flux of F through ∂B

as
∫
∂B
〈F,n〉. Note that

(15e2)

∫
∂B

〈F,n〉 =
N∑
i=1

∑
xi=0,1

(2xi − 1)

∫
· · ·
∫

(0,1)n

Fi(x1, . . . , xN)
∏
j:j 6=i

dxj .

It is surprisingly easy to prove the divergence theorem for the cube. (Just
from scratch; no need to use 14c3, nor 13b9.)

15e3 Proposition. Let F ∈ C1
(
(0, 1)N → RN

)
, with DF bounded. Then

the integral of divF over (0, 1)N is equal to the (outward) flux of F through
the boundary.

(As before, boundedness of DF ensures that F extends to [0, 1]N by
continuity; recall 14c4.)

Proof.∫ 1

0

D1F1(x1, . . . , xN) dx1 = F1(1, x2, . . . , xN)− F1(0, x2, . . . , xN) =

=
∑
x1=0,1

(2x1 − 1)F1(x1, . . . , xN) ;

1In fact, 3N − 1− 2N .
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∫
· · ·
∫

(0,1)N

D1F1 =
∑
x1=0,1

(2x1 − 1)

∫
· · ·
∫

(0,1)n

F1(x1, . . . , xN) dx2 . . . dxN ;

similarly, for each i = 1, . . . , N ,∫
· · ·
∫

(0,1)N

DiFi =
∑
xi=0,1

(2xi − 1)

∫
· · ·
∫

(0,1)n

Fi
∏
j:j 6=i

dxj ;

it remains to sum over i.

The same holds for every box B, of course.
Let a vector field F correspond to an n-form ω according to (15d1). We

want to think of the flux
∫
∂B
〈F,n〉 as

∫
∂B
ω; for now we cannot, since ∂B is

not an n-manifold, nor an n-chain. However, we may treat B as a singular
N -box Γ : B → RN , Γ(x) = x, and then, according to Sections 15b, 15c, ∂B
may be treated as an n-chain in two cases, N = 1 and N = 2. Here is the
corresponding construction for arbitrary N .

The 2N hyperfaces of (0, 1)N are

Hi,a = {(x1, . . . , xN) ∈ [0, 1]n : xi = a} for i = 1, . . . , N and a = 0, 1 .

For each hyperface Hi,a we choose the orientation Oi,a that conforms to nx
in the sense introduced above: nx = h1×· · ·×hn for some (therefore, every)
orthonormal basis (h1, . . . , hn) of the tangent space (to the hyperface) that
conforms to Oi,a. Note that nx = h1 × · · · × hn means det(nx, h1, . . . , hn) =
+1.

Denoting by (e1, . . . , eN) the usual basis of RN , we try the basis
(e1, . . . , ei−1, ei+1, . . . , eN) of the tangent space {x : xi = 0} to Hi,a. We
observe that det(ei, e1, . . . , ei−1, ei+1, . . . , eN) = (−1)i−1, nx = (2a−1)ei, and
conclude that the basis (e1, . . . , ei−1, ei+1, . . . , eN) conforms toOi,a if and only
if (−1)i−1(2a− 1) = +1. Thus, the n-chart ∆i,a of Hi,a defined by

∆i,a(u1, . . . , un) = (u1, . . . , ui−1, a, ui, . . . , un) for u ∈ (0, 1)n

conforms to Oi,a if and only if (−1)i−1(2a − 1) = +1. Treating each ∆i,a

(extended to [0, 1]n) as a singular n-cube, we define the n-chain ∂B as follows:

(15e4) ∂B =
N∑
i=1

∑
a=0,1

(−1)i−1(2a− 1)∆i,a .

Now we have

(15e5)

∫
∂B

ω =

∫
∂B

〈F,n〉
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whenever ω and F are related via (15d1).1 This equality results from

(−1)i−1(2a− 1)

∫
∆i,a

ω =

∫
(Hi,a,Oi,a)

ω =

∫
Hi,a

〈F,n〉

by summation over i and a.
For a singular cube Γ : [0, 1]N → Rm we define ∂Γ as the n-chain

(15e6) ∂Γ =
N∑
i=1

∑
a=0,1

(−1)i−1(2a− 1)Γ ◦∆i,a .

Note that (15e4) is the special case for Γ(x) = x.
Here is what we get for N = 2 and N = 3:

Γ|AB + Γ|BC + Γ|CD + Γ|DA = Γ|AB + Γ|BC − Γ|DC − Γ|AD ,
A B

D C

Γ|ADCB + Γ|EFGH + Γ|ABFE+

+ Γ|DHGC + Γ|AEHD + Γ|BCGF =

=− Γ|ABCD + Γ|EFGH − Γ|AEFB+

+ Γ|DHGC − Γ|ADHE + Γ|BCGF .
A

B C

D

E

F G

H

A cube is only one example of a bounded regular open set G ⊂ Rn+1

such that ∂G is not an n-manifold and still, the divergence theorem holds as∫
G

divF =
∫
∂G\Z〈F,n〉 for some closed set Z ⊂ ∂G such that ∂G \ Z is an

n-manifold. In such cases we’ll say that the divergence theorem holds for G
and ∂G \ Z. For the cube, ∂G \ Z is the union of the 2N hyperfaces, and Z
is the union of cubes of smaller (than N − 1) dimensions.

15e7 Exercise (product). Let G1 ⊂ RN1 , Z1 ⊂ ∂G1, and G2 ⊂ RN2 ,
Z2 ⊂ ∂G2. If the divergence theorem holds for G1, ∂G1 \ Z1 and for G2,
∂G2 \ Z2, then it holds for G, ∂G \ Z where G = G1 × G2 ⊂ RN1+N2 and
∂G \ Z =

(
(∂G1 \ Z1)×G2

)
]
(
G1 × (∂G2 \ Z2)

)
.

Prove it.2

An N -box is the product of N intervals, of course. Also, a cylinder
{(x, y, z) : x2 + y2 < r2, 0 < z < a} is the product of a disk and an interval.

1
∫
∂B

ω is the integral of the n-form ω over the n-chain ∂B defined by (15e4);
∫
∂B
〈F,n〉

is the flux defined by (15e2).
2Hint: divF = (D1F1 + · · ·+DN1FN1) + (DN1+1FN1+1 + · · ·+DN1+N2FN1+N2).
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15f Exterior derivative

In order to find the formula for the exterior derivative dω of a form of ar-
bitrary order, we could generalize the approach of Sect. 15c. However, a
shorter way is available, via divergence.

Let ω be a (k − 1)-form on RN . Assuming existence of a k-form dω on
RN such that

∫
Γ
dω =

∫
∂Γ
ω for all singular k-boxes Γ, we want to find

dω(x, h1, . . . , hk). It is sufficient to find dω(x, ei1 , . . . , eik) for 1 ≤ i1 <
· · · < ik ≤ N ; here (e1, . . . , eN) is the usual basis of RN . Let us find
dω(x, e1, . . . , ek); other cases are similar.

Vectors e1, . . . , ek span the k-dimensional subspace {x : xk+1 = · · · =
xN = 0} = Rk ⊂ RN . We need only the restriction ω|Rk , and re-denote this
restriction by ω.

Being a (k − 1)-form on Rk, the form ω corresponds to a vector field
F : Rk → Rk according to (15d1).

For every cube B ⊂ Rk, by 15d3 and 15e3,
∫
∂B
ω =

∫
∂B
〈F,n〉 =

∫
B

divF .
Being a k-form on Rk, the form dω is fµk for some f ∈ C(Rk); here

µk is the volume form on Rk. Thus,
∫
B
dω =

∫
B
f . The needed equality∫

B
dω =

∫
∂B
ω becomes

∫
B
f =

∫
B

divF (for all B), that is, f = divF . It
remains to express this equality in terms of ω and dω.

We have

F1(x) = 〈F (x), e1〉 = 〈F (x), e2 × · · · × ek〉 = ω(x, e2, . . . , ek) ;

F2(x) = 〈F (x), e2〉 = 〈F (x),−e1 × e3 × · · · × ek〉 = −ω(x, e1, e3, . . . , ek) ;

and so on. Hence,

divF = D1F1 + · · ·+DkFk =

= D1ω(·, e2, . . . , ek)−D2ω(·, e1, e3, . . . , ek)+· · ·+(−1)k−1Dkω(·, e1, . . . , ek−1) .

On the other hand,

dω(x, e1, . . . , ek) = f(x)µk(e1, . . . , ek) = f(x) = divF (x) .

Finally,

dω(·, e1, . . . , ek) =

= D1ω(·, e2, . . . , ek)−D2ω(·, e1, e3, . . . , ek)+· · ·+(−1)k−1Dkω(·, e1, . . . , ek−1) .

The same holds for ei1 , . . . , eik , and moreover, for arbitrary h1, . . . , hk ∈ RN ,
since both sides of this equality are antisymmetric multilinear forms.
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15f1 Definition. The exterior derivative of a (k − 1)-form ω of class C1 is
the k-form dω defined by

(dω)(·, h1, . . . , hk) =
k∑
i=1

(−1)i−1Dhiω(·, h1, . . . , hi−1, hi+1, . . . , hk) .

For an n-form ω on RN , N = n + 1, and B = [0, 1]N , we have dω =
(divF )µN , thus,

∫
B
dω =

∫
B

divF , whence

(15f2)

∫
B

dω =

∫
∂B

ω

for all n-forms ω on RN , which is Stokes’ theorem for nonsingular cubes.

15f3 Theorem. (Stokes’ theorem)
Let C be a k-chain in RN , and ω a (k− 1)-form of class C1 on RN . Then∫

C

dω =

∫
∂C

ω .

(To be proved later, in Sect. 16d.)

15f4 Exercise. The divergence theorem holds for G ⊂ Rn+1 and ∂G \ Z
(recall 15e7 and the paragraph before it) if and only if

∫
G
dω =

∫
∂G\Z ω for

all n-forms ω on Rn+1.
Prove it.
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