15 From boundary to exterior derivative

15a	Chains	252
15b	Order 0 and order $1 \ldots \ldots \ldots \ldots \ldots$	253
15c	Order 1 and order 2 \ldots	255
15d	Order $N-1$: forms and vector fields	257
15e	Boundary	260
15f	Exterior derivative	263

Terms "boundary" and "derivative" get new meaning, and become dual to each other.

15a Chains

Recall the integral $\int_{\Gamma} \omega$ defined by (11e12).

15a1 Definition. A (singular) k-chain (in \mathbb{R}^n) is a formal linear combination of singular k-boxes.

That is,

$$C = c_1 \Gamma_1 + \dots + c_p \Gamma_p \,,$$

where $c_1, \ldots, c_p \in \mathbb{R}$, and $\Gamma_1, \ldots, \Gamma_p$ are singular k-boxes. More formally, this is a real-valued function with finite support on the (huge!) set of all singular k-boxes;

$$c_1 = C(\Gamma_1), \ldots, c_p = C(\Gamma_p); \quad C(\Gamma) = 0 \text{ for all other } \Gamma.$$

Clearly, all k-chains are a (huge) vector space, with a basis indexed by all singular k-boxes. Less formally we say that the singular k-boxes are the basis, and each singular box is (a special case of) a chain: $\Gamma = 1 \cdot \Gamma$.

15a2 Definition.

$$\int_C \omega = c_1 \int_{\Gamma_1} \omega + \dots + c_p \int_{\Gamma_p} \omega$$

for every k-chain $C = c_1 \Gamma_1 + \cdots + c_p \Gamma_p$ and every k-form ω .

Note that the integral is bilinear; $\int_C \omega$ is linear in C for every ω (by construction), and linear in ω for every C (since $\int_{\Gamma} \omega$ evidently is linear in ω).

15a3 Definition. Two k-chains C_1, C_2 are equivalent if

$$\int_{C_1} \omega = \int_{C_2} \omega \quad \text{for all } k\text{-forms } \omega \text{ (of class } C^0).$$

Let $B\subset \mathbb{R}^k$ be a box, P its partition, and $\Gamma:B\to \mathbb{R}^n$ a singular box. Then

$$\Gamma \sim \sum_{b \in P} \Gamma|_b ,$$

since $\Gamma \mapsto \int_{\Gamma} \omega$ is an additive function of a singular box.

Recall that singular 1-boxes are C^1 -paths.

By 11c13, equivalent paths are equivalent 1-chains.

By 11c11, the 1-chain $\gamma + \gamma_{-1}$ is equivalent to 0; here γ_{-1} is the inverse path.

15b Order 0 and order 1

The case k = 0 is included as follows. The space \mathbb{R}^0 consists, by definition, of a single point 0. The only 0-dimensional box is $\{0\}$. A singular 0-box in \mathbb{R}^n is thus $\{x\}$ for some $x \in \mathbb{R}^{n,1}$ A 0-form on \mathbb{R}^n is a function $\omega : \mathbb{R}^n \to \mathbb{R}$ (of class C^m). And

$$\int_{\{x\}} \omega = \omega(x) \,,$$

¹Well, more formally, it is $\{(0, x)\}$.

Tel Aviv University, 2014/15

Analysis-III,IV

of course. Accordingly, $\int_C \omega = c_1 \omega(x_1) + \cdots + c_p \omega(x_p)$ for a 0-chain $C = c_1\{x_1\} + \cdots + c_p\{x_p\}$.

15b1 Exercise. If two 0-chains are equivalent then they are equal.

Prove it.

The boundary of a singular 1-box $\gamma:[t_0,t_1]\to \mathbb{R}^n$ is, by definition, the 0-chain

$$\partial \gamma = \{\gamma(t_1)\} - \{\gamma(t_0)\},\$$

a linear combination of two singular 0-boxes (not to be confused with $\gamma(t_1) - \gamma(t_0)$). Thus,

$$\int_{\partial \gamma} \omega = \omega(\gamma(t_1)) - \omega(\gamma(t_0))$$
 for a 0-form ω .

The boundary of a 1-chain $C = c_1 \gamma_1 + \cdots + c_p \gamma_p$ is, by definition, the 0-chain $\partial C = c_1 \partial \gamma_1 + \cdots + c_p \partial \gamma_p$. For example,

Note that the map $C \mapsto \partial C$ is linear (by construction).

Given a 0-form ω of class C^1 on \mathbb{R}^n , that is, a continuously differentiable function $\omega : \mathbb{R}^n \to \mathbb{R}$, its derivative $D\omega$ may be thought of as a 1-form of class C^0 on \mathbb{R}^n , denoted $d\omega$;

(15b2)
$$(d\omega)(x,h) = (D\omega)_x(h) = (D_h\omega)_x \,.$$

15b3 Proposition. (Stokes' theorem for k = 1)

Let C be a 1-chain in \mathbb{R}^n , and ω a 0-form of class C^1 on \mathbb{R}^n . Then

$$\int_C d\omega = \int_{\partial C} \omega \,.$$

Proof. By linearity in C it is sufficient to prove it for $C = \gamma$ (a single 1-box, that is, a path $\gamma : [t_0, t_1] \to \mathbb{R}^n$). We have

$$\int_{\gamma} d\omega = \int_{t_0}^{t_1} d\omega (\gamma(t), \gamma'(t)) dt = \int_{t_0}^{t_1} (D\omega)_{\gamma(t)} (\gamma'(t)) dt =$$
$$= \int_{t_0}^{t_1} \left(\frac{d}{dt} \omega(\gamma(t)) \right) dt = \omega(\gamma(t_1)) - \omega(\gamma(t_0)) = \int_{\partial \gamma} \omega.$$

Analysis-III,IV

15b4 Corollary.

$$C_1 \sim C_2$$
 implies $\partial C_1 = \partial C_2$

for arbitrary 1-chains C_1, C_2 in \mathbb{R}^n .

Indeed, $\int_{\partial C_1} \omega = \int_{C_1} d\omega = \int_{C_2} d\omega = \int_{\partial C_2} \omega$ for every 0-form ω of class C^1 . Similarly to 15b1 it follows that $\partial C_1 = \partial C_2$.

The case k = 1 is special; for higher k we'll see (in 16e9) that $C_1 \sim C_2$ implies $\partial C_1 \sim \partial C_2$ but not $\partial C_1 = \partial C_2$. Nothing like 15b1 holds for higher k.

It is easy to prove that $C_1 \sim C_2 \implies \partial C_1 \sim \partial C_2$ for k = 1 without 15b1. The only problem is that $C^1(\mathbb{R}^n) \neq C^0(\mathbb{R}^n)$. However, $C^1(\mathbb{R}^n)$ is dense in $C^0(\mathbb{R}^n)$ (recall 7d28).

15c Order 1 and order 2

The boundary of a singular 2-box Γ is, by definition, the 1-chain

$$\Gamma|_{AB} + \Gamma|_{BC} + \Gamma|_{CD} + \Gamma|_{DA} = \Gamma|_{AB} + \Gamma|_{BC} - \Gamma|_{DC} - \Gamma|_{AD}.$$

This is not really a definition of a 1-chain, since I did not specify the four 1-dimensional boxes (which is very easy to do); but its equivalence class is well-defined, and this is all we need for the following question.

Given a 1-form ω , can we construct a 2-form, call it $d\omega$, such that $\int_C d\omega = \int_{\partial C} \omega$ for all 2-chains C?

We have a function $\Gamma \mapsto \int_{\partial \Gamma} \omega$ of a singular box; this is an additive function, since the map $\Gamma \mapsto \partial \Gamma$ is additive (up to equivalence).

We want to differentiate this additive function in the hope that its derivative exists and is a 2-form $d\omega$.

Note that

(15c1)
$$\partial(\partial\Gamma) \sim 0$$
 for a singular 2-box Γ

(try it for Γ of 11e2 and 11e3). By 15b3, $\int_{\partial \Gamma} d\omega = \int_{\partial(\partial \Gamma)} \omega = 0$ for every 0-form ω of class C^1 . It should be $\int_{\Gamma} d(d\omega) = \int_{\partial \Gamma} d\omega = 0$ for all Γ , that is,

 $d(d\omega) = 0$ for every 0-form ω of class C^2 .¹ A wonder: the second derivative of a 0-form is always zero, irrespective of the second derivatives of the function! Indeed, exterior derivative is very similar to the usual derivative for 0-forms, but very dissimilar for 1-forms.

Existence of $d\omega$ is the point of Stokes' theorem 15c3. For now we'll find a necessary condition on $d\omega$ that ensures its uniqueness and provides an explicit formula.

Given a point $x \in \mathbb{R}^n$ and two vectors $h, k \in \mathbb{R}^n$, we consider small singular boxes $\Gamma_{\varepsilon} : [0, 1] \times [0, 1] \to \mathbb{R}^n$,

$$\Gamma_{\varepsilon}(u_1, u_2) = x + \varepsilon u_1 h + \varepsilon u_2 k;$$

an additive function on Γ_{ε} should be of order ε^2 as $\varepsilon \to 0+$; we divide it by ε^2 and calculate the limit:

$$\frac{1}{\varepsilon^2} \int_{\partial \Gamma_{\varepsilon}} \omega = \frac{1}{\varepsilon^2} \int_0^1 \omega(x + \varepsilon u_1 h, \varepsilon h) \, \mathrm{d}u_1 + \frac{1}{\varepsilon^2} \int_0^1 \omega(x + \varepsilon h + \varepsilon u_2 k, \varepsilon k) \, \mathrm{d}u_2 - \\ - \frac{1}{\varepsilon^2} \int_0^1 \omega(x + \varepsilon u_1 h + \varepsilon k, \varepsilon h) \, \mathrm{d}u_1 - \frac{1}{\varepsilon^2} \int_0^1 \omega(x + \varepsilon u_2 k, \varepsilon k) \, \mathrm{d}u_2 = \\ = \int_0^1 \frac{\omega(x + \varepsilon u_1 h, h) - \omega(x + \varepsilon u_1 h + \varepsilon k, h)}{\varepsilon} \, \mathrm{d}u_1 + \\ + \int_0^1 \frac{\omega(x + \varepsilon h + \varepsilon u_2 k, k) - \omega(x + \varepsilon u_2 k, k)}{\varepsilon} \, \mathrm{d}u_2 \to - (D_k \omega(\cdot, h))_x + (D_h \omega(\cdot, k))_x$$

assuming $\omega \in C^1$. Taking into account that

$$\frac{1}{\varepsilon^2} \int_{\Gamma_{\varepsilon}} d\omega \to (d\omega)(x,h,k)$$

(for arbitrary 2-form in place of $d\omega$) we see that the needed $d\omega$ (if exists) is as follows.

15c2 Definition. The *exterior derivative* of a 1-form ω of class C^1 is the 2-form $d\omega$ defined by

$$(d\omega)(\cdot, h, k) = D_h\omega(\cdot, k) - D_k\omega(\cdot, h).$$

15c3 Theorem. (Stokes' theorem for k = 2)

Let C be a 2-chain in \mathbb{R}^n , and ω a 1-form of class C^1 on \mathbb{R}^n . Then

$$\int_C d\omega = \int_{\partial C} \omega \, .$$

¹This fact will be proved for all forms of all orders, see 16e4(b).

This is a special case of Theorem 15f3, to be proved much later.

15c4 Exercise. For a 1-form $\omega = f(x, y) dx + g(x, y) dy$ on \mathbb{R}^2 (or an open subset of \mathbb{R}^2) prove that $(d\omega)(\cdot, h, k) = (D_1g - D_2f) \det(h, k)$, that is, $d\omega = (D_1g - D_2f)\mu_2$, where μ_2 is the volume form on \mathbb{R}^2 .

15c5 Exercise. For the form $\omega = \frac{-y \, dx + x \, dy}{x^2 + y^2}$ (treated in Sect. 11d) on $\mathbb{R}^2 \setminus \{0\}$ prove that $d\omega = 0$, but $\int_{\gamma} \omega \neq 0$ for some γ ; does it contradict 15c3?

15c6 Exercise. For the form $\omega = \frac{-y \, dx + x \, dy}{2}$ (mentioned in Sect. 11d) on \mathbb{R}^2 prove that $d\omega = \mu_2$. Reconsider 11d2 in the light of 15c3.

15d Order N-1: forms and vector fields

Recall two types of integral over an n-manifold:

- * of an *n*-form ω , $\int_{(M,\mathcal{O})} \omega$, defined by (12c2)-(13a4);
- * of a function f, $\int_M f$, defined by (13a7)-(13a8);

they are related by

$$\int_M f = \int_{(M,\mathcal{O})} f\mu_{(M,\mathcal{O})} \,,$$

where $\mu_{(M,\mathcal{O})}$ is the volume form; that is, $\int_M f = \int_{(M,\mathcal{O})} \omega$ where $\omega = f \mu_{(M,\mathcal{O})}$. Interestingly, every *n*-form ω on an orientable *n*-manifold $M \subset \mathbb{R}^N$ is $f \mu_{(M,\mathcal{O})}$ for some $f \in C(M)$. This is a consequence of the one-dimensionality¹ of the space of all antisymmetric multilinear *n*-forms on the tangent space $T_x M$. We have $f(x) = \omega(x, e_1, \ldots, e_n)$ for some (therefore, every) orthonormal basis (e_1, \ldots, e_n) of $T_x M$ that conforms to \mathcal{O}_x . But if ω is defined on the whole \mathbb{R}^N (not just on M), it does not lead to a function f on the whole \mathbb{R}^N ; indeed, in order to find f(x) we need not just x but also $T_x M$ (and its orientation).

The case n = N is simple: every N-form ω on \mathbb{R}^N (or on an open subset of \mathbb{R}^N) is $f\mu_N$ (for some continuous f), where μ_N is the volume form on \mathbb{R}^N ; that is,

$$\mu_N(x, h_1, \dots, h_N) = \det(h_1, \dots, h_N);$$

$$\omega(x, h_1, \dots, h_N) = f(x) \det(h_1, \dots, h_N);$$

$$f(x) = \omega(x, e_1, \dots, e_N).$$

We turn to the case n = N - 1.

¹Recall Sect. 11e and 12c.

The space of all antisymmetric multilinear *n*-forms L on \mathbb{R}^N is of dimension $\binom{N}{n} = N$. Here is a useful linear one-to-one correspondence between such L and vectors $h \in \mathbb{R}^N$:

$$\forall h_1, \ldots, h_n \ L(h_1, \ldots, h_n) = \det(h, h_1, \ldots, h_n).$$

Introducing the cross-product $h_1 \times \cdots \times h_n$ by¹

$$\forall h \ \langle h, h_1 \times \cdots \times h_n \rangle = \det(h, h_1, \dots, h_n)$$

(it is a vector orthogonal to h_1, \ldots, h_n), we get

$$L(h_1,\ldots,h_n) = \langle h, h_1 \times \cdots \times h_n \rangle.$$

Doing so at every point, we get a linear one-to-one correspondence between n-forms ω on \mathbb{R}^N and vector fields F on \mathbb{R}^N :

(15d1)
$$\omega(x, h_1, \dots, h_n) = \langle F(x), h_1 \times \dots \times h_n \rangle.$$

Similarly, (n-1)-forms ω on an oriented *n*-dimensional manifold (M, \mathcal{O}) in \mathbb{R}^N (not just N - n = 1) are in a linear one-to-one correspondence with tangent vector fields F on M, that is, $F \in C(M \to \mathbb{R}^N)$ such that $\forall x \in M \ F(x) \in T_x M$.

Let $M \subset \mathbb{R}^N$ be an orientable *n*-manifold (still, n = N - 1), ω and F as in (15d1). We know that $\omega|_M = f\mu_{(M,\mathcal{O})}$ for some f. How is f related to F? Given $x \in M$, we take an orthonormal basis (e_1, \ldots, e_n) of $T_x M$, note that $e_1 \times \cdots \times e_n = \mathbf{n}_x$ is a unit normal vector to M at x, and

$$\langle F(x), \mathbf{n}_x \rangle = \langle F(x), e_1 \times \dots \times e_n \rangle = \omega(x, e_1, \dots, e_n) =$$

= $f(x)\mu_{(M,\mathcal{O})}(x, e_1, \dots, e_n) = \pm f(x)$.

In order to get "+" rather than " \pm " we need a coordination between the orientation \mathcal{O} and the normal vector \mathbf{n}_x . Let the basis (e_1, \ldots, e_n) of T_xM conform to the orientation \mathcal{O}_x (of M at x, or equivalently, of T_xM , recall Sect. 12b), then $\mu_{(M,\mathcal{O})}(x, e_1, \ldots, e_n) = +1$. The two unit normal vectors being $\pm e_1 \times \cdots \times e_n$, we say that $\mathbf{n}_x = e_1 \times \cdots \times e_n$ conforms to the given orientation, and get²

$$\langle F(x), \mathbf{n}_x \rangle = f(x); \quad \omega|_M = \langle F, \mathbf{n} \rangle \mu_{(M,\mathcal{O})}.$$

¹For N = 3 the cross-product is a binary operation, but for N > 3 it is not. In fact, it is possible to define the corresponding associative binary operation (the so-called exterior product, or wedge product), not on vectors but on the so-called multivectors, see "Multivector" and "Exterior algebra" in Wikipedia.

²Not unexpectedly, in order to find f(x) we need not just x but also \mathbf{n}_x .

Analysis-III,IV

Integrating this over M, we get nothing but the flux! Recall 14c1: the flux of F through M is $\int_M \langle F, \mathbf{n} \rangle$, that is, $\int_{(M,\mathcal{O})} \langle F, \mathbf{n} \rangle \mu_{(M,\mathcal{O})} = \int_{(M,\mathcal{O})} \omega|_M = \int_{(M,\mathcal{O})} \omega$. Well, 14c1 treats a more special case: $M = \partial G$, and \mathbf{n} is directed outwards. Let us generalize it a little.

15d2 Definition. Let $M \subset \mathbb{R}^{n+1}$ be an orientable *n*-manifold, $F : M \to \mathbb{R}^{n+1}$ a mapping continuous almost everywhere, and \mathcal{O} an orientation of M. The flux of (the vector field) F through (the oriented hypersurface) (M, \mathcal{O}) is

$$\int_M \langle F, \mathbf{n} \rangle$$

where **n** is the unit normal vector to M that conforms to \mathcal{O} . (The integral is treated as improper, and may converge or diverge.)

Thus,

(15d3)
$$\int_{(M,\mathcal{O})} \omega = \int_M \langle F, \mathbf{n} \rangle$$

whenever (M, \mathcal{O}) is an oriented hypersurface, **n** conforms to \mathcal{O} , and F corresponds to ω according to (15d1).

Recall 15c4–15c6.

15d4 Exercise. For a 1-form $\omega = f(x, y) dx + g(x, y) dy$ on \mathbb{R}^2 (or an open subset of \mathbb{R}^2) prove that the corresponding vector field is $F = (F_1, F_2) = (g, -f)$, and $d\omega = (\operatorname{div} F)\mu_2$.

15d5 Exercise. For the form $\omega = \frac{-y \, dx + x \, dy}{x^2 + y^2}$ on $\mathbb{R}^2 \setminus \{0\}$ find the corresponding vector field F and prove that F is the gradient of the radial harmonic function (14d9).

15d6 Exercise. For the form $\omega = \frac{-y dx + x dy}{2}$ on \mathbb{R}^2 find the corresponding vector field F. Is F the gradient of some function? Of some harmonic function? Find the flux of F through the boundary of the triangle from 11d2.

15d7 Exercise. On $\mathbb{R}^3 \setminus \{0\}$, consider the gradient F of the radial harmonic function (14d9) (for $c_1 = 1, c_2 = 0$), and the corresponding 2-form ω . Find the integral of ω over the sphere $\{x : |x| = r\}$.

15e Boundary

We want to apply the divergence theorem to the open cube $B = (0, 1)^N$, but for now we cannot, since the boundary ∂B is not a manifold. Rather, ∂B consists of 2N disjoint cubes of dimension n = N - 1 ("hyperfaces") and a finite number¹ of cubes of dimensions $0, 1, \ldots, n - 1$.

For example, $\{1\} \times (0, 1)^n$ is a hyperface.

Each hyperface is an *n*-manifold, and has exactly two orientations. Also, the outward unit normal vector \mathbf{n}_x is well-defined at every point x of a hyperface.

For example, $\mathbf{n}_x = e_1$ for every $x \in \{1\} \times (0, 1)^n$.

For a function f on ∂B we define $\int_{\partial B} f$ as the sum of integrals over the 2N hyperfaces; that is,

(15e1)
$$\int_{\partial B} f = \sum_{i=1}^{N} \sum_{x_i=0,1} \int_{(0,1)^n} \int f(x_1,\dots,x_N) \prod_{j:j\neq i} \mathrm{d}x_j \,,$$

provided that these integrals are well-defined, of course.

For a vector field $F \in C(\partial B \to \mathbb{R}^N)$ we define the flux of F through ∂B as $\int_{\partial B} \langle F, \mathbf{n} \rangle$. Note that

(15e2)
$$\int_{\partial B} \langle F, \mathbf{n} \rangle = \sum_{i=1}^{N} \sum_{x_i=0,1} (2x_i - 1) \int_{(0,1)^n} \cdots \int F_i(x_1, \dots, x_N) \prod_{j:j \neq i} \mathrm{d}x_j \,.$$

It is surprisingly easy to prove the divergence theorem for the cube. (Just from scratch; no need to use 14c3, nor 13b9.)

15e3 Proposition. Let $F \in C^1((0,1)^N \to \mathbb{R}^N)$, with DF bounded. Then the integral of div F over $(0,1)^N$ is equal to the (outward) flux of F through the boundary.

(As before, boundedness of DF ensures that F extends to $[0,1]^N$ by continuity; recall 14c4.)

Proof.

$$\int_0^1 D_1 F_1(x_1, \dots, x_N) \, \mathrm{d}x_1 = F_1(1, x_2, \dots, x_N) - F_1(0, x_2, \dots, x_N) =$$
$$= \sum_{x_1=0,1} (2x_1 - 1) F_1(x_1, \dots, x_N);$$

¹In fact, $3^N - 1 - 2N$.

Tel Aviv University, 2014/15

$$\int_{(0,1)^N} \int D_1 F_1 = \sum_{x_1=0,1} (2x_1-1) \int_{(0,1)^n} \int F_1(x_1,\ldots,x_N) \, \mathrm{d}x_2 \ldots \, \mathrm{d}x_N \, ;$$

Analysis-III,IV

similarly, for each $i = 1, \ldots, N$,

$$\int_{(0,1)^N} \int D_i F_i = \sum_{x_i=0,1} (2x_i - 1) \int_{(0,1)^n} \int F_i \prod_{j:j \neq i} \mathrm{d}x_j ;$$

it remains to sum over i.

The same holds for every box B, of course.

Let a vector field F correspond to an *n*-form ω according to (15d1). We want to think of the flux $\int_{\partial B} \langle F, \mathbf{n} \rangle$ as $\int_{\partial B} \omega$; for now we cannot, since ∂B is not an *n*-manifold, nor an *n*-chain. However, we may treat B as a singular N-box $\Gamma : B \to \mathbb{R}^N$, $\Gamma(x) = x$, and then, according to Sections 15b, 15c, ∂B may be treated as an *n*-chain in two cases, N = 1 and N = 2. Here is the corresponding construction for arbitrary N.

The 2N hyperfaces of $(0,1)^N$ are

$$H_{i,a} = \{(x_1, \dots, x_N) \in [0, 1]^n : x_i = a\}$$
 for $i = 1, \dots, N$ and $a = 0, 1$.

For each hyperface $H_{i,a}$ we choose the orientation $\mathcal{O}_{i,a}$ that conforms to \mathbf{n}_x in the sense introduced above: $\mathbf{n}_x = h_1 \times \cdots \times h_n$ for some (therefore, every) orthonormal basis (h_1, \ldots, h_n) of the tangent space (to the hyperface) that conforms to $\mathcal{O}_{i,a}$. Note that $\mathbf{n}_x = h_1 \times \cdots \times h_n$ means $\det(\mathbf{n}_x, h_1, \ldots, h_n) =$ +1.

Denoting by (e_1, \ldots, e_N) the usual basis of \mathbb{R}^N , we try the basis $(e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_N)$ of the tangent space $\{x : x_i = 0\}$ to $H_{i,a}$. We observe that $\det(e_i, e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_N) = (-1)^{i-1}$, $\mathbf{n}_x = (2a-1)e_i$, and conclude that the basis $(e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_N)$ conforms to $\mathcal{O}_{i,a}$ if and only if $(-1)^{i-1}(2a-1) = +1$. Thus, the *n*-chart $\Delta_{i,a}$ of $H_{i,a}$ defined by

$$\Delta_{i,a}(u_1, \dots, u_n) = (u_1, \dots, u_{i-1}, a, u_i, \dots, u_n) \text{ for } u \in (0, 1)^n$$

conforms to $\mathcal{O}_{i,a}$ if and only if $(-1)^{i-1}(2a-1) = +1$. Treating each $\Delta_{i,a}$ (extended to $[0,1]^n$) as a singular *n*-cube, we define the *n*-chain ∂B as follows:

(15e4)
$$\partial B = \sum_{i=1}^{N} \sum_{a=0,1} (-1)^{i-1} (2a-1) \Delta_{i,a}.$$

Now we have

(15e5)
$$\int_{\partial B} \omega = \int_{\partial B} \langle F, \mathbf{n} \rangle$$

whenever ω and F are related via (15d1).¹ This equality results from

$$(-1)^{i-1}(2a-1)\int_{\Delta_{i,a}}\omega=\int_{(H_{i,a},\mathcal{O}_{i,a})}\omega=\int_{H_{i,a}}\langle F,\mathbf{n}\rangle$$

by summation over i and a.

For a singular cube $\Gamma : [0,1]^N \to \mathbb{R}^m$ we define $\partial \Gamma$ as the *n*-chain

(15e6)
$$\partial \Gamma = \sum_{i=1}^{N} \sum_{a=0,1} (-1)^{i-1} (2a-1) \Gamma \circ \Delta_{i,a}.$$

Note that (15e4) is the special case for $\Gamma(x) = x$. Here is what we get for N = 2 and N = 3:

A cube is only one example of a bounded regular open set $G \subset \mathbb{R}^{n+1}$ such that ∂G is not an *n*-manifold and still, the divergence theorem holds as $\int_G \operatorname{div} F = \int_{\partial G \setminus Z} \langle F, \mathbf{n} \rangle$ for some closed set $Z \subset \partial G$ such that $\partial G \setminus Z$ is an *n*-manifold. In such cases we'll say that the divergence theorem holds for Gand $\partial G \setminus Z$. For the cube, $\partial G \setminus Z$ is the union of the 2N hyperfaces, and Z is the union of cubes of smaller (than N - 1) dimensions.

15e7 Exercise (PRODUCT). Let $G_1 \subset \mathbb{R}^{N_1}$, $Z_1 \subset \partial G_1$, and $G_2 \subset \mathbb{R}^{N_2}$, $Z_2 \subset \partial G_2$. If the divergence theorem holds for G_1 , $\partial G_1 \setminus Z_1$ and for G_2 , $\partial G_2 \setminus Z_2$, then it holds for G, $\partial G \setminus Z$ where $G = G_1 \times G_2 \subset \mathbb{R}^{N_1+N_2}$ and $\partial G \setminus Z = ((\partial G_1 \setminus Z_1) \times G_2) \uplus (G_1 \times (\partial G_2 \setminus Z_2))$. Prove it.²

An N-box is the product of N intervals, of course. Also, a cylinder $\{(x, y, z) : x^2 + y^2 < r^2, 0 < z < a\}$ is the product of a disk and an interval.

 $^{{}^{1}\}int_{\partial B}\omega$ is the integral of the *n*-form ω over the *n*-chain ∂B defined by (15e4); $\int_{\partial B}\langle F, \mathbf{n} \rangle$ is the flux defined by (15e2).

²Hint: div $F = (D_1F_1 + \dots + D_{N_1}F_{N_1}) + (D_{N_1+1}F_{N_1+1} + \dots + D_{N_1+N_2}F_{N_1+N_2}).$

15f Exterior derivative

In order to find the formula for the exterior derivative $d\omega$ of a form of arbitrary order, we could generalize the approach of Sect. 15c. However, a shorter way is available, via divergence.

Let ω be a (k-1)-form on \mathbb{R}^N . Assuming existence of a k-form $d\omega$ on \mathbb{R}^N such that $\int_{\Gamma} d\omega = \int_{\partial \Gamma} \omega$ for all singular k-boxes Γ , we want to find $d\omega(x, h_1, \ldots, h_k)$. It is sufficient to find $d\omega(x, e_{i_1}, \ldots, e_{i_k})$ for $1 \leq i_1 < \cdots < i_k \leq N$; here (e_1, \ldots, e_N) is the usual basis of \mathbb{R}^N . Let us find $d\omega(x, e_1, \ldots, e_k)$; other cases are similar.

Vectors e_1, \ldots, e_k span the k-dimensional subspace $\{x : x_{k+1} = \cdots = x_N = 0\} = \mathbb{R}^k \subset \mathbb{R}^N$. We need only the restriction $\omega|_{\mathbb{R}^k}$, and re-denote this restriction by ω .

Being a (k-1)-form on \mathbb{R}^k , the form ω corresponds to a vector field $F : \mathbb{R}^k \to \mathbb{R}^k$ according to (15d1).

For every cube $B \subset \mathbb{R}^k$, by 15d3 and 15e3, $\int_{\partial B} \omega = \int_{\partial B} \langle F, \mathbf{n} \rangle = \int_B \operatorname{div} F$. Being a k-form on \mathbb{R}^k , the form $d\omega$ is $f\mu_k$ for some $f \in C(\mathbb{R}^k)$; here μ_k is the volume form on \mathbb{R}^k . Thus, $\int_B d\omega = \int_B f$. The needed equality $\int_B d\omega = \int_{\partial B} \omega$ becomes $\int_B f = \int_B \operatorname{div} F$ (for all B), that is, $f = \operatorname{div} F$. It remains to express this equality in terms of ω and $d\omega$.

We have

$$F_1(x) = \langle F(x), e_1 \rangle = \langle F(x), e_2 \times \dots \times e_k \rangle = \omega(x, e_2, \dots, e_k);$$

$$F_2(x) = \langle F(x), e_2 \rangle = \langle F(x), -e_1 \times e_3 \times \dots \times e_k \rangle = -\omega(x, e_1, e_3, \dots, e_k);$$

and so on. Hence,

div
$$F = D_1 F_1 + \dots + D_k F_k =$$

= $D_1 \omega(\cdot, e_2, \dots, e_k) - D_2 \omega(\cdot, e_1, e_3, \dots, e_k) + \dots + (-1)^{k-1} D_k \omega(\cdot, e_1, \dots, e_{k-1}).$

On the other hand,

$$d\omega(x, e_1, \dots, e_k) = f(x)\mu_k(e_1, \dots, e_k) = f(x) = \operatorname{div} F(x).$$

Finally,

$$d\omega(\cdot, e_1, \dots, e_k) =$$

= $D_1\omega(\cdot, e_2, \dots, e_k) - D_2\omega(\cdot, e_1, e_3, \dots, e_k) + \dots + (-1)^{k-1} D_k\omega(\cdot, e_1, \dots, e_{k-1}).$

The same holds for e_{i_1}, \ldots, e_{i_k} , and moreover, for arbitrary $h_1, \ldots, h_k \in \mathbb{R}^N$, since both sides of this equality are antisymmetric multilinear forms.

15f1 Definition. The exterior derivative of a (k-1)-form ω of class C^1 is the k-form $d\omega$ defined by

$$(d\omega)(\cdot, h_1, \dots, h_k) = \sum_{i=1}^k (-1)^{i-1} D_{h_i} \omega(\cdot, h_1, \dots, h_{i-1}, h_{i+1}, \dots, h_k).$$

For an *n*-form ω on \mathbb{R}^N , N = n + 1, and $B = [0, 1]^N$, we have $d\omega =$ $(\operatorname{div} F)\mu_N$, thus, $\int_B d\omega = \int_B \operatorname{div} F$, whence

(15f2)
$$\int_{B} d\omega = \int_{\partial B} \omega$$

for all *n*-forms ω on \mathbb{R}^N , which is Stokes' theorem for nonsingular cubes.

15f3 Theorem. (*Stokes' theorem*)

Let C be a k-chain in \mathbb{R}^N , and ω a (k-1)-form of class C^1 on \mathbb{R}^N . Then

$$\int_C d\omega = \int_{\partial C} \omega \,.$$

(To be proved later, in Sect. 16d.)

15f4 Exercise. The divergence theorem holds for $G \subset \mathbb{R}^{n+1}$ and $\partial G \setminus Z$ (recall 15e7 and the paragraph before it) if and only if $\int_G d\omega = \int_{\partial G \setminus Z} \omega$ for all *n*-forms ω on \mathbb{R}^{n+1} .

Prove it.

1

Index

boundary, 254, 255, 262 0-box 253	normal vector conforms to orientation, 258
0.501, 200	Stokes' theorem, 254, 256, 264
chain, 252	
0-chain, 254	tangent vector field, 258
cross-product, 258	
	$\partial(\partial\Gamma), 255$
divergence theorem for cube, 260	$\partial\gamma$, 254
aquivalant chaing 252	$d(d\omega), 256$
equivalent chains, 255	$d\omega,254256,264$
exterior derivative, 250, 204	$\partial \Gamma$, 262
flux, 259, 260	$H_{i,a}, 261$
0-form, 253	$h_1 \times \cdots \times h_n, 258$
,	$\int_C \omega, 252$
hyperface, 260	$\tilde{\mu}_N, 257$