15 From boundary to exterior derivative

15a Chains 252
15b Order 0 and order 1 253
15c Order 1 and order 2 255
15d Order $N-1$: forms and vector fields 257
15e Boundary 260
$15 f$ Exterior derivative 263

Terms "boundary" and "derivative" get new meaning, and become dual to each other.

15a Chains

Recall the integral $\int_{\Gamma} \omega$ defined by (11e12).
15a1 Definition. A (singular) k-chain (in \mathbb{R}^{n}) is a formal linear combination of singular k-boxes.

That is,

$$
C=c_{1} \Gamma_{1}+\cdots+c_{p} \Gamma_{p},
$$

where $c_{1}, \ldots, c_{p} \in \mathbb{R}$, and $\Gamma_{1}, \ldots, \Gamma_{p}$ are singular k-boxes. More formally, this is a real-valued function with finite support on the (huge!) set of all singular k-boxes;

$$
c_{1}=C\left(\Gamma_{1}\right), \ldots, c_{p}=C\left(\Gamma_{p}\right) ; \quad C(\Gamma)=0 \text { for all other } \Gamma
$$

Clearly, all k-chains are a (huge) vector space, with a basis indexed by all singular k-boxes. Less formally we say that the singular k-boxes are the basis, and each singular box is (a special case of) a chain: $\Gamma=1 \cdot \Gamma$.

15a2 Definition.

$$
\int_{C} \omega=c_{1} \int_{\Gamma_{1}} \omega+\cdots+c_{p} \int_{\Gamma_{p}} \omega
$$

for every k-chain $C=c_{1} \Gamma_{1}+\cdots+c_{p} \Gamma_{p}$ and every k-form ω.
Note that the integral is bilinear; $\int_{C} \omega$ is linear in C for every ω (by construction), and linear in ω for every C (since $\int_{\Gamma} \omega$ evidently is linear in $\omega)$.

15 a 3 Definition. Two k-chains C_{1}, C_{2} are equivalent if

$$
\int_{C_{1}} \omega=\int_{C_{2}} \omega \text { for all } k \text {-forms } \omega\left(\text { of class } C^{0}\right)
$$

Let $B \subset \mathbb{R}^{k}$ be a box, P its partition, and $\Gamma: B \rightarrow \mathbb{R}^{n}$ a singular box. Then

$$
\left.\Gamma \sim \sum_{b \in P} \Gamma\right|_{b},
$$

since $\Gamma \mapsto \int_{\Gamma} \omega$ is an additive function of a singular box.

\sim

Recall that singular 1-boxes are C^{1}-paths.

By 11 c 13 , equivalent paths are equivalent 1 -chains.
By 11c11, the 1 -chain $\gamma+\gamma_{-1}$ is equivalent to 0 ; here γ_{-1} is the inverse path.

15b Order 0 and order 1

The case $k=0$ is included as follows. The space \mathbb{R}^{0} consists, by definition, of a single point 0 . The only 0 -dimensional box is $\{0\}$. A singular 0 -box in \mathbb{R}^{n} is thus $\{x\}$ for some $x \in \mathbb{R}^{n} .^{1}$ A 0 -form on \mathbb{R}^{n} is a function $\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (of class C^{m}). And

$$
\int_{\{x\}} \omega=\omega(x)
$$

[^0]of course. Accordingly, $\int_{C} \omega=c_{1} \omega\left(x_{1}\right)+\cdots+c_{p} \omega\left(x_{p}\right)$ for a 0 -chain $C=$ $c_{1}\left\{x_{1}\right\}+\cdots+c_{p}\left\{x_{p}\right\}$.
15b1 Exercise. If two 0 -chains are equivalent then they are equal.
Prove it.
The boundary of a singular 1-box $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n}$ is, by definition, the 0 -chain
$$
\partial \gamma=\left\{\gamma\left(t_{1}\right)\right\}-\left\{\gamma\left(t_{0}\right)\right\},
$$
a linear combination of two singular 0-boxes (not to be confused with $\gamma\left(t_{1}\right)-$ $\left.\gamma\left(t_{0}\right)\right)$. Thus,
$$
\int_{\partial \gamma} \omega=\omega\left(\gamma\left(t_{1}\right)\right)-\omega\left(\gamma\left(t_{0}\right)\right) \quad \text { for a } 0 \text {-form } \omega
$$

The boundary of a 1 -chain $C=c_{1} \gamma_{1}+\cdots+c_{p} \gamma_{p}$ is, by definition, the 0 -chain $\partial C=c_{1} \partial \gamma_{1}+\cdots+c_{p} \partial \gamma_{p}$. For example,
the boundary of
 is $-\{A\}-\{B\}+\{C\}+\{D\} ;$
the boundary of

Note that the map $C \mapsto \partial C$ is linear (by construction).
Given a 0 -form ω of class C^{1} on \mathbb{R}^{n}, that is, a continuously differentiable function $\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$, its derivative $D \omega$ may be thought of as a 1 -form of class C^{0} on \mathbb{R}^{n}, denoted d ω;

$$
\begin{equation*}
(d \omega)(x, h)=(D \omega)_{x}(h)=\left(D_{h} \omega\right)_{x} . \tag{15b2}
\end{equation*}
$$

15b3 Proposition. (Stokes' theorem for $k=1$)
Let C be a 1 -chain in \mathbb{R}^{n}, and ω a 0 -form of class C^{1} on \mathbb{R}^{n}. Then

$$
\int_{C} d \omega=\int_{\partial C} \omega .
$$

Proof. By linearity in C it is sufficient to prove it for $C=\gamma$ (a single 1-box, that is, a path $\left.\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n}\right)$. We have

$$
\begin{aligned}
\int_{\gamma} d \omega=\int_{t_{0}}^{t_{1}} d \omega\left(\gamma(t), \gamma^{\prime}(t)\right) \mathrm{d} t & =\int_{t_{0}}^{t_{1}}(D \omega)_{\gamma(t)}\left(\gamma^{\prime}(t)\right) \mathrm{d} t= \\
& =\int_{t_{0}}^{t_{1}}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \omega(\gamma(t))\right) \mathrm{d} t=\omega\left(\gamma\left(t_{1}\right)\right)-\omega\left(\gamma\left(t_{0}\right)\right)=\int_{\partial \gamma} \omega .
\end{aligned}
$$

15b4 Corollary.

$$
C_{1} \sim C_{2} \quad \text { implies } \quad \partial C_{1}=\partial C_{2}
$$

for arbitrary 1-chains C_{1}, C_{2} in \mathbb{R}^{n}.
Indeed, $\int_{\partial C_{1}} \omega=\int_{C_{1}} d \omega=\int_{C_{2}} d \omega=\int_{\partial C_{2}} \omega$ for every 0 -form ω of class C^{1}. Similarly to 15 b 1 it follows that $\partial C_{1}=\partial C_{2}$.

The case $k=1$ is special; for higher k we'll see (in 16e9) that $C_{1} \sim C_{2}$ implies $\partial C_{1} \sim \partial C_{2}$ but not $\partial C_{1}=\partial C_{2}$. Nothing like 15 b 1 holds for higher k.

It is easy to prove that $C_{1} \sim C_{2} \Longrightarrow \partial C_{1} \sim \partial C_{2}$ for $k=1$ without 15b1. The only problem is that $C^{1}\left(\mathbb{R}^{n}\right) \neq C^{0}\left(\mathbb{R}^{n}\right)$. However, $C^{1}\left(\mathbb{R}^{n}\right)$ is dense in $C^{0}\left(\mathbb{R}^{n}\right)$ (recall 7d28).

15c Order 1 and order 2

The boundary of a singular 2-box Γ is, by definition, the 1 -chain

$$
\left.\Gamma\right|_{A B}+\left.\Gamma\right|_{B C}+\left.\Gamma\right|_{C D}+\left.\Gamma\right|_{D A}=\left.\Gamma\right|_{A B}+\left.\Gamma\right|_{B C}-\left.\Gamma\right|_{D C}-\left.\Gamma\right|_{A D} .
$$

This is not really a definition of a 1 -chain, since I did not specify the four 1-dimensional boxes (which is very easy to do); but its equivalence class is well-defined, and this is all we need for the following question.

Given a 1 -form ω, can we construct a 2 -form, call it $d \omega$, such that $\int_{C} d \omega=$ $\int_{\partial C} \omega$ for all 2-chains C ?

We have a function $\Gamma \mapsto \int_{\partial \Gamma} \omega$ of a singular box; this is an additive function, since the map $\Gamma \mapsto \partial \Gamma$ is additive (up to equivalence).

We want to differentiate this additive function in the hope that its derivative exists and is a 2 -form $d \omega$.

Note that

$$
\begin{equation*}
\partial(\partial \Gamma) \sim 0 \quad \text { for a singular 2-box } \Gamma \tag{15c1}
\end{equation*}
$$

(try it for Γ of 11 e 2 and 11 e 3). By 15b3. $\int_{\partial \Gamma} d \omega=\int_{\partial(\partial \Gamma)} \omega=0$ for every 0 -form ω of class C^{1}. It should be $\int_{\Gamma} d(d \omega)=\int_{\partial \Gamma} d \omega=0$ for all Γ, that is,
$d(d \omega)=0$ for every 0 -form ω of class $C^{2} .{ }^{1}$ A wonder: the second derivative of a 0 -form is always zero, irrespective of the second derivatives of the function! Indeed, exterior derivative is very similar to the usual derivative for 0 -forms, but very dissimilar for 1-forms.

Existence of $d \omega$ is the point of Stokes' theorem 15c3. For now we'll find a necessary condition on $d \omega$ that ensures its uniqueness and provides an explicit formula.

Given a point $x \in \mathbb{R}^{n}$ and two vectors $h, k \in \mathbb{R}^{n}$, we consider small singular boxes $\Gamma_{\varepsilon}:[0,1] \times[0,1] \rightarrow \mathbb{R}^{n}$,

$$
\Gamma_{\varepsilon}\left(u_{1}, u_{2}\right)=x+\varepsilon u_{1} h+\varepsilon u_{2} k
$$

an additive function on Γ_{ε} should be of order ε^{2} as $\varepsilon \rightarrow 0+$; we divide it by ε^{2} and calculate the limit:

$$
\begin{gathered}
\frac{1}{\varepsilon^{2}} \int_{\partial \Gamma_{\varepsilon}} \omega=\frac{1}{\varepsilon^{2}} \int_{0}^{1} \omega\left(x+\varepsilon u_{1} h, \varepsilon h\right) \mathrm{d} u_{1}+\frac{1}{\varepsilon^{2}} \int_{0}^{1} \omega\left(x+\varepsilon h+\varepsilon u_{2} k, \varepsilon k\right) \mathrm{d} u_{2}- \\
-\frac{1}{\varepsilon^{2}} \int_{0}^{1} \omega\left(x+\varepsilon u_{1} h+\varepsilon k, \varepsilon h\right) \mathrm{d} u_{1}-\frac{1}{\varepsilon^{2}} \int_{0}^{1} \omega\left(x+\varepsilon u_{2} k, \varepsilon k\right) \mathrm{d} u_{2}= \\
=\int_{0}^{1} \frac{\omega\left(x+\varepsilon u_{1} h, h\right)-\omega\left(x+\varepsilon u_{1} h+\varepsilon k, h\right)}{\varepsilon} \mathrm{d} u_{1}+ \\
+\int_{0}^{1} \frac{\omega\left(x+\varepsilon h+\varepsilon u_{2} k, k\right)-\omega\left(x+\varepsilon u_{2} k, k\right)}{\varepsilon} \mathrm{d} u_{2} \rightarrow-\left(D_{k} \omega(\cdot, h)\right)_{x}+\left(D_{h} \omega(\cdot, k)\right)_{x}
\end{gathered}
$$

assuming $\omega \in C^{1}$. Taking into account that

$$
\frac{1}{\varepsilon^{2}} \int_{\Gamma_{\varepsilon}} d \omega \rightarrow(d \omega)(x, h, k)
$$

(for arbitrary 2-form in place of $d \omega$) we see that the needed $d \omega$ (if exists) is as follows.

15c2 Definition. The exterior derivative of a 1 -form ω of class C^{1} is the 2 -form $d \omega$ defined by

$$
(d \omega)(\cdot, h, k)=D_{h} \omega(\cdot, k)-D_{k} \omega(\cdot, h) .
$$

15c3 Theorem. (Stokes' theorem for $k=2$)
Let C be a 2 -chain in \mathbb{R}^{n}, and ω a 1 -form of class C^{1} on \mathbb{R}^{n}. Then

$$
\int_{C} d \omega=\int_{\partial C} \omega
$$

[^1]This is a special case of Theorem 15f3, to be proved much later.
15c4 Exercise. For a 1-form $\omega=f(x, y) d x+g(x, y) d y$ on \mathbb{R}^{2} (or an open subset of $\left.\mathbb{R}^{2}\right)$ prove that $(d \omega)(\cdot, h, k)=\left(D_{1} g-D_{2} f\right) \operatorname{det}(h, k)$, that is, $d \omega=$ $\left(D_{1} g-D_{2} f\right) \mu_{2}$, where μ_{2} is the volume form on \mathbb{R}^{2}.

15c5 Exercise. For the form $\omega=\frac{-y d x+x d y}{x^{2}+y^{2}}$ (treated in Sect. 11d) on $\mathbb{R}^{2} \backslash\{0\}$ prove that $d \omega=0$, but $\int_{\gamma} \omega \neq 0$ for some γ; does it contradict 15c3?

15c6 Exercise. For the form $\omega=\frac{-y d x+x d y}{2}$ (mentioned in Sect. 11d) on \mathbb{R}^{2} prove that $d \omega=\mu_{2}$. Reconsider 11d2 in the light of 15 c 3 .

15 d Order $N-1$: forms and vector fields

Recall two types of integral over an n-manifold:

* of an n-form $\omega, \int_{(M, \mathcal{O})} \omega$, defined by (12c2)-(13a4);
* of a function $f, \int_{M} f$, defined by (13a7)-(13a8);
they are related by

$$
\int_{M} f=\int_{(M, \mathcal{O})} f \mu_{(M, \mathcal{O})}
$$

where $\mu_{(M, \mathcal{O})}$ is the volume form; that is, $\int_{M} f=\int_{(M, \mathcal{O})} \omega$ where $\omega=f \mu_{(M, \mathcal{O})}$. Interestingly, every n-form ω on an orientable n-manifold $M \subset \mathbb{R}^{N}$ is $f \mu_{(M, \mathcal{O})}$ for some $f \in C(M)$. This is a consequence of the one-dimensionality ${ }^{1}$ of the space of all antisymmetric multilinear n-forms on the tangent space $T_{x} M$. We have $f(x)=\omega\left(x, e_{1}, \ldots, e_{n}\right)$ for some (therefore, every) orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of $T_{x} M$ that conforms to \mathcal{O}_{x}. But if ω is defined on the whole \mathbb{R}^{N} (not just on M), it does not lead to a function f on the whole \mathbb{R}^{N}; indeed, in order to find $f(x)$ we need not just x but also $T_{x} M$ (and its orientation).

The case $n=N$ is simple: every N-form ω on \mathbb{R}^{N} (or on an open subset of \mathbb{R}^{N}) is $f \mu_{N}$ (for some continuous f), where μ_{N} is the volume form on \mathbb{R}^{N}; that is,

$$
\begin{aligned}
\mu_{N}\left(x, h_{1}, \ldots, h_{N}\right) & =\operatorname{det}\left(h_{1}, \ldots, h_{N}\right) ; \\
\omega\left(x, h_{1}, \ldots, h_{N}\right) & =f(x) \operatorname{det}\left(h_{1}, \ldots, h_{N}\right) ; \\
f(x) & =\omega\left(x, e_{1}, \ldots, e_{N}\right)
\end{aligned}
$$

We turn to the case $n=N-1$.

[^2]The space of all antisymmetric multilinear n-forms L on \mathbb{R}^{N} is of dimen$\operatorname{sion}\binom{N}{n}=N$. Here is a useful linear one-to-one correspondence between such L and vectors $h \in \mathbb{R}^{N}$:

$$
\forall h_{1}, \ldots, h_{n} L\left(h_{1}, \ldots, h_{n}\right)=\operatorname{det}\left(h, h_{1}, \ldots, h_{n}\right)
$$

Introducing the cross-product $h_{1} \times \cdots \times h_{n}$ by ${ }^{1}$

$$
\forall h\left\langle h, h_{1} \times \cdots \times h_{n}\right\rangle=\operatorname{det}\left(h, h_{1}, \ldots, h_{n}\right)
$$

(it is a vector orthogonal to h_{1}, \ldots, h_{n}), we get

$$
L\left(h_{1}, \ldots, h_{n}\right)=\left\langle h, h_{1} \times \cdots \times h_{n}\right\rangle .
$$

Doing so at every point, we get a linear one-to-one correspondence between n-forms ω on \mathbb{R}^{N} and vector fields F on \mathbb{R}^{N} :

$$
\begin{equation*}
\omega\left(x, h_{1}, \ldots, h_{n}\right)=\left\langle F(x), h_{1} \times \cdots \times h_{n}\right\rangle . \tag{15d1}
\end{equation*}
$$

Similarly, $(n-1)$-forms ω on an oriented n-dimensional manifold (M, \mathcal{O}) in \mathbb{R}^{N} (not just $N-n=1$) are in a linear one-to-one correspondence with tangent vector fields F on M, that is, $F \in C\left(M \rightarrow \mathbb{R}^{N}\right)$ such that $\forall x \in$ $M F(x) \in T_{x} M$.

Let $M \subset \mathbb{R}^{N}$ be an orientable n-manifold (still, $n=N-1$), ω and F as in (15d1). We know that $\left.\omega\right|_{M}=f \mu_{(M, \mathcal{O})}$ for some f. How is f related to F ? Given $x \in M$, we take an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of $T_{x} M$, note that $e_{1} \times \cdots \times e_{n}=\mathbf{n}_{x}$ is a unit normal vector to M at x, and

$$
\begin{aligned}
\left\langle F(x), \mathbf{n}_{x}\right\rangle=\left\langle F(x), e_{1} \times \cdots \times e_{n}\right\rangle & =\omega\left(x, e_{1}, \ldots, e_{n}\right)= \\
& =f(x) \mu_{(M, \mathcal{O})}\left(x, e_{1}, \ldots, e_{n}\right)= \pm f(x) .
\end{aligned}
$$

In order to get " + " rather than " \pm " we need a coordination between the orientation \mathcal{O} and the normal vector \mathbf{n}_{x}. Let the basis $\left(e_{1}, \ldots, e_{n}\right)$ of $T_{x} M$ conform to the orientation \mathcal{O}_{x} (of M at x, or equivalently, of $T_{x} M$, recall Sect. 12b), then $\mu_{(M, \mathcal{O})}\left(x, e_{1}, \ldots, e_{n}\right)=+1$. The two unit normal vectors being $\pm e_{1} \times \cdots \times e_{n}$, we say that $\mathbf{n}_{x}=e_{1} \times \cdots \times e_{n}$ conforms to the given orientation, and get ${ }^{2}$

$$
\left\langle F(x), \mathbf{n}_{x}\right\rangle=f(x) ;\left.\quad \omega\right|_{M}=\langle F, \mathbf{n}\rangle \mu_{(M, \mathcal{O})} .
$$

[^3]Integrating this over M, we get nothing but the flux! Recall 14c1: the flux of F through M is $\int_{M}\langle F, \mathbf{n}\rangle$, that is, $\int_{(M, \mathcal{O})}\langle F, \mathbf{n}\rangle \mu_{(M, \mathcal{O})}=\left.\int_{(M, \mathcal{O})} \omega\right|_{M}=$ $\int_{(M, \mathcal{O})} \omega$. Well, 14 c 1 treats a more special case: $M=\partial G$, and \mathbf{n} is directed outwards. Let us generalize it a little.

15d2 Definition. Let $M \subset \mathbb{R}^{n+1}$ be an orientable n-manifold, $F: M \rightarrow$ \mathbb{R}^{n+1} a mapping continuous almost everywhere, and \mathcal{O} an orientation of M. The flux of (the vector field) F through (the oriented hypersurface) (M, \mathcal{O}) is

$$
\int_{M}\langle F, \mathbf{n}\rangle
$$

where \mathbf{n} is the unit normal vector to M that conforms to \mathcal{O}. (The integral is treated as improper, and may converge or diverge.)

Thus,

$$
\begin{equation*}
\int_{(M, \mathcal{O})} \omega=\int_{M}\langle F, \mathbf{n}\rangle \tag{15d3}
\end{equation*}
$$

whenever (M, \mathcal{O}) is an oriented hypersurface, \mathbf{n} conforms to \mathcal{O}, and F corresponds to ω according to (15d1).

Recall 15c4 15c6.
15d4 Exercise. For a 1-form $\omega=f(x, y) d x+g(x, y) d y$ on \mathbb{R}^{2} (or an open subset of \mathbb{R}^{2}) prove that the corresponding vector field is $F=\left(F_{1}, F_{2}\right)=$ $(g,-f)$, and $d \omega=(\operatorname{div} F) \mu_{2}$.

15d5 Exercise. For the form $\omega=\frac{-y d x+x d y}{x^{2}+y^{2}}$ on $\mathbb{R}^{2} \backslash\{0\}$ find the corresponding vector field F and prove that F is the gradient of the radial harmonic function (14d9).

15d6 Exercise. For the form $\omega=\frac{-y d x+x d y}{2}$ on \mathbb{R}^{2} find the corresponding vector field F. Is F the gradient of some function? Of some harmonic function? Find the flux of F through the boundary of the triangle from 11 d 2 .

15d7 Exercise. On $\mathbb{R}^{3} \backslash\{0\}$, consider the gradient F of the radial harmonic function (14d9) (for $c_{1}=1, c_{2}=0$), and the corresponding 2 -form ω. Find the integral of ω over the sphere $\{x:|x|=r\}$.

15e Boundary

We want to apply the divergence theorem to the open cube $B=(0,1)^{N}$, but for now we cannot, since the boundary ∂B is not a manifold. Rather, ∂B consists of $2 N$ disjoint cubes of dimension $n=N-1$ ("hyperfaces") and a finite number ${ }^{1}$ of cubes of dimensions $0,1, \ldots, n-1$.

For example, $\{1\} \times(0,1)^{n}$ is a hyperface.
Each hyperface is an n-manifold, and has exactly two orientations. Also, the outward unit normal vector \mathbf{n}_{x} is well-defined at every point x of a hyperface.

For example, $\mathbf{n}_{x}=e_{1}$ for every $x \in\{1\} \times(0,1)^{n}$.
For a function f on ∂B we define $\int_{\partial B} f$ as the sum of integrals over the $2 N$ hyperfaces; that is,

$$
\begin{equation*}
\int_{\partial B} f=\sum_{i=1}^{N} \sum_{x_{i}=0,1} \int_{(0,1)^{n}} \ldots \int f\left(x_{1}, \ldots, x_{N}\right) \prod_{j: j \neq i} \mathrm{~d} x_{j} \tag{15e1}
\end{equation*}
$$

provided that these integrals are well-defined, of course.
For a vector field $F \in C\left(\partial B \rightarrow \mathbb{R}^{N}\right)$ we define the flux of F through ∂B as $\int_{\partial B}\langle F, \mathbf{n}\rangle$. Note that

$$
\begin{equation*}
\int_{\partial B}\langle F, \mathbf{n}\rangle=\sum_{i=1}^{N} \sum_{x_{i}=0,1}\left(2 x_{i}-1\right) \int_{(0,1)^{n}} \ldots \int F_{i}\left(x_{1}, \ldots, x_{N}\right) \prod_{j: j \neq i} \mathrm{~d} x_{j} . \tag{15e2}
\end{equation*}
$$

It is surprisingly easy to prove the divergence theorem for the cube. (Just from scratch; no need to use 14 c 3 , nor 13b9.)

15e3 Proposition. Let $F \in C^{1}\left((0,1)^{N} \rightarrow \mathbb{R}^{N}\right)$, with $D F$ bounded. Then the integral of $\operatorname{div} F$ over $(0,1)^{N}$ is equal to the (outward) flux of F through the boundary.
(As before, boundedness of $D F$ ensures that F extends to $[0,1]^{N}$ by continuity; recall 14c4.)

Proof.

$$
\begin{aligned}
\int_{0}^{1} D_{1} F_{1}\left(x_{1}, \ldots, x_{N}\right) \mathrm{d} x_{1}=F_{1}\left(1, x_{2}, \ldots,\right. & \left.x_{N}\right)-F_{1}\left(0, x_{2}, \ldots, x_{N}\right)= \\
& =\sum_{x_{1}=0,1}\left(2 x_{1}-1\right) F_{1}\left(x_{1}, \ldots, x_{N}\right)
\end{aligned}
$$

[^4]$$
\int \underset{(0,1)^{N}}{ } \ldots \int_{1} D_{1}=\sum_{x_{1}=0,1}\left(2 x_{1}-1\right) \iint_{(0,1)^{n}} \ldots F_{1}\left(x_{1}, \ldots, x_{N}\right) \mathrm{d} x_{2} \ldots \mathrm{~d} x_{N}
$$
similarly, for each $i=1, \ldots, N$,
$$
\int \ldots \int D_{i} F_{i}=\sum_{(0,1)^{N}}\left(2 x_{i}-1\right) \int \cdots \int F_{i} \prod_{(0,1)^{n}} \mathrm{~d} x_{j}
$$
it remains to sum over i.
The same holds for every box B, of course.
Let a vector field F correspond to an n-form ω according to (15d1). We want to think of the flux $\int_{\partial B}\langle F, \mathbf{n}\rangle$ as $\int_{\partial B} \omega$; for now we cannot, since ∂B is not an n-manifold, nor an n-chain. However, we may treat B as a singular N-box $\Gamma: B \rightarrow \mathbb{R}^{N}, \Gamma(x)=x$, and then, according to Sections $15 \mathrm{~b}, 15 \mathrm{c}, \partial B$ may be treated as an n-chain in two cases, $N=1$ and $N=2$. Here is the corresponding construction for arbitrary N.

The $2 N$ hyperfaces of $(0,1)^{N}$ are

$$
H_{i, a}=\left\{\left(x_{1}, \ldots, x_{N}\right) \in[0,1]^{n}: x_{i}=a\right\} \quad \text { for } i=1, \ldots, N \text { and } a=0,1 .
$$

For each hyperface $H_{i, a}$ we choose the orientation $\mathcal{O}_{i, a}$ that conforms to \mathbf{n}_{x} in the sense introduced above: $\mathbf{n}_{x}=h_{1} \times \cdots \times h_{n}$ for some (therefore, every) orthonormal basis $\left(h_{1}, \ldots, h_{n}\right)$ of the tangent space (to the hyperface) that conforms to $\mathcal{O}_{i, a}$. Note that $\mathbf{n}_{x}=h_{1} \times \cdots \times h_{n}$ means $\operatorname{det}\left(\mathbf{n}_{x}, h_{1}, \ldots, h_{n}\right)=$ +1 .

Denoting by $\left(e_{1}, \ldots, e_{N}\right)$ the usual basis of \mathbb{R}^{N}, we try the basis $\left(e_{1}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{N}\right)$ of the tangent space $\left\{x: x_{i}=0\right\}$ to $H_{i, a}$. We observe that $\operatorname{det}\left(e_{i}, e_{1}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{N}\right)=(-1)^{i-1}, \mathbf{n}_{x}=(2 a-1) e_{i}$, and conclude that the basis $\left(e_{1}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{N}\right)$ conforms to $\mathcal{O}_{i, a}$ if and only if $(-1)^{i-1}(2 a-1)=+1$. Thus, the n-chart $\Delta_{i, a}$ of $H_{i, a}$ defined by

$$
\Delta_{i, a}\left(u_{1}, \ldots, u_{n}\right)=\left(u_{1}, \ldots, u_{i-1}, a, u_{i}, \ldots, u_{n}\right) \quad \text { for } u \in(0,1)^{n}
$$

conforms to $\mathcal{O}_{i, a}$ if and only if $(-1)^{i-1}(2 a-1)=+1$. Treating each $\Delta_{i, a}$ (extended to $[0,1]^{n}$) as a singular n-cube, we define the n-chain ∂B as follows:

$$
\begin{equation*}
\partial B=\sum_{i=1}^{N} \sum_{a=0,1}(-1)^{i-1}(2 a-1) \Delta_{i, a} . \tag{15e4}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\int_{\partial B} \omega=\int_{\partial B}\langle F, \mathbf{n}\rangle \tag{15e5}
\end{equation*}
$$

whenever ω and F are related via 15 d 1 . ${ }^{1}$ This equality results from

$$
(-1)^{i-1}(2 a-1) \int_{\Delta_{i, a}} \omega=\int_{\left(H_{i, a}, \mathcal{O}_{i, a}\right)} \omega=\int_{H_{i, a}}\langle F, \mathbf{n}\rangle
$$

by summation over i and a.
For a singular cube $\Gamma:[0,1]^{N} \rightarrow \mathbb{R}^{m}$ we define $\partial \Gamma$ as the n-chain

$$
\begin{equation*}
\partial \Gamma=\sum_{i=1}^{N} \sum_{a=0,1}(-1)^{i-1}(2 a-1) \Gamma \circ \Delta_{i, a} . \tag{15e6}
\end{equation*}
$$

Note that 15 e 4 is the special case for $\Gamma(x)=x$.
Here is what we get for $N=2$ and $N=3$:

$$
\left.\Gamma\right|_{A B}+\left.\Gamma\right|_{B C}+\left.\Gamma\right|_{C D}+\left.\Gamma\right|_{D A}=\left.\Gamma\right|_{A B}+\left.\Gamma\right|_{B C}-\left.\Gamma\right|_{D C}-\left.\Gamma\right|_{A D}
$$

$$
\begin{gathered}
\left.\Gamma\right|_{A D C B}+\left.\Gamma\right|_{E F G H}+\left.\Gamma\right|_{A B F E}+ \\
+\left.\Gamma\right|_{D H G C}+\left.\Gamma\right|_{A E H D}+\left.\Gamma\right|_{B C G F}= \\
=-\left.\Gamma\right|_{A B C D}+\left.\Gamma\right|_{E F G H}-\left.\Gamma\right|_{A E F B}+ \\
+\left.\Gamma\right|_{D H G C}-\left.\Gamma\right|_{A D H E}+\left.\Gamma\right|_{B C G F} .
\end{gathered}
$$

A cube is only one example of a bounded regular open set $G \subset \mathbb{R}^{n+1}$ such that ∂G is not an n-manifold and still, the divergence theorem holds as $\int_{G} \operatorname{div} F=\int_{\partial G \backslash Z}\langle F, \mathbf{n}\rangle$ for some closed set $Z \subset \partial G$ such that $\partial G \backslash Z$ is an n-manifold. In such cases we'll say that the divergence theorem holds for G and $\partial G \backslash Z$. For the cube, $\partial G \backslash Z$ is the union of the $2 N$ hyperfaces, and Z is the union of cubes of smaller (than $N-1$) dimensions.

15 e 7 Exercise (PRODUCT). Let $G_{1} \subset \mathbb{R}^{N_{1}}, Z_{1} \subset \partial G_{1}$, and $G_{2} \subset \mathbb{R}^{N_{2}}$, $Z_{2} \subset \partial G_{2}$. If the divergence theorem holds for $G_{1}, \partial G_{1} \backslash Z_{1}$ and for G_{2}, $\partial G_{2} \backslash Z_{2}$, then it holds for $G, \partial G \backslash Z$ where $G=G_{1} \times G_{2} \subset \mathbb{R}^{N_{1}+N_{2}}$ and $\partial G \backslash Z=\left(\left(\partial G_{1} \backslash Z_{1}\right) \times G_{2}\right) \uplus\left(G_{1} \times\left(\partial G_{2} \backslash Z_{2}\right)\right)$.

Prove it. ${ }^{2}$
An N-box is the product of N intervals, of course. Also, a cylinder $\left\{(x, y, z): x^{2}+y^{2}<r^{2}, 0<z<a\right\}$ is the product of a disk and an interval.

[^5]
$15 f$ Exterior derivative

In order to find the formula for the exterior derivative $d \omega$ of a form of arbitrary order, we could generalize the approach of Sect. 15c. However, a shorter way is available, via divergence.

Let ω be a $(k-1)$-form on \mathbb{R}^{N}. Assuming existence of a k-form $d \omega$ on \mathbb{R}^{N} such that $\int_{\Gamma} d \omega=\int_{\partial \Gamma} \omega$ for all singular k-boxes Γ, we want to find $d \omega\left(x, h_{1}, \ldots, h_{k}\right)$. It is sufficient to find $d \omega\left(x, e_{i_{1}}, \ldots, e_{i_{k}}\right)$ for $1 \leq i_{1}<$ $\cdots<i_{k} \leq N$; here $\left(e_{1}, \ldots, e_{N}\right)$ is the usual basis of \mathbb{R}^{N}. Let us find $d \omega\left(x, e_{1}, \ldots, e_{k}\right)$; other cases are similar.

Vectors e_{1}, \ldots, e_{k} span the k-dimensional subspace $\left\{x: x_{k+1}=\cdots=\right.$ $\left.x_{N}=0\right\}=\mathbb{R}^{k} \subset \mathbb{R}^{N}$. We need only the restriction $\left.\omega\right|_{\mathbb{R}^{k}}$, and re-denote this restriction by ω.

Being a $(k-1)$-form on \mathbb{R}^{k}, the form ω corresponds to a vector field $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ according to 15d1).

For every cube $B \subset \mathbb{R}^{k}$, by 15 d 3 and $15 \mathrm{e} 3, \int_{\partial B} \omega=\int_{\partial B}\langle F, \mathbf{n}\rangle=\int_{B} \operatorname{div} F$.
Being a k-form on \mathbb{R}^{k}, the form $d \omega$ is $f \mu_{k}$ for some $f \in C\left(\mathbb{R}^{k}\right)$; here μ_{k} is the volume form on \mathbb{R}^{k}. Thus, $\int_{B} d \omega=\int_{B} f$. The needed equality $\int_{B} d \omega=\int_{\partial B} \omega$ becomes $\int_{B} f=\int_{B} \operatorname{div} F$ (for all B), that is, $f=\operatorname{div} F$. It remains to express this equality in terms of ω and $d \omega$.

We have

$$
\begin{gathered}
F_{1}(x)=\left\langle F(x), e_{1}\right\rangle=\left\langle F(x), e_{2} \times \cdots \times e_{k}\right\rangle=\omega\left(x, e_{2}, \ldots, e_{k}\right) \\
F_{2}(x)=\left\langle F(x), e_{2}\right\rangle=\left\langle F(x),-e_{1} \times e_{3} \times \cdots \times e_{k}\right\rangle=-\omega\left(x, e_{1}, e_{3}, \ldots, e_{k}\right)
\end{gathered}
$$

and so on. Hence,

$$
\begin{aligned}
& \quad \operatorname{div} F=D_{1} F_{1}+\cdots+D_{k} F_{k}= \\
& =D_{1} \omega\left(\cdot, e_{2}, \ldots, e_{k}\right)-D_{2} \omega\left(\cdot, e_{1}, e_{3}, \ldots, e_{k}\right)+\cdots+(-1)^{k-1} D_{k} \omega\left(\cdot, e_{1}, \ldots, e_{k-1}\right) .
\end{aligned}
$$

On the other hand,

$$
d \omega\left(x, e_{1}, \ldots, e_{k}\right)=f(x) \mu_{k}\left(e_{1}, \ldots, e_{k}\right)=f(x)=\operatorname{div} F(x)
$$

Finally,

$$
\begin{aligned}
& \quad d \omega\left(\cdot, e_{1}, \ldots, e_{k}\right)= \\
& =D_{1} \omega\left(\cdot, e_{2}, \ldots, e_{k}\right)-D_{2} \omega\left(\cdot, e_{1}, e_{3}, \ldots, e_{k}\right)+\cdots+(-1)^{k-1} D_{k} \omega\left(\cdot, e_{1}, \ldots, e_{k-1}\right) .
\end{aligned}
$$

The same holds for $e_{i_{1}}, \ldots, e_{i_{k}}$, and moreover, for arbitrary $h_{1}, \ldots, h_{k} \in \mathbb{R}^{N}$, since both sides of this equality are antisymmetric multilinear forms.

15f1 Definition. The exterior derivative of a $(k-1)$-form ω of class C^{1} is the k-form $d \omega$ defined by

$$
(d \omega)\left(\cdot, h_{1}, \ldots, h_{k}\right)=\sum_{i=1}^{k}(-1)^{i-1} D_{h_{i}} \omega\left(\cdot, h_{1}, \ldots, h_{i-1}, h_{i+1}, \ldots, h_{k}\right)
$$

For an n-form ω on $\mathbb{R}^{N}, N=n+1$, and $B=[0,1]^{N}$, we have $d \omega=$ $(\operatorname{div} F) \mu_{N}$, thus, $\int_{B} d \omega=\int_{B} \operatorname{div} F$, whence

$$
\begin{equation*}
\int_{B} d \omega=\int_{\partial B} \omega \tag{15f2}
\end{equation*}
$$

for all n-forms ω on \mathbb{R}^{N}, which is Stokes' theorem for nonsingular cubes.
15f3 Theorem. (Stokes' theorem)
Let C be a k-chain in \mathbb{R}^{N}, and ω a $(k-1)$-form of class C^{1} on \mathbb{R}^{N}. Then

$$
\int_{C} d \omega=\int_{\partial C} \omega
$$

(To be proved later, in Sect. 16d.)
$15 f 4$ Exercise. The divergence theorem holds for $G \subset \mathbb{R}^{n+1}$ and $\partial G \backslash Z$ (recall 15 e 7 and the paragraph before it) if and only if $\int_{G} d \omega=\int_{\partial G \backslash Z} \omega$ for all n-forms ω on \mathbb{R}^{n+1}.

Prove it.

Index

boundary, 254, 255, 262
0-box, 253
chain, 252
0-chain, 254
cross-product, 258
divergence theorem for cube, 260
equivalent chains, 253
exterior derivative, 256, 264
flux, 259, 260
0 -form, 253
hyperface, 260
normal vector conforms to orientation, 258
Stokes' theorem, $254,256,264$
tangent vector field, 258
$\partial(\partial \Gamma), \boxed{255}$
$\partial \gamma, 254$
$d(d \omega), 256$
$d \omega, 254-256,264$
$\partial \Gamma, 262$
$H_{i, a}, 261$
$h_{1} \times \cdots \times h_{n}, 258$
$\int_{C} \omega, 252$
$\mu_{N}, 257$

[^0]: ${ }^{1}$ Well, more formally, it is $\{(0, x)\}$.

[^1]: ${ }^{1}$ This fact will be proved for all forms of all orders, see $16 \mathrm{e} 4(\mathrm{~b})$.

[^2]: ${ }^{1}$ Recall Sect. 11e and 12c.

[^3]: ${ }^{1}$ For $N=3$ the cross-product is a binary operation, but for $N>3$ it is not. In fact, it is possible to define the corresponding associative binary operation (the so-called exterior product, or wedge product), not on vectors but on the so-called multivectors, see "Multivector" and "Exterior algebra" in Wikipedia.
 ${ }^{2}$ Not unexpectedly, in order to find $f(x)$ we need not just x but also \mathbf{n}_{x}.

[^4]: ${ }^{1}$ In fact, $3^{N}-1-2 N$.

[^5]: ${ }^{1} \int_{\partial B} \omega$ is the integral of the n-form ω over the n-chain ∂B defined by $15 \mathrm{e} 4 ; \int_{\partial B}\langle F, \mathbf{n}\rangle$ is the flux defined by (15e2).
 ${ }^{2}$ Hint: $\operatorname{div} F=\left(D_{1} F_{1}+\cdots+D_{N_{1}} F_{N_{1}}\right)+\left(D_{N_{1}+1} F_{N_{1}+1}+\cdots+D_{N_{1}+N_{2}} F_{N_{1}+N_{2}}\right)$.

