16 Stokes' theorem

16a Change of variables 265
16b A special case of differential form 267
16c Stokes' theorem for the volume form 269
16d Proving Stokes' theorem (in general) 271
16e Some implications 273

The ultimate theorem about integral of derivative, Stokes' theorem is the general fundamental theorem of integral calculus.

16a Change of variables

Given a mapping $\varphi \in C^{1}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}\right)$, every singular k-box $\Gamma: B \rightarrow \mathbb{R}^{\ell}$ leads to a singular k-box $\varphi \circ \Gamma: B \rightarrow \mathbb{R}^{n}$. Thus, every k-form ω on \mathbb{R}^{n} leads to a box function $\Gamma \mapsto \int_{\varphi \circ \Gamma} \omega$; it is additive (since the mapping $\Gamma \mapsto \varphi \circ \Gamma$ is). Can we find a k-form $\varphi^{*} \omega$ on \mathbb{R}^{ℓ} such that $\int_{\varphi \circ \Gamma} \omega=\int_{\Gamma} \varphi^{*} \omega$ for all Γ ?
16a1 Definition. Given a k-form ω on \mathbb{R}^{n} and a mapping $\varphi \in C^{1}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}\right)$, the pullback of ω along φ is a k-form $\varphi^{*} \omega$ on \mathbb{R}^{ℓ} defined by

$$
\begin{aligned}
& \left(\varphi^{*} \omega\right)\left(x, h_{1}, \ldots, h_{k}\right)=\omega\left(\varphi(x),(D \varphi)_{x}\left(h_{1}\right), \ldots,(D \varphi)_{x}\left(h_{k}\right)\right)= \\
& \quad=\omega\left(\varphi(x),\left(D_{h_{1}} \varphi\right)_{x}, \ldots,\left(D_{h_{k}} \varphi\right)_{x}\right) \text { for } x, h_{1}, \ldots, h_{k} \in \mathbb{R}^{\ell}
\end{aligned}
$$

The form $\varphi^{*} \omega$ is of class C^{m} whenever ω is of class C^{m} and φ is of class C^{m+1}. The mapping $\omega \mapsto \varphi^{*} \omega$ is linear. For $k=0$ the pullback is just the composition: $\left(\varphi^{*} f\right)(x)=f(\varphi(x)) ; \varphi^{*} f=f \circ \varphi$ (no need in C^{m+1} in this case). And $\varphi^{*}(f \omega)=\left(\varphi^{*} f\right)\left(\varphi^{*} \omega\right)=(f \circ \varphi) \varphi^{*} \omega$ for $f \in C^{1}\left(\mathbb{R}^{n}\right)$.

16a2 Lemma. $(\psi \circ \varphi)^{*} \omega=\varphi^{*}\left(\psi^{*} \omega\right)$ for all $\varphi \in C^{1}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}\right), \psi \in C^{1}\left(\mathbb{R}^{m} \rightarrow\right.$ \mathbb{R}^{n}), and k-forms ω on \mathbb{R}^{n}.

Proof. By the chain rule 2b11,

$$
(D(\psi \circ \varphi))_{x}=(D \psi)_{\varphi(x)} \circ(D \varphi)_{x}
$$

thus,

$$
\left((\psi \circ \varphi)^{*} \omega\right)\left(x, h_{1}, \ldots, h_{k}\right)=\omega\left((\psi \circ \varphi)(x),(D(\psi \circ \varphi))_{x}\left(h_{1}\right), \ldots,(D(\psi \circ \varphi))_{x}\left(h_{k}\right)\right)=
$$

$$
\begin{aligned}
& =\omega\left(\psi(\varphi(x)),(D \psi)_{\varphi(x)}(D \varphi)_{x} h_{1}, \ldots,(D \psi)_{\varphi(x)}(D \varphi)_{x} h_{k}\right)= \\
= & \left(\psi^{*} \omega\right)\left(\varphi(x),(D \varphi)_{x} h_{1}, \ldots,(D \varphi)_{x} h_{k}\right)=\left(\varphi^{*}\left(\psi^{*} \omega\right)\right)\left(x, h_{1}, \ldots, h_{k}\right) .
\end{aligned}
$$

The same applies to open subsets of $\mathbb{R}^{\ell}, \mathbb{R}^{m}, \mathbb{R}^{n}$, of course.
A singular k-box Γ in \mathbb{R}^{n} is a C^{1}-mapping $B \rightarrow \mathbb{R}^{n}$ on a box $B \subset \mathbb{R}^{k}$; the pullback $\Gamma^{*} \omega$ is well-defined,

$$
\left(\Gamma^{*} \omega\right)\left(u, h_{1}, \ldots, h_{k}\right)=\omega\left(\Gamma(u),\left(D_{h_{1}} \Gamma\right)_{u}, \ldots,\left(D_{h_{k}} \Gamma\right)_{u}\right)
$$

for $u \in B^{\circ}$ and $h_{1}, \ldots, h_{k} \in \mathbb{R}^{k}$. As every k-form on $\mathbb{R}^{k}, \Gamma^{*} \omega$ is $f \mu_{k}$, where μ_{k} is the volume form on \mathbb{R}^{k}, and $f(u)=\left(\Gamma^{*} \omega\right)\left(u, e_{1}, \ldots, e_{k}\right)=$ $\omega\left(\Gamma(u),\left(D_{1} \Gamma\right)_{u}, \ldots,\left(D_{k} \Gamma\right)_{u}\right)$. Thus, $\int_{B} \Gamma^{*} \omega=\int_{B} f=$ $\int_{B} \omega\left(\Gamma(u),\left(D_{1} \Gamma\right)_{u}, \ldots,\left(D_{k} \Gamma\right)_{u}\right) \mathrm{d} u$. It means that the definition (11e12) of $\int_{\Gamma} \omega$ may be rewritten as

$$
\begin{equation*}
\int_{\Gamma} \omega=\int_{B} \Gamma^{*} \omega . \tag{16a3}
\end{equation*}
$$

We see that it was the integral of the pullback, from the very beginning!
Let Γ be a singular k-box in $\mathbb{R}^{\ell}, \varphi \in C^{1}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}\right)$, and ω a k-form on \mathbb{R}^{n}. By 16a2, $(\varphi \circ \Gamma)^{*} \omega=\Gamma^{*}\left(\varphi^{*} \omega\right)$ on B°; integrating this we get the change of variable formula

$$
\begin{equation*}
\int_{\varphi \circ \Gamma} \omega=\int_{\Gamma} \varphi^{*} \omega \tag{16a4}
\end{equation*}
$$

for singular boxes, and therefore (by linearity in C), also for k-chains C in \mathbb{R}^{n} :

$$
\begin{equation*}
\int_{\varphi \circ C} \omega=\int_{C} \varphi^{*} \omega \tag{16a5}
\end{equation*}
$$

where $\varphi \circ C=c_{1}\left(\varphi \circ \Gamma_{1}\right)+\cdots+c_{p}\left(\varphi \circ \Gamma_{p}\right)$ for $c=c_{1} \Gamma_{1}+\cdots+c_{p} \Gamma_{p}$. In particular, $\partial \Gamma$ is a $(k-1)$-chain, and $\varphi \circ \partial \Gamma=\partial(\varphi \circ \Gamma)$, since (recall (15e6))

$$
\begin{aligned}
\varphi \circ \partial \Gamma=\varphi \circ\left(\sum_{i=1}^{k} \sum_{a=0,1}\right. & \left.(-1)^{i-1}(2 a-1) \Gamma \circ \Delta_{i, a}\right)= \\
& =\sum_{i=1}^{k} \sum_{a=0,1}(-1)^{i-1}(2 a-1) \varphi \circ \Gamma \circ \Delta_{i, a}=\partial(\varphi \circ \Gamma) ;
\end{aligned}
$$

for this chain 16a5) gives

$$
\begin{equation*}
\int_{\partial(\varphi \circ \Gamma)} \omega=\int_{\partial \Gamma} \varphi^{*} \omega . \tag{16a6}
\end{equation*}
$$

16b A special case of differential form

Given a mapping $\varphi \in C^{1}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{k}\right), \varphi(x)=\left(\varphi_{1}(x), \ldots, \varphi_{k}(x)\right)$, we denote ${ }^{1}$

$$
\begin{equation*}
d \varphi_{1} \wedge \cdots \wedge d \varphi_{k}=\varphi^{*} \mu_{k} \tag{16b1}
\end{equation*}
$$

where μ_{k} is the volume form on \mathbb{R}^{k}. That is,

$$
\begin{aligned}
& \left(d \varphi_{1} \wedge \cdots \wedge d \varphi_{k}\right)\left(x, h_{1}, \ldots, h_{k}\right)=\mu_{k}\left(\varphi(x),(D \varphi)_{x} h_{1}, \ldots,(D \varphi)_{x} h_{k}\right)= \\
& =\operatorname{det}\left((D \varphi)_{x} h_{1}, \ldots,(D \varphi)_{x} h_{k}\right)=\operatorname{det}\left(\left(D_{h_{i}} \varphi_{j}\right)_{x}\right)_{i, j}
\end{aligned}
$$

The last determinant shows that the mapping $\left(\varphi_{1}, \ldots, \varphi_{k}\right) \mapsto d \varphi_{1} \wedge \cdots \wedge d \varphi_{k}$ is antisymmetric and multilinear; that is,

$$
\begin{aligned}
& d \varphi_{i} \wedge d \varphi_{1} \wedge \cdots \wedge d \varphi_{i-1} \wedge d \varphi_{i+1} \cdots \wedge d \varphi_{k}=(-1)^{i-1} d \varphi_{1} \wedge \cdots \wedge d \varphi_{k}, \\
& d\left(\varphi_{1}+\psi_{1}\right) \wedge d \varphi_{2} \wedge \cdots \wedge d \varphi_{k}=d \varphi_{1} \wedge \cdots \wedge d \varphi_{k}+d \psi_{1} \wedge d \varphi_{2} \wedge \cdots \wedge d \varphi_{k} .
\end{aligned}
$$

If $\varphi \in C^{2}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{k}\right)$, that is, $\varphi_{1}, \ldots, \varphi_{k} \in C^{2}\left(\mathbb{R}^{n}\right)$, then $d \varphi_{1} \wedge \cdots \wedge d \varphi_{k}$ is of class C^{1}.

In particular (for $n=k, \varphi=\mathrm{id}$), using the informal but habitual notation x_{i} for the function $\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{i}$, we have

$$
\begin{gather*}
d x_{1} \wedge \cdots \wedge d x_{n}=\mu_{n} \\
\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)\left(x, h_{1}, \ldots, h_{n}\right)=\operatorname{det}\left(h_{1}, \ldots, h_{n}\right) \tag{16b2}
\end{gather*}
$$

The case $k=n-1$ is of special interest (as before).
16b3 Lemma. For arbitrary $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}^{n+1}$,

$$
\operatorname{det}\left(\left\langle a_{i}, b_{j}\right\rangle\right)_{i, j}=\left\langle a_{1} \times \cdots \times a_{n}, b_{1} \times \cdots \times b_{n}\right\rangle
$$

Proof. Both sides of this formula are antisymmetric multilinear n-forms in a_{1}, \ldots, a_{n} (for given b_{1}, \ldots, b_{n}). Thus, WLOG, $a_{1}=e_{p_{1}}, \ldots, a_{n}=e_{p_{n}}$ for some $1 \leq p_{1}<\cdots<p_{n} \leq n+1$. Similarly, $b_{1}=e_{q_{1}}, \ldots, b_{n}=e_{q_{n}}$ for some $1 \leq q_{1}<\cdots<q_{n} \leq n+1$. Now, both sides equal 1 if $p_{1}=q_{1}, \ldots, p_{n}=q_{n}$, otherwise 0 .

16b4 Lemma. For every $\varphi \in C^{1}\left(\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}\right)$, the n-form $d \varphi_{1} \wedge \cdots \wedge d \varphi_{n}$ corresponds, according to (15d1), to the vector field $F: x \mapsto \nabla \varphi_{1}(x) \times \cdots \times$ $\nabla \varphi_{n}(x)$.

[^0]Proof. $\left(d \varphi_{1} \wedge \cdots \wedge d \varphi_{n}\right)\left(x, h_{1}, \ldots, h_{n}\right)=\operatorname{det}\left(\left(D_{h_{i}} \varphi_{j}\right)_{x}\right)_{i, j}=\operatorname{det}\left(\left\langle\nabla \varphi_{j}(x), h_{i}\right\rangle\right)_{i . j}=$ $\left\langle\nabla \varphi_{1}(x) \times \cdots \times \nabla \varphi_{n}(x), h_{1} \times \cdots \times h_{n}\right\rangle$.

Note that $\left(D_{F(x)} \varphi\right)_{x}=0$.
We return to arbitrary k and n. A bit more generally than 16 b 2 , for a linear $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, we have $D_{h} \varphi=\varphi(h)$, thus,

$$
\left(d \varphi_{1} \wedge \cdots \wedge d \varphi_{k}\right)\left(h_{1}, \ldots, h_{k}\right)=\operatorname{det}\left(\varphi\left(h_{1}\right), \ldots, \varphi\left(h_{k}\right)\right)=\operatorname{det}\left(\left(\varphi_{i}\left(h_{j}\right)\right)_{i, j}\right)
$$

irrespective of x; not depending on x, this $d \varphi_{1} \wedge \cdots \wedge d \varphi_{k}$ may be interpreted not only as a differential form, but also as an antisymmetric multilinear form. In particular, given $1 \leq m_{1}<\cdots<m_{k} \leq n$,

$$
\left(d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k}}\right)\left(h_{1}, \ldots, h_{k}\right)=\operatorname{det}\left(\left\langle h_{j}, e_{m_{i}}\right\rangle\right)_{i, j}
$$

is a minor of the matrix $\left(h_{1}, \ldots, h_{k}\right)$ corresponding to the rows m_{1}, \ldots, m_{k}.
16b5 Lemma. For every antisymmetric multilinear k-form L on \mathbb{R}^{n},

$$
L=\sum_{1 \leq m_{1}<\cdots<m_{k} \leq n} L\left(e_{m_{1}}, \ldots, e_{m_{k}}\right) d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k}}
$$

Proof. Both sides of this formula are antisymmetric multilinear k-forms; we have to prove that they are equal on arbitrary $h_{1}, \ldots, h_{k} \in \mathbb{R}^{n}$. WLOG, $h_{1}=e_{p_{1}}, \ldots, h_{k}=e_{p_{k}}$ for some $1 \leq p_{1}<\cdots<p_{k} \leq n$. It remains to note that

$$
\left(d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k}}\right)\left(e_{p_{1}}, \ldots, e_{p_{k}}\right)= \begin{cases}1 & \text { if } m_{1}=p_{1}, \ldots, m_{k}=p_{k} \\ 0 & \text { otherwise }\end{cases}
$$

It follows that for every (differential) k-form ω on \mathbb{R}^{n},

$$
\begin{gather*}
\omega=\sum_{\substack{1 \leq m_{1}<\cdots<m_{k} \leq n}} f_{m_{1}, \ldots, m_{k}}(x) d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k}}, \tag{16b6}\\
f_{m_{1}, \ldots, m_{k}}(x)=\omega\left(x, e_{m_{1}}, \ldots, e_{m_{k}}\right) .
\end{gather*}
$$

Let $\varphi \in C^{1}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right)$ and $\psi \in C^{1}\left(\mathbb{R}^{m} \rightarrow \mathbb{R}^{k}\right)$; by Lemma 16a2, ($\psi \circ$ $\varphi)^{*} \mu_{k}=\varphi^{*}\left(\psi^{*} \mu_{k}\right)$, hence, $d(\psi \circ \varphi)_{1} \wedge \cdots \wedge d(\psi \circ \varphi)_{k}=\varphi^{*}\left(d \psi_{1} \wedge \cdots \wedge d \psi_{k}\right)$, that is,

$$
\begin{equation*}
\left.\varphi^{*}\left(d \psi_{1} \wedge \cdots \wedge d \psi_{k}\right)=d\left(\psi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\psi_{k} \circ \varphi\right)\right) \tag{16b7}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
\left.\varphi^{*}\left(f d \psi_{1} \wedge \cdots \wedge d \psi_{k}\right)=(f \circ \varphi) d\left(\psi_{1} \circ \varphi\right) \wedge \cdots \wedge d\left(\psi_{k} \circ \varphi\right)\right) \tag{16b8}
\end{equation*}
$$

for $f \in C^{1}\left(\mathbb{R}^{n}\right)$.

16b9 Lemma. If $\omega=f d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k}}$, then $d \omega=d f \wedge d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k}}$.
Proof. We apply both forms to $e_{m}, e_{m_{1}}, \ldots, e_{m_{k}}$ for arbitrary $m \in\{1, \ldots, n\} \backslash$ $\left\{m_{1}, \ldots, m_{k}\right\}$. First, by 15 f 1 ,

$$
(d \omega)\left(\cdot, e_{m}, e_{m_{1}}, \ldots, e_{m_{k}}\right)=D_{m} \omega\left(\cdot, e_{m_{1}}, \ldots, e_{m_{k}}\right)=D_{m} f,
$$

since the other terms (for $i=2, \ldots, k$) in 15 f 1 vanish. Second,
$\left(d f \wedge d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k}}\right)\left(\cdot, e_{m}, e_{m_{1}}, \ldots, e_{m_{k}}\right)=\left(\begin{array}{c|c}D_{m} f & D_{m_{1}} f \ldots D_{m_{k}} f \\ \hline 0 & I\end{array}\right)=D_{m} f$.
Finally, both forms vanish unless $e_{m_{1}}, \ldots, e_{m_{k}}$ are present among the $k+1$ chosen basis vectors.

16 b10 Exercise. $d f \wedge d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k}}=\sum_{i}\left(D_{i} f\right) d x_{i} \wedge d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k}}$. Prove it. ${ }^{1}$

16c Stokes' theorem for the volume form

16c1 Proposition. $\int_{\partial \Gamma} \mu_{n}=0$ for every singular $(n+1)$-box in \mathbb{R}^{n}.
Here μ_{n} is the volume form on \mathbb{R}^{n}, that is, $\mu_{n}\left(x, h_{1}, \ldots, h_{n}\right)=\operatorname{det}\left(h_{1}, \ldots, h_{n}\right)$. Clearly, $d \mu_{n}=0$ (since the determinant does not depend on x), thus, $\int_{\Gamma} d \mu_{n}=$ 0 , and 16 c 1 is a case of Stokes' theorem 15 f 3 .

16c2 Example. $n=0 ; \mathbb{R}^{n}=\{0\}, \Gamma:[0,1] \rightarrow\{0\}, \partial \Gamma=\{0\}-\{0\}=0$.
16c3 Example. $n=1 ; \Gamma:[0,1] \times[0,1] \underset{D}{\rightarrow} \mathbb{R}$;

$$
\begin{gathered}
\partial \Gamma=\left.\Gamma\right|_{A B}+\left.\Gamma\right|_{B C}+\left.\Gamma\right|_{C D}+\left.\Gamma\right|_{D A} ; \\
\int_{\left.\Gamma\right|_{A B}} \mu_{1}=\Gamma(B)-\Gamma(A)
\end{gathered}
$$

the four signed lengths sum up to 0 .
16c4 Example. $n=2 ; \Gamma:[0,1]^{3} \rightarrow \mathbb{R}^{2}$;

look twice: (a) see the 3-dimensional cube; (b) see its planar image, and note that the six signed areas sum up to 0 .

16c5 Lemma. It is sufficient to prove Prop. 16 c 1 for $\Gamma \in C^{2}\left(B \rightarrow \mathbb{R}^{n}\right)$.

[^1]Proof. It is sufficient to prove that $C^{2}\left(B \rightarrow \mathbb{R}^{n}\right)$ is dense in $C^{1}\left(B \rightarrow \mathbb{R}^{n}\right)$; that is, for arbitrary $\Gamma \in C^{1}\left(B \rightarrow \mathbb{R}^{n}\right)$ and $\varepsilon>0$ there exists $\Gamma_{\varepsilon} \in C^{2}(B \rightarrow$ \mathbb{R}^{n}) such that, for all $u \in B^{\circ},\left|\Gamma_{\varepsilon}(u)-\Gamma(u)\right| \leq \varepsilon$ and $\left|\left(D \Gamma_{\varepsilon}\right)_{u}-(D \Gamma)_{u}\right| \leq \varepsilon ;$ then $\left|\int_{\partial \Gamma_{\varepsilon}} \mu_{n}-\int_{\partial \Gamma} \mu_{n}\right|=\mathcal{O}(\varepsilon)$.

Here is the proof for $B=[0,1] \times[0,1] \subset \mathbb{R}^{2}$ (the general case is similar; see also 7d27, 7d28, 7e3).

We define Γ_{ε} by

$$
\Gamma_{\varepsilon}\left(u_{1}, u_{2}\right)=\frac{1}{\varepsilon^{2}} \int_{\left[u_{1}, u_{1}+\varepsilon\right] \times\left[u_{2}, u_{2}+\varepsilon\right]} \Gamma\left(\frac{v_{1}}{1+\varepsilon}, \frac{v_{2}}{1+\varepsilon}\right) \mathrm{d} v_{1} \mathrm{~d} v_{2},
$$

then the partial derivative

$$
\frac{\partial}{\partial u_{1}} \Gamma_{\varepsilon}\left(u_{1}, u_{2}\right)=\frac{1}{\varepsilon} \int_{\left[u_{2}, u_{2}+\varepsilon\right]} \frac{1}{\varepsilon}\left(\Gamma\left(\frac{u_{1}+\varepsilon}{1+\varepsilon}, \frac{v_{2}}{1+\varepsilon}\right)-\Gamma\left(\frac{u_{1}}{1+\varepsilon}, \frac{v_{2}}{1+\varepsilon}\right)\right) \mathrm{d} v_{2}
$$

is of class C^{1} and converges (uniformly) to $\frac{\partial}{\partial u_{1}} \Gamma\left(u_{1}, u_{2}\right)$.
Proof of Prop. 16c1 for $n=2$.
By 16c5, WLOG, $\Gamma \in C^{2}\left(B \rightarrow \mathbb{R}^{2}\right), B=[0,1]^{3}$. By (16a6) applied to $\Gamma \circ$ id, $\int_{\partial \Gamma} \mu_{2}=\int_{\partial B} \Gamma^{*} \mu_{2}$. The 2-form $\Gamma^{*} \mu_{2}=d \Gamma_{1} \wedge d \Gamma_{2}$ of class C^{1} on B corresponds, by 16 b 4 , to the vector field $F \in C^{1}\left(B \rightarrow \mathbb{R}^{3}\right)$,

$$
F(u)=\nabla \Gamma_{1}(u) \times \nabla \Gamma_{2}(u) .
$$

By (15e5) and $15 \mathrm{e} 3, \int_{\partial B} \Gamma^{*} \mu_{2}=\int_{\partial B}\langle F, \mathbf{n}\rangle=\int_{B} \operatorname{div} F$. It remains to prove that $\operatorname{div} F=0 .{ }^{1}$

We have

$$
F_{1}=\operatorname{det}\left(D_{2} \Gamma, D_{3} \Gamma\right), \quad F_{2}=-\operatorname{det}\left(D_{1} \Gamma, D_{3} \Gamma\right), \quad F_{3}=\operatorname{det}\left(D_{1} \Gamma, D_{2} \Gamma\right),
$$

(since $F_{j}=\left\langle e_{j}, \nabla \Gamma_{1} \times \nabla \Gamma_{2}\right\rangle=\operatorname{det}\left(e_{j}, \nabla \Gamma_{1}, \nabla \Gamma_{2}\right)$), thus

$$
\begin{aligned}
\operatorname{div} F= & D_{1} F_{1}+D_{2} F_{2}+D_{3} F_{3}= \\
= & \operatorname{det}\left(D_{1} D_{2} \Gamma, D_{3} \Gamma\right)+\operatorname{det}\left(D_{2} \Gamma, D_{1} D_{3} \Gamma\right)- \\
- & \operatorname{det}\left(D_{2} D_{1} \Gamma, D_{3} \Gamma\right)-\operatorname{det}\left(D_{1} \Gamma, D_{2} D_{3} \Gamma\right)+ \\
+ & \operatorname{det}\left(D_{3} D_{1} \Gamma, D_{2} \Gamma\right)+\operatorname{det}\left(D_{1} \Gamma, D_{3} D_{2} \Gamma\right)= \\
& =\operatorname{det}\left(D_{1} D_{2} \Gamma, D_{3} \Gamma\right)-\operatorname{det}\left(D_{2} D_{1} \Gamma, D_{3} \Gamma\right)+ \\
& +\operatorname{det}\left(D_{2} \Gamma, D_{1} D_{3} \Gamma\right)+\operatorname{det}\left(D_{3} D_{1} \Gamma, D_{2} \Gamma\right)- \\
& \quad-\operatorname{det}\left(D_{1} \Gamma, D_{2} D_{3} \Gamma\right)+\operatorname{det}\left(D_{1} \Gamma, D_{3} D_{2} \Gamma\right)=0 .
\end{aligned}
$$

[^2]
Proof of Prop. 16 c 1 (in general).

The first part of the proof for $n=2$ needs only trivial changes; $\Gamma^{*} \mu_{n}$ corresponds to $F \in C^{1}\left(B \rightarrow \mathbb{R}^{n}\right), B=[0,1]^{n+1}$,

$$
F(u)=\nabla \Gamma_{1}(u) \times \cdots \times \nabla \Gamma_{n}(u) ;
$$

we have to prove that $\operatorname{div} F=0$.
Introducing

$$
A_{i}=\operatorname{det}\left(D_{1} \Gamma, \ldots, D_{i-1} \Gamma, D_{i+1} \Gamma, \ldots, D_{n} \Gamma\right)
$$

$$
B_{i, j}=
$$

$$
\begin{cases}\operatorname{det}\left(D_{1} \Gamma, \ldots, D_{i-1} \Gamma, D_{i+1} \Gamma, \ldots, D_{j-1} \Gamma, D_{i} D_{j} \Gamma, D_{j+1} \Gamma, \ldots, D_{n} \Gamma\right) & \text { for } i<j, \\ \operatorname{det}\left(D_{1} \Gamma, \ldots, D_{j-1} \Gamma, D_{i} D_{j} \Gamma, D_{j+1} \Gamma, \ldots, D_{i-1} \Gamma, D_{i+1} \Gamma, \ldots, D_{n} \Gamma\right) & \text { for } j<i,\end{cases}
$$

we have

$$
F_{i}=(-1)^{i-1} A_{i} ; \quad D_{i} A_{i}=\sum_{j: j \neq i} B_{i, j} ; \quad B_{j, i}=(-1)^{j-i-1} B_{i, j} ;
$$

hence

$$
\begin{aligned}
& \operatorname{div} F=\sum_{i} D_{i} F_{i}=\sum_{i}(-1)^{i-1} \sum_{j: j \neq i} B_{i, j}= \\
& \quad=\sum_{i, j: i \neq j}(-1)^{i-1} B_{i, j}=\sum_{i, j: i<j}\left((-1)^{i-1} B_{i, j}+(-1)^{j-1} B_{j, i}\right)=0 .
\end{aligned}
$$

16d Proving Stokes' theorem (in general)

16d1 Remark. Given $\varphi \in C^{1}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{\ell}\right)$, a $(k-1)$-form ω on \mathbb{R}^{ℓ}, and a singular k-box Γ in \mathbb{R}^{n}, we may consider two cases of Stokes' theorem 15f3,
(a)

$$
\begin{aligned}
\int_{\Gamma} d\left(\varphi^{*} \omega\right) & =\int_{\partial \Gamma} \varphi^{*} \omega \\
\int_{\varphi \circ \Gamma} d \omega & =\int_{\partial(\varphi \circ \Gamma)} \omega .
\end{aligned}
$$

(b)

The change of variables (16a4), 16a6) gives

$$
\int_{\varphi \circ \Gamma} d \omega=\int_{\Gamma} \varphi^{*}(d \omega), \quad \int_{\partial(\varphi \circ \Gamma)} \omega=\int_{\partial \Gamma} \varphi^{*} \omega .
$$

Thus, we may rewrite (a) and (b) as

$$
\begin{aligned}
\int_{\Gamma} d\left(\varphi^{*} \omega\right) & =\int_{\partial(\varphi \circ \Gamma)} \omega \\
\int_{\Gamma} \varphi^{*}(d \omega) & =\int_{\partial(\varphi \circ \Gamma)} \omega
\end{aligned}
$$

In order to conclude that $(\mathrm{a}) \Longleftrightarrow(\mathrm{b})$ we need to know that $d\left(\varphi^{*} \omega\right)=\varphi^{*}(d \omega) .{ }^{1}$
16d2 Lemma. In order to obtain Stokes' theorem for all $(k-1)$-forms of class C^{1} on \mathbb{R}^{N}, it is sufficient to have it for the $(k-1)$-form

$$
\nu_{k-1}=x_{1} d x_{2} \wedge \cdots \wedge d x_{k}
$$

on \mathbb{R}^{k}.
16d3 Example. The 1 -form ν_{1} on \mathbb{R}^{2} is $x_{1} d x_{2}$, that is, $x d y$. For every box $B \subset \mathbb{R}^{2}, \int_{\partial B} \nu_{1}=\int_{B} \mu_{2}=v(B)$.

The same holds for every "good" planar domain.
Think, what happens in three dimensions.
Proof of Lemma 16d2. By (16b6), all $(k-1)$-forms of class C^{1} on \mathbb{R}^{N} are linear combinations of such forms:

$$
\omega=f(x) d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k-1}}
$$

for $f \in C^{1}\left(\mathbb{R}^{N}\right)$ and $1 \leq m_{1}<\cdots<m_{k-1} \leq N$. Due to linearity (in ω) of both sides of Stokes' theorem, WLOG, ω is as above. We introduce $\varphi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}$ by $\varphi(x)=\left(f(x), x_{m_{1}}, \ldots, x_{m_{k-1}}\right)$. By 16b8), $\omega=\varphi^{*} \nu_{k-1}$. By 16b9), $d \nu_{k-1}=\mu_{k}$ and $d \omega=d f \wedge d x_{m_{1}} \wedge \cdots \wedge d x_{m_{k-1}}$; the latter is $\varphi^{*} \mu_{k}$ (just by (16b1). We get

$$
d\left(\varphi^{*} \nu_{k-1}\right)=d \omega=\varphi^{*} \mu_{k}=\varphi^{*}\left(d \nu_{k-1}\right)
$$

It remains to use Remark 16d1

[^3]
Proof of Stokes' theorem $15 f 3$.

By Lemma 16d2, WLOG, $N=k$ and $\omega=\nu_{k-1}$. Similarly to 16 c 5 we assume that $\Gamma \in C^{2}\left(B \rightarrow \mathbb{R}^{k}\right), B=[0,1]^{k}$. Similarly to the proof of Prop. 16c1, $\Gamma^{*} \nu_{k-1}$ corresponds to a vector field; by 16b8), this vector field is $f F$ where $f=\Gamma_{1}$ and $F=\nabla \Gamma_{2} \times \cdots \times \nabla \Gamma_{k}$. We note that the vector field F is the same as in the proof of Prop. 16c1, but for the singular k-box $u \mapsto\left(\Gamma_{2}(u), \ldots, \Gamma_{k}(u)\right)$ in \mathbb{R}^{k-1}. As was seen there, $\operatorname{div} F=$ 0 . By $14 \mathrm{c} 5, \operatorname{div}(f F)=\langle\nabla f, F\rangle$. As before, $\int_{\partial \Gamma} \nu_{k-1}=\int_{\partial B} \Gamma^{*} \nu_{k-1}=$ $\int_{\partial B}\langle f F, \mathbf{n}\rangle=\int_{B} \operatorname{div}(f F)$. It remains to prove that $\int_{B} \operatorname{div}(f F)=\int_{\Gamma} d \nu_{k-1}$, that is, $\int_{B}\langle\nabla f, F\rangle=\int_{\Gamma} \mu_{k}$.

By (11e12) and the definition of μ_{k},

$$
\int_{\Gamma} \mu_{k}=\int_{B} \operatorname{det}\left(D_{1} \Gamma, \ldots, D_{k} \Gamma\right)=\int_{B} \operatorname{det} D \Gamma .
$$

On the other hand,

$$
\langle\nabla f, F\rangle=\left\langle\nabla \Gamma_{1}, \nabla \Gamma_{2} \times \cdots \times \nabla \Gamma_{k}\right\rangle=\operatorname{det}\left(\nabla \Gamma_{1}, \ldots, \nabla \Gamma_{k}\right)=\operatorname{det} D \Gamma .
$$

16e Some implications

ON DIFFEOMORPHISM INVARIANCE

16e1 Proposition. $\varphi^{*}(d \omega)=d\left(\varphi^{*} \omega\right)$ whenever $\varphi \in C^{1}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}\right)$ and ω is a k-form of class C^{1} on \mathbb{R}^{n}.

Proof. For every singular k-box Γ in \mathbb{R}^{ℓ},

$$
\int_{\Gamma} \varphi^{*}(d \omega)=\int_{\varphi \circ \Gamma} d \omega=\int_{\partial(\varphi \circ \Gamma)} \omega=\int_{\partial \Gamma} \varphi^{*} \omega=\int_{\Gamma} d\left(\varphi^{*} \omega\right) .
$$

In particular, when $\ell=n$ and φ is a diffeomorphism, we get a one-toone correspondence between forms (ω and $\varphi^{*} \omega$), and this correspondence preserves all operations on forms. The calculus of forms is diffeomorphism invariant. Its formulas look the same in all (curvilinear) coordinates!

16e2 Corollary. If $\omega=f_{0} d f_{1} \wedge \cdots \wedge d f_{k}$ then $d \omega=d f_{0} \wedge d f_{1} \wedge \cdots \wedge d f_{k}$, for arbitrary $f_{0}, f_{1}, \ldots, f_{k} \in C^{1}\left(\mathbb{R}^{n}\right)$.

Proof. We introduce $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k+1}$ by $\varphi(x)=\left(f_{0}(x), \ldots, f_{k}(x)\right)$, note that $\omega=\varphi^{*} \nu_{k}$ by (16b8), $d \nu_{k}=\mu_{k+1}, \varphi^{*} \mu_{k+1}=d f_{0} \wedge \cdots \wedge d f_{k}$ by (16b7); and $\varphi^{*}\left(d \nu_{k}\right)=d\left(\varphi^{*} \nu_{k}\right)$ by 16 e 1 .

16e3 Definition. A form ω of class C^{1} is closed if $d \omega=0$.
16e4 Exercise. (a) If $\omega=d f_{1} \wedge \cdots \wedge d f_{k}$ for some $f_{1}, \ldots, f_{k} \in C^{2}\left(\mathbb{R}^{n}\right)$, then ω is closed.
(b) For every form ω of class C^{2} the form $d \omega$ is closed.

Prove it.
That is, $d(d \omega)=0$ always.
It is easy to generalize the pullback $\varphi^{*} \omega$ (defined by 16a1) to a form ω on a manifold $M \subset \mathbb{R}^{n}$ (rather than the whole \mathbb{R}^{n}) and $\varphi: \mathbb{R}^{\ell} \rightarrow M$. In particular, for a chart (G, ψ) of M the pullback $\psi^{*} \omega$ is a form on G, and we may define $d \omega$ as a form on M such that $\psi^{*}(d \omega)=d\left(\psi^{*} \omega\right)$ for all charts. Prop. 16 e 1 ensures existence of such $d \omega$ via a counterpart of 12 a 9 . Then it is easy to generalize Stokes' theorem to forms (and singular boxes) on M. Still, k-forms on M for $k+1=\operatorname{dim} M$ correspond to tangent vector fields on M, and the exterior derivative corresponds to divergence (as in Sect. 15f). However, formulas for divergence look differently in different coordinates; they are not diffeomorphism invariant. Also the correspondence between forms and vector fields is not diffeomorphism invariant.

16e5 Exercise. Let $\varphi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a diffeomorphism, and $G \subset \mathbb{R}^{N}$, $Z \subset \partial G$ such that the divergence theorem holds for $G, \partial G \backslash Z$. Then it holds also for $\varphi(G), \varphi(\partial G \backslash Z)$.

Prove it. ${ }^{1}$
16e6 Exercise (CONE). Consider in \mathbb{R}^{3} the cylinder $G_{1}=\left\{(x, y): x^{2}+y^{2}<\right.$ $1\} \times(0,1)$, the cone $G_{2}=\left\{(x, y, z): x^{2}+y^{2}<z^{2}, 0<z<1\right\}$, and the mapping $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \varphi(x, y, z)=(x z, y z, z)$.
(a) $\int_{G_{1}} \varphi^{*} \omega=\int_{G_{2}} \omega$ for every 3-form ω on G_{2};
(b) $\int_{\partial G_{1} \backslash Z_{1}} \varphi^{*} \omega=\int_{\partial G_{2} \backslash Z_{2}} \omega$ for every 2-form ω on $\partial G_{2} \backslash Z_{2}$; here $Z_{1}=$ $\left\{(x, y): x^{2}+y^{2}=1\right\} \times\{0,1\} \subset \partial G_{1}, Z_{2}=\{(0,0,0)\} \cup\left\{(x, y): x^{2}+y^{2}=\right.$ $1\} \times\{1\} \subset \partial G_{2} ;$
(c) $\int_{G_{2}} d \omega=\int_{\partial G_{2} \backslash Z_{2}} \omega$ for every 2-form ω of class C^{2} on a neighborhood of \bar{G}_{2};
(d) the divergence theorem holds for $G_{2}, \partial G_{2} \backslash Z_{2}$.

Prove it. ${ }^{2}$

[^4]$16 e 7$ Exercise (CONE). Let $G \subset \mathbb{R}^{n}, Z \subset \partial G$ be such that the divergence theorem holds for $G, \partial G \backslash Z$. Consider such sets in $\mathbb{R}^{N}=\mathbb{R}^{n} \times \mathbb{R}$:
\[

$$
\begin{array}{ll}
G_{1}=G \times(0,1), & Z_{1}=(\partial G \times\{0,1\}) \cup(Z \times[0,1]), \\
G_{2}=\{(t x, t): x \in G, t \in(0,1)\}, & Z_{2}=\{(0,0)\} \cup(Z \times[0,1]) .
\end{array}
$$
\]

Generalize 16 e 6 to this situation; prove that the divergence theorem holds for $G_{2}, \partial G_{2} \backslash Z_{2}$.

16e8 Exercise (SIMPLEX). Using 16 e 7 and induction in n, obtain the divergence theorem for the simplex $\left\{\left(x_{1}, \ldots, x_{n}\right) \in(0, \infty)^{n}: x_{1}+\cdots+x_{n}<1\right\}$.

ON CONVERGENCE OF SINGULAR BOXES

Recall 15a3: two k-chains C_{1}, C_{2} are equivalent $\left(C_{1} \sim C_{2}\right)$ if $\int_{C_{1}} \omega=\int_{C_{2}} \omega$ for all k-forms ω of class C^{0}. Or equivalently, of class C^{1} (since these are dense).

16e9 Proposition. If $C_{1} \sim C_{2}$ then $\partial C_{1} \sim \partial C_{2}$.

Proof.

$$
\int_{\partial C_{1}} \omega=\int_{C_{1}} d \omega=\int_{C_{2}} d \omega=\int_{\partial C_{2}} \omega .
$$

Now, recall convergence of paths (11b11); equivalently, $\gamma_{j} \rightarrow \gamma$ when there exist $\varepsilon_{j} \rightarrow 0$ and L such that for all $t \in\left(t_{0}, t_{1}\right)$,

$$
\left|\gamma_{j}(t)-\gamma(t)\right| \leq \varepsilon_{j}, \quad\left|\gamma_{j}^{\prime}(t)\right| \leq L
$$

16e10 Proposition. If $\gamma_{j} \rightarrow \gamma$ then $\int_{\gamma_{j}} \omega \rightarrow \int_{\gamma} \omega$ for every 1-form ω.
16e11 Remark. The condition $\left|\gamma_{j}^{\prime}(t)\right| \leq L$ cannot be dropped. Here is a counterexample:

$$
\begin{gathered}
\gamma_{j}(t)=\frac{1}{\sqrt{j}}(\cos j t, \sin j t) \quad \text { for } t \in[0,2 \pi] \\
\gamma_{j} \rightarrow \gamma, \quad \gamma(t)=(0,0) ; \\
\omega=x d y-y d x \\
\int_{\gamma_{j}} \omega=\int_{0}^{2 \pi} \frac{1}{j}\left(\cos j t \cdot(\sin j t)^{\prime}-\sin j t \cdot(\cos j t)^{\prime}\right) \mathrm{d} t=2 \pi \quad \text { for all } j ; \\
\int_{\gamma} \omega=0
\end{gathered}
$$

Proof (sketch) of Prop. 16e10.

WLOG, ω is of class C^{1} (otherwise, approximate it by $\omega_{\delta} \in C^{1}, \mid \omega(x, h)-$ $\omega_{\delta}(x, h)|\leq \delta| h \mid$, then $\left.\left|\int_{\gamma_{j}}\left(\omega-\omega_{\delta}\right)\right| \leq \delta L\left(t_{1}-t_{0}\right)\right)$. We take boxes $B_{j}=$ $\left[t_{0}, t_{1}\right] \times\left[0, \varepsilon_{j}\right] \subset \mathbb{R}^{2}$ and define singular 2-boxes $\Gamma_{j}: B_{j} \rightarrow \mathbb{R}^{n}$ by

$$
\Gamma_{j}(t, u)=\left(1-\frac{u}{\varepsilon_{j}}\right) \gamma_{j}(t)+\frac{u}{\varepsilon_{j}} \gamma(t)
$$

We have $\Gamma_{j}(\cdot, 0)=\gamma_{j}$ and $\Gamma_{j}\left(\cdot, \varepsilon_{j}\right)=\gamma$, thus,

$$
\partial \Gamma_{j}=\gamma_{j}-\gamma+\beta_{j}-\alpha_{j},
$$

$\int_{\alpha_{j}} \omega=\mathcal{O}\left(\varepsilon_{j}\right), \int_{\beta_{j}} \omega=\mathcal{O}\left(\varepsilon_{j}\right)$, and $\int_{\partial \Gamma_{j}} \omega=\int_{\Gamma_{j}} d \omega=\mathcal{O}\left(\varepsilon_{j}\right)$, since $\left|D \Gamma_{j}\right|=$ $\mathcal{O}(1)$.

Prop. 16 e 10 is basically the converse to Prop. 11 e 11 for $k=1$, and generalizes readily to all k.

ON VECTOR CALCULUS

We know (recall Sect. 11e) that 0 -forms and n-forms on \mathbb{R}^{n} correspond to scalar fields (that is, functions), and no wonder: $\binom{n}{0}=\binom{n}{n}=1$. Further, we know (recall (15d1)) that ($n-1$)-forms correspond to vector fields. Also 1 -forms correspond to vector fields,

$$
F_{1} d x_{1}+\cdots+F_{n} d x_{n} \longleftrightarrow F
$$

and no wonder: $\binom{n}{1}=\binom{n}{n-1}=n$. For other k it is harder to visualize k-forms, since $\binom{n}{k}>n$.

Dimension 3 is of special interest, and luckily, for $n=3$ the four cases $0,1,(n-1), n$ exhaust all k. A single notion "exterior derivative" corresponds (for $n=3$) to three well-known operations of vector calculus: gradient (∇), curl (curl), and divergence (div), as follows.
(16e12)

Using 16b9, 16b10, $d\left(F_{1} d x_{1}+F_{2} d x_{2}+F_{3} d x_{3}\right)=d F_{1} \wedge d x_{1}+d F_{2} \wedge d x_{2}+$ $d F_{3} \wedge d x_{3}=\left(D_{1} F_{2}-D_{2} F_{1}\right) d x_{1} \wedge d x_{2}+\left(D_{2} F_{3}-D_{3} F_{2}\right) d x_{2} \wedge d x_{3}+\left(D_{3} F_{1}-\right.$ $\left.D_{1} F_{3}\right) d x_{3} \wedge d x_{1}$, thus,

$$
\begin{equation*}
\operatorname{curl}\left(F_{1}, F_{2}, F_{3}\right)=\left(D_{2} F_{3}-D_{3} F_{2}, D_{3} F_{1}-D_{1} F_{3}, D_{1} F_{2}-D_{2} F_{1}\right) \tag{16e13}
\end{equation*}
$$

Stokes' theorem for $k=2, \int_{\Gamma} d \omega=\int_{\partial \Gamma} \omega$ for a 1-form ω on \mathbb{R}^{3}, gives the "classical Stokes' theorem" (also known as "Kelvin-Stokes theorem", "curl theorem" and "Stokes' formula"): for every ${ }^{1}$ vector field F (of class C^{1}) on \mathbb{R}^{3} and every singular 2-box Γ in \mathbb{R}^{3},
(16e14) the circulation of F around $\gamma=\partial \Gamma$
is equal to the flux of curl F through Γ,
the circulation of F around γ being defined as $\int_{t_{0}}^{t_{1}}\left\langle F(\gamma(t)), \gamma^{\prime}(t)\right\rangle \mathrm{d} t$. In this sense, the curl is the circulation density, called also "vorticity" (and its flux is called also the net vorticity of F throughout Γ). A small paddle-wheel in the flow spins the fastest when its axle points in the direction of the curl vector, and in this case its angular speed is half the length of the curl vector. ${ }^{2}$

Index

change of variable, 266
classical Stokes' theorem, 277
curl, 277
pullback, 265
vorticity, 277
$d \varphi_{1} \wedge \cdots \wedge d \varphi_{k}, 267$
$d x_{1} \wedge \cdots \wedge d x_{n}, 267$
$f_{m_{1}, \ldots, m_{k}}, 268$
$\mu_{k}, 266$
$\mu_{n}, 267$
$\nu_{k-1}, 272$
$\Gamma^{*} \omega, 266$
$\varphi^{*} \omega, 265$
$x_{i}, 267$

[^5]
[^0]: ${ }^{1}$ In fact, it is possible to define the corresponding associative binary operation (so-called exterior product) $\omega_{1}, \omega_{2} \mapsto \omega_{1} \wedge \omega_{2}\left(\right.$ a $(k+l)$-form, if ω_{1} is a k-form and ω_{2} is an l-form).

[^1]: ${ }^{1}$ Hint: follow the spirit of the proof of 16 b 9

[^2]: ${ }^{1}$ Basically, we'll examine an infinitesimal box in quadratic approximation.

[^3]: ${ }^{1}$ Ultimately we'll see that this holds for all φ and ω; see 16 e 1 .

[^4]: ${ }^{1}$ Hint: $\int_{G} \varphi^{*}(d \omega)=\int_{\varphi(G)} d \omega$ and $\int_{\partial G \backslash Z} \varphi^{*} \omega=\int_{\varphi(\partial G \backslash Z)} \omega$.
 ${ }^{2}$ Hint: (c) use (a), (b); recall 15 e 7 and the paragraph after it.

[^5]: ${ }^{1}$ Since every F corresponds to some ω.
 ${ }^{2}$ Shifrin p. 394.

