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The ultimate theorem about integral of derivative, Stokes’ theorem is the
general fundamental theorem of integral calculus.

16a Change of variables

Given a mapping ϕ ∈ C1(R` → Rn), every singular k-box Γ : B → R` leads
to a singular k-box ϕ ◦ Γ : B → Rn. Thus, every k-form ω on Rn leads to
a box function Γ 7→

∫
ϕ◦Γ ω; it is additive (since the mapping Γ 7→ ϕ ◦ Γ is).

Can we find a k-form ϕ∗ω on R` such that
∫
ϕ◦Γ ω =

∫
Γ
ϕ∗ω for all Γ?

16a1 Definition. Given a k-form ω on Rn and a mapping ϕ ∈ C1(R` → Rn),
the pullback of ω along ϕ is a k-form ϕ∗ω on R` defined by

(ϕ∗ω)(x, h1, . . . , hk) = ω
(
ϕ(x), (Dϕ)x(h1), . . . , (Dϕ)x(hk)

)
=

= ω
(
ϕ(x), (Dh1ϕ)x, . . . , (Dhkϕ)x

)
for x, h1, . . . , hk ∈ R` .

The form ϕ∗ω is of class Cm whenever ω is of class Cm and ϕ is of class
Cm+1. The mapping ω 7→ ϕ∗ω is linear. For k = 0 the pullback is just the
composition: (ϕ∗f)(x) = f(ϕ(x)); ϕ∗f = f ◦ ϕ (no need in Cm+1 in this
case). And ϕ∗(fω) = (ϕ∗f)(ϕ∗ω) = (f ◦ ϕ)ϕ∗ω for f ∈ C1(Rn).

16a2 Lemma. (ψ◦ϕ)∗ω = ϕ∗(ψ∗ω) for all ϕ ∈ C1(R` → Rm), ψ ∈ C1(Rm →
Rn), and k-forms ω on Rn.

Proof. By the chain rule 2b11,(
D(ψ ◦ ϕ)

)
x = (Dψ)ϕ(x) ◦ (Dϕ)x ;

thus,(
(ψ◦ϕ)∗ω)(x, h1, . . . , hk) = ω

(
(ψ◦ϕ)(x), (D(ψ◦ϕ))x(h1), . . . , (D(ψ◦ϕ))x(hk)

)
=
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= ω
(
ψ(ϕ(x)), (Dψ)ϕ(x)(Dϕ)xh1, . . . , (Dψ)ϕ(x)(Dϕ)xhk

)
=

= (ψ∗ω)
(
ϕ(x), (Dϕ)xh1, . . . , (Dϕ)xhk

)
=
(
ϕ∗(ψ∗ω)

)
(x, h1, . . . , hk) .

The same applies to open subsets of R`,Rm,Rn, of course.
A singular k-box Γ in Rn is a C1-mapping B → Rn on a box B ⊂ Rk;

the pullback Γ∗ω is well-defined,

(Γ∗ω)(u, h1, . . . , hk) = ω
(
Γ(u), (Dh1Γ)u, . . . , (DhkΓ)u

)
for u ∈ B◦ and h1, . . . , hk ∈ Rk. As every k-form on Rk, Γ∗ω is fµk,
where µk is the volume form on Rk, and f(u) = (Γ∗ω)(u, e1, . . . , ek) =
ω
(
Γ(u), (D1Γ)u, . . . , (DkΓ)u

)
. Thus,

∫
B

Γ∗ω =
∫
B
f =∫

B
ω
(
Γ(u), (D1Γ)u, . . . , (DkΓ)u

)
du. It means that the definition (11e12) of∫

Γ
ω may be rewritten as

(16a3)

∫
Γ

ω =

∫
B

Γ∗ω .

We see that it was the integral of the pullback, from the very beginning!
Let Γ be a singular k-box in R`, ϕ ∈ C1(R` → Rn), and ω a k-form on

Rn. By 16a2, (ϕ ◦Γ)∗ω = Γ∗(ϕ∗ω) on B◦; integrating this we get the change
of variable formula

(16a4)

∫
ϕ◦Γ

ω =

∫
Γ

ϕ∗ω

for singular boxes, and therefore (by linearity in C), also for k-chains C in
Rn:

(16a5)

∫
ϕ◦C

ω =

∫
C

ϕ∗ω ,

where ϕ ◦ C = c1(ϕ ◦ Γ1) + · · · + cp(ϕ ◦ Γp) for c = c1Γ1 + · · · + cpΓp. In
particular, ∂Γ is a (k− 1)-chain, and ϕ ◦ ∂Γ = ∂(ϕ ◦ Γ), since (recall (15e6))

ϕ ◦ ∂Γ = ϕ ◦
( k∑
i=1

∑
a=0,1

(−1)i−1(2a− 1)Γ ◦∆i,a

)
=

=
k∑
i=1

∑
a=0,1

(−1)i−1(2a− 1)ϕ ◦ Γ ◦∆i,a = ∂(ϕ ◦ Γ) ;

for this chain (16a5) gives

(16a6)

∫
∂(ϕ◦Γ)

ω =

∫
∂Γ

ϕ∗ω .
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16b A special case of differential form

Given a mapping ϕ ∈ C1(Rn → Rk), ϕ(x) =
(
ϕ1(x), . . . , ϕk(x)

)
, we denote1

(16b1) dϕ1 ∧ · · · ∧ dϕk = ϕ∗µk ,

where µk is the volume form on Rk. That is,

(dϕ1 ∧ · · · ∧ dϕk)(x, h1, . . . , hk) = µk
(
ϕ(x), (Dϕ)xh1, . . . , (Dϕ)xhk

)
=

= det
(
(Dϕ)xh1, . . . , (Dϕ)xhk

)
= det

(
(Dhiϕj)x

)
i,j .

The last determinant shows that the mapping (ϕ1, . . . , ϕk) 7→ dϕ1∧· · ·∧dϕk
is antisymmetric and multilinear; that is,

dϕi ∧ dϕ1 ∧ · · · ∧ dϕi−1 ∧ dϕi+1 · · · ∧ dϕk = (−1)i−1dϕ1 ∧ · · · ∧ dϕk ,
d(ϕ1 + ψ1) ∧ dϕ2 ∧ · · · ∧ dϕk = dϕ1 ∧ · · · ∧ dϕk + dψ1 ∧ dϕ2 ∧ · · · ∧ dϕk .

If ϕ ∈ C2(Rn → Rk), that is, ϕ1, . . . , ϕk ∈ C2(Rn), then dϕ1 ∧ · · · ∧ dϕk
is of class C1.

In particular (for n = k, ϕ = id), using the informal but habitual notation
xi for the function (x1, . . . , xn) 7→ xi, we have

(16b2)
dx1 ∧ · · · ∧ dxn = µn ;

(dx1 ∧ · · · ∧ dxn)(x, h1, . . . , hn) = det(h1, . . . , hn) .

The case k = n− 1 is of special interest (as before).

16b3 Lemma. For arbitrary a1, . . . , an, b1, . . . , bn ∈ Rn+1,

det
(
〈ai, bj〉

)
i,j = 〈a1 × · · · × an, b1 × · · · × bn〉 .

Proof. Both sides of this formula are antisymmetric multilinear n-forms in
a1, . . . , an (for given b1, . . . , bn). Thus, WLOG, a1 = ep1 , . . . , an = epn for
some 1 ≤ p1 < · · · < pn ≤ n + 1. Similarly, b1 = eq1 , . . . , bn = eqn for some
1 ≤ q1 < · · · < qn ≤ n + 1. Now, both sides equal 1 if p1 = q1, . . . , pn = qn,
otherwise 0.

16b4 Lemma. For every ϕ ∈ C1(Rn+1 → Rn), the n-form dϕ1 ∧ · · · ∧ dϕn
corresponds, according to (15d1), to the vector field F : x 7→ ∇ϕ1(x)× · · · ×
∇ϕn(x).

1In fact, it is possible to define the corresponding associative binary operation (so-called
exterior product) ω1, ω2 7→ ω1 ∧ ω2 (a (k + l)-form, if ω1 is a k-form and ω2 is an l-form).
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Proof. (dϕ1∧· · ·∧dϕn)(x, h1, . . . , hn) = det
(
(Dhiϕj)x

)
i,j = det

(
〈∇ϕj(x), hi〉

)
i.j =

〈∇ϕ1(x)× · · · × ∇ϕn(x), h1 × · · · × hn〉.
Note that (DF (x)ϕ)x = 0.
We return to arbitrary k and n. A bit more generally than (16b2), for a

linear ϕ : Rn → Rk, we have Dhϕ = ϕ(h), thus,

(dϕ1 ∧ · · · ∧ dϕk)(h1, . . . , hk) = det
(
ϕ(h1), . . . , ϕ(hk)

)
= det

(
(ϕi(hj))i,j

)
irrespective of x; not depending on x, this dϕ1∧· · ·∧dϕk may be interpreted
not only as a differential form, but also as an antisymmetric multilinear form.
In particular, given 1 ≤ m1 < · · · < mk ≤ n,

(dxm1 ∧ · · · ∧ dxmk
)(h1, . . . , hk) = det

(
〈hj, emi

〉
)
i,j

is a minor of the matrix (h1, . . . , hk) corresponding to the rows m1, . . . ,mk.

16b5 Lemma. For every antisymmetric multilinear k-form L on Rn,

L =
∑

1≤m1<···<mk≤n

L(em1 , . . . , emk
) dxm1 ∧ · · · ∧ dxmk

.

Proof. Both sides of this formula are antisymmetric multilinear k-forms;
we have to prove that they are equal on arbitrary h1, . . . , hk ∈ Rn. WLOG,
h1 = ep1 , . . . , hk = epk for some 1 ≤ p1 < · · · < pk ≤ n. It remains to note
that

(dxm1 ∧ · · · ∧ dxmk
)(ep1 , . . . , epk) =

{
1 if m1 = p1, . . . ,mk = pk,

0 otherwise.

It follows that for every (differential) k-form ω on Rn,

(16b6)
ω =

∑
1≤m1<···<mk≤n

fm1,...,mk
(x) dxm1 ∧ · · · ∧ dxmk

,

fm1,...,mk
(x) = ω(x, em1 , . . . , emk

) .

Let ϕ ∈ C1(Rn → Rm) and ψ ∈ C1(Rm → Rk); by Lemma 16a2, (ψ ◦
ϕ)∗µk = ϕ∗(ψ∗µk), hence, d(ψ ◦ ϕ)1 ∧ · · · ∧ d(ψ ◦ ϕ)k = ϕ∗(dψ1 ∧ · · · ∧ dψk),
that is,

(16b7) ϕ∗(dψ1 ∧ · · · ∧ dψk) = d(ψ1 ◦ ϕ) ∧ · · · ∧ d(ψk ◦ ϕ)) ;

and therefore,

(16b8) ϕ∗(f dψ1 ∧ · · · ∧ dψk) = (f ◦ ϕ) d(ψ1 ◦ ϕ) ∧ · · · ∧ d(ψk ◦ ϕ))

for f ∈ C1(Rn).
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16b9 Lemma. If ω = f dxm1 ∧· · ·∧dxmk
, then dω = df ∧dxm1 ∧· · ·∧dxmk

.

Proof. We apply both forms to em, em1 , . . . , emk
for arbitrarym ∈ {1, . . . , n}\

{m1, . . . ,mk}. First, by 15f1,

(dω)(·, em, em1 , . . . , emk
) = Dmω(·, em1 , . . . , emk

) = Dmf ,

since the other terms (for i = 2, . . . , k) in 15f1 vanish. Second,

(df∧dxm1∧· · ·∧dxmk
)(·, em, em1 , . . . , emk

) =

(
Dmf Dm1f . . .Dmk

f

0 I

)
= Dmf .

Finally, both forms vanish unless em1 , . . . , emk
are present among the k + 1

chosen basis vectors.

16b10 Exercise. df ∧ dxm1 ∧ · · · ∧ dxmk
=
∑

i(Dif)dxi ∧ dxm1 ∧ · · · ∧ dxmk
.

Prove it.1

16c Stokes’ theorem for the volume form

16c1 Proposition.
∫
∂Γ
µn = 0 for every singular (n+ 1)-box in Rn.

Here µn is the volume form on Rn, that is, µn(x, h1, . . . , hn) = det(h1, . . . , hn).
Clearly, dµn = 0 (since the determinant does not depend on x), thus,

∫
Γ
dµn =

0, and 16c1 is a case of Stokes’ theorem 15f3.

16c2 Example. n = 0; Rn = {0}, Γ : [0, 1]→ {0}, ∂Γ = {0} − {0} = 0.

16c3 Example. n = 1; Γ : [0, 1]× [0, 1]→ R;

∂Γ = Γ|AB + Γ|BC + Γ|CD + Γ|DA ;∫
Γ|AB

µ1 = Γ(B)− Γ(A) ;
A B

D C

Γ(A) Γ(B)

Γ(C)Γ(D)

the four signed lengths sum up to 0.

16c4 Example. n = 2; Γ : [0, 1]3 → R2;

A

B C

D

E

F G

H

look twice: (a) see the 3-dimensional cube;
(b) see its planar image, and note that the
six signed areas sum up to 0.

16c5 Lemma. It is sufficient to prove Prop. 16c1 for Γ ∈ C2(B → Rn).

1Hint: follow the spirit of the proof of 16b9.
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Proof. It is sufficient to prove that C2(B → Rn) is dense in C1(B → Rn);
that is, for arbitrary Γ ∈ C1(B → Rn) and ε > 0 there exists Γε ∈ C2(B →
Rn) such that, for all u ∈ B◦, |Γε(u)− Γ(u)| ≤ ε and |(DΓε)u − (DΓ)u| ≤ ε;
then |

∫
∂Γε

µn −
∫
∂Γ
µn| = O(ε).

Here is the proof for B = [0, 1]× [0, 1] ⊂ R2 (the general case is similar;
see also 7d27, 7d28, 7e3).

We define Γε by

Γε(u1, u2) =
1

ε2

∫
[u1,u1+ε]×[u2,u2+ε]

Γ
( v1

1 + ε
,
v2

1 + ε

)
dv1dv2 ,

then the partial derivative

∂

∂u1

Γε(u1, u2) =
1

ε

∫
[u2,u2+ε]

1

ε

(
Γ
(u1 + ε

1 + ε
,
v2

1 + ε

)
− Γ

( u1

1 + ε
,
v2

1 + ε

))
dv2

is of class C1 and converges (uniformly) to ∂
∂u1

Γ(u1, u2).

Proof of Prop. 16c1 for n = 2.
By 16c5, WLOG, Γ ∈ C2(B → R2), B = [0, 1]3. By (16a6) applied to
Γ ◦ id,

∫
∂Γ
µ2 =

∫
∂B

Γ∗µ2. The 2-form Γ∗µ2 = dΓ1 ∧ dΓ2 of class C1 on B
corresponds, by 16b4, to the vector field F ∈ C1(B → R3),

F (u) = ∇Γ1(u)×∇Γ2(u) .

By (15e5) and 15e3,
∫
∂B

Γ∗µ2 =
∫
∂B
〈F,n〉 =

∫
B

divF . It remains to prove
that divF = 0.1

We have

F1 = det(D2Γ, D3Γ) , F2 = − det(D1Γ, D3Γ) , F3 = det(D1Γ, D2Γ) ,

(since Fj = 〈ej,∇Γ1 ×∇Γ2〉 = det(ej,∇Γ1,∇Γ2)), thus

divF = D1F1 +D2F2 +D3F3 =

= det(D1D2Γ, D3Γ) + det(D2Γ, D1D3Γ)−
− det(D2D1Γ, D3Γ)− det(D1Γ, D2D3Γ)+

+ det(D3D1Γ, D2Γ) + det(D1Γ, D3D2Γ) =

= det(D1D2Γ, D3Γ)− det(D2D1Γ, D3Γ)+

+ det(D2Γ, D1D3Γ) + det(D3D1Γ, D2Γ)−
− det(D1Γ, D2D3Γ) + det(D1Γ, D3D2Γ) = 0 .

1Basically, we’ll examine an infinitesimal box in quadratic approximation.
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Proof of Prop. 16c1 (in general).
The first part of the proof for n = 2 needs only trivial changes; Γ∗µn corre-
sponds to F ∈ C1(B → Rn), B = [0, 1]n+1,

F (u) = ∇Γ1(u)× · · · × ∇Γn(u) ;

we have to prove that divF = 0.
Introducing

Ai = det
(
D1Γ, . . . , Di−1Γ, Di+1Γ, . . . , DnΓ

)
,

Bi,j ={
det
(
D1Γ, . . . , Di−1Γ, Di+1Γ, . . . , Dj−1Γ, DiDjΓ, Dj+1Γ, . . . , DnΓ

)
for i < j,

det
(
D1Γ, . . . , Dj−1Γ, DiDjΓ, Dj+1Γ, . . . , Di−1Γ, Di+1Γ, . . . , DnΓ

)
for j < i,

we have

Fi = (−1)i−1Ai ; DiAi =
∑
j:j 6=i

Bi,j ; Bj,i = (−1)j−i−1Bi,j ;

hence

divF =
∑
i

DiFi =
∑
i

(−1)i−1
∑
j:j 6=i

Bi,j =

=
∑
i,j:i 6=j

(−1)i−1Bi,j =
∑
i,j:i<j

(
(−1)i−1Bi,j + (−1)j−1Bj,i

)
= 0 .

16d Proving Stokes’ theorem (in general)

16d1 Remark. Given ϕ ∈ C1(Rn → R`), a (k − 1)-form ω on R`, and a
singular k-box Γ in Rn, we may consider two cases of Stokes’ theorem 15f3,∫

Γ

d(ϕ∗ω) =

∫
∂Γ

ϕ∗ω ,(a) ∫
ϕ◦Γ

dω =

∫
∂(ϕ◦Γ)

ω .(b)

The change of variables (16a4), (16a6) gives∫
ϕ◦Γ

dω =

∫
Γ

ϕ∗(dω) ,

∫
∂(ϕ◦Γ)

ω =

∫
∂Γ

ϕ∗ω .
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Thus, we may rewrite (a) and (b) as∫
Γ

d(ϕ∗ω) =

∫
∂(ϕ◦Γ)

ω ,∫
Γ

ϕ∗(dω) =

∫
∂(ϕ◦Γ)

ω .

In order to conclude that (a)⇐⇒(b) we need to know that d(ϕ∗ω) = ϕ∗(dω). 1

16d2 Lemma. In order to obtain Stokes’ theorem for all (k − 1)-forms of
class C1 on RN , it is sufficient to have it for the (k − 1)-form

νk−1 = x1 dx2 ∧ · · · ∧ dxk
on Rk.

16d3 Example. The 1-form ν1 on R2 is x1 dx2, that is, x dy. For every box
B ⊂ R2,

∫
∂B
ν1 =

∫
B
µ2 = v(B).

x1 x2

y1

y2

x2(y2 − y1) + x1(y1 − y2) =
= (x2 − x1)(y2 − y1)

The same holds for every “good” planar domain.
Think, what happens in three dimensions.

Proof of Lemma 16d2. By (16b6), all (k − 1)-forms of class C1 on RN are
linear combinations of such forms:

ω = f(x) dxm1 ∧ · · · ∧ dxmk−1

for f ∈ C1(RN) and 1 ≤ m1 < · · · < mk−1 ≤ N . Due to linearity (in
ω) of both sides of Stokes’ theorem, WLOG, ω is as above. We introduce
ϕ : RN → Rk by ϕ(x) =

(
f(x), xm1 , . . . , xmk−1

)
. By (16b8), ω = ϕ∗νk−1. By

(16b9), dνk−1 = µk and dω = df ∧dxm1 ∧· · ·∧dxmk−1
; the latter is ϕ∗µk (just

by (16b1)). We get

d
(
ϕ∗νk−1

)
= dω = ϕ∗µk = ϕ∗(dνk−1) .

It remains to use Remark 16d1.
1Ultimately we’ll see that this holds for all ϕ and ω; see 16e1.



Tel Aviv University, 2014/15 Analysis-III,IV 273

Proof of Stokes’ theorem 15f3.
By Lemma 16d2, WLOG, N = k and ω = νk−1. Similarly to 16c5 we
assume that Γ ∈ C2(B → Rk), B = [0, 1]k. Similarly to the proof of
Prop. 16c1, Γ∗νk−1 corresponds to a vector field; by (16b8), this vector
field is fF where f = Γ1 and F = ∇Γ2 × · · · × ∇Γk. We note that the
vector field F is the same as in the proof of Prop. 16c1, but for the sin-
gular k-box u 7→

(
Γ2(u), . . . ,Γk(u)

)
in Rk−1. As was seen there, divF =

0. By 14c5, div(fF ) = 〈∇f, F 〉. As before,
∫
∂Γ
νk−1 =

∫
∂B

Γ∗νk−1 =∫
∂B
〈fF,n〉 =

∫
B

div(fF ). It remains to prove that
∫
B

div(fF ) =
∫

Γ
dνk−1,

that is,
∫
B
〈∇f, F 〉 =

∫
Γ
µk.

By (11e12) and the definition of µk,∫
Γ

µk =

∫
B

det(D1Γ, . . . , DkΓ) =

∫
B

detDΓ .

On the other hand,

〈∇f, F 〉 = 〈∇Γ1,∇Γ2 × · · · × ∇Γk〉 = det(∇Γ1, . . . ,∇Γk) = detDΓ .

16e Some implications

on diffeomorphism invariance

16e1 Proposition. ϕ∗(dω) = d(ϕ∗ω) whenever ϕ ∈ C1(R` → Rn) and ω is
a k-form of class C1 on Rn.

Proof. For every singular k-box Γ in R`,∫
Γ

ϕ∗(dω) =

∫
ϕ◦Γ

dω =

∫
∂(ϕ◦Γ)

ω =

∫
∂Γ

ϕ∗ω =

∫
Γ

d(ϕ∗ω) .

In particular, when ` = n and ϕ is a diffeomorphism, we get a one-to-
one correspondence between forms (ω and ϕ∗ω), and this correspondence
preserves all operations on forms. The calculus of forms is diffeomorphism
invariant. Its formulas look the same in all (curvilinear) coordinates!

16e2 Corollary. If ω = f0 df1 ∧ · · · ∧ dfk then dω = df0 ∧ df1 ∧ · · · ∧ dfk, for
arbitrary f0, f1, . . . , fk ∈ C1(Rn).
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Proof. We introduce ϕ : Rn → Rk+1 by ϕ(x) =
(
f0(x), . . . , fk(x)

)
, note

that ω = ϕ∗νk by (16b8), dνk = µk+1, ϕ∗µk+1 = df0 ∧ · · · ∧ dfk by (16b7);
and ϕ∗(dνk) = d(ϕ∗νk) by 16e1.

16e3 Definition. A form ω of class C1 is closed if dω = 0.

16e4 Exercise. (a) If ω = df1 ∧ · · · ∧ dfk for some f1, . . . , fk ∈ C2(Rn), then
ω is closed.

(b) For every form ω of class C2 the form dω is closed.
Prove it.

That is, d(dω) = 0 always.
It is easy to generalize the pullback ϕ∗ω (defined by 16a1) to a form ω

on a manifold M ⊂ Rn (rather than the whole Rn) and ϕ : R` → M . In
particular, for a chart (G,ψ) of M the pullback ψ∗ω is a form on G, and we
may define dω as a form on M such that ψ∗(dω) = d(ψ∗ω) for all charts.
Prop. 16e1 ensures existence of such dω via a counterpart of 12a9. Then it
is easy to generalize Stokes’ theorem to forms (and singular boxes) on M .
Still, k-forms on M for k+ 1 = dimM correspond to tangent vector fields on
M , and the exterior derivative corresponds to divergence (as in Sect. 15f).
However, formulas for divergence look differently in different coordinates;
they are not diffeomorphism invariant. Also the correspondence between
forms and vector fields is not diffeomorphism invariant.

16e5 Exercise. Let ϕ : RN → RN be a diffeomorphism, and G ⊂ RN ,
Z ⊂ ∂G such that the divergence theorem holds for G, ∂G\Z. Then it holds
also for ϕ(G), ϕ(∂G \ Z).

Prove it.1

16e6 Exercise (cone). Consider in R3 the cylinder G1 = {(x, y) : x2 +y2 <
1} × (0, 1), the cone G2 = {(x, y, z) : x2 + y2 < z2, 0 < z < 1}, and the
mapping ϕ : R3 → R3, ϕ(x, y, z) = (xz, yz, z).

(a)
∫
G1
ϕ∗ω =

∫
G2
ω for every 3-form ω on G2;

(b)
∫
∂G1\Z1

ϕ∗ω =
∫
∂G2\Z2

ω for every 2-form ω on ∂G2 \ Z2; here Z1 =

{(x, y) : x2 + y2 = 1} × {0, 1} ⊂ ∂G1, Z2 = {(0, 0, 0)} ∪ {(x, y) : x2 + y2 =
1} × {1} ⊂ ∂G2;

(c)
∫
G2
dω =

∫
∂G2\Z2

ω for every 2-form ω of class C2 on a neighborhood

of G2;
(d) the divergence theorem holds for G2, ∂G2 \ Z2.

Prove it.2

1Hint:
∫
G
ϕ∗(dω) =

∫
ϕ(G)

dω and
∫
∂G\Z ϕ

∗ω =
∫
ϕ(∂G\Z)

ω.
2Hint: (c) use (a), (b); recall 15e7 and the paragraph after it.
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16e7 Exercise (cone). Let G ⊂ Rn, Z ⊂ ∂G be such that the divergence
theorem holds for G, ∂G \ Z. Consider such sets in RN = Rn × R:

G1 = G× (0, 1) , Z1 = (∂G× {0, 1}) ∪ (Z × [0, 1]) ,

G2 = {(tx, t) : x ∈ G, t ∈ (0, 1)} , Z2 = {(0, 0)} ∪ (Z × [0, 1]) .

Generalize 16e6 to this situation; prove that the divergence theorem holds
for G2, ∂G2 \ Z2.

16e8 Exercise (simplex). Using 16e7 and induction in n, obtain the diver-
gence theorem for the simplex {(x1, . . . , xn) ∈ (0,∞)n : x1 + · · ·+ xn < 1}.

on convergence of singular boxes

Recall 15a3: two k-chains C1, C2 are equivalent (C1 ∼ C2) if
∫
C1
ω =

∫
C2
ω

for all k-forms ω of class C0. Or equivalently, of class C1 (since these are
dense).

16e9 Proposition. If C1 ∼ C2 then ∂C1 ∼ ∂C2.

Proof. ∫
∂C1

ω =

∫
C1

dω =

∫
C2

dω =

∫
∂C2

ω .

Now, recall convergence of paths (11b11); equivalently, γj → γ when
there exist εj → 0 and L such that for all t ∈ (t0, t1),

|γj(t)− γ(t)| ≤ εj , |γ′j(t)| ≤ L .

16e10 Proposition. If γj → γ then
∫
γj
ω →

∫
γ
ω for every 1-form ω.

16e11 Remark. The condition |γ′j(t)| ≤ L cannot be dropped. Here is a
counterexample:

γj(t) =
1√
j

(cos jt, sin jt) for t ∈ [0, 2π] ,

γj → γ , γ(t) = (0, 0) ;

ω = x dy − y dx ;∫
γj

ω =

∫ 2π

0

1

j

(
cos jt · (sin jt)′ − sin jt · (cos jt)′

)
dt = 2π for all j ;∫

γ

ω = 0 .
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Proof (sketch) of Prop. 16e10.
WLOG, ω is of class C1 (otherwise, approximate it by ωδ ∈ C1, |ω(x, h) −
ωδ(x, h)| ≤ δ|h|, then |

∫
γj

(ω − ωδ)| ≤ δL(t1 − t0)). We take boxes Bj =

[t0, t1]× [0, εj] ⊂ R2 and define singular 2-boxes Γj : Bj → Rn by

Γj(t, u) =
(

1− u

εj

)
γj(t) +

u

εj
γ(t) .

We have Γj(·, 0) = γj and Γj(·, εj) = γ, thus,

γj

γ

αj

βj
Γj

∂Γj = γj − γ + βj − αj ,∫
αj
ω = O(εj),

∫
βj
ω = O(εj), and

∫
∂Γj

ω =
∫

Γj
dω = O(εj), since |DΓj| =

O(1).

Prop. 16e10 is basically the converse to Prop. 11e11 for k = 1, and gen-
eralizes readily to all k.

on vector calculus

We know (recall Sect. 11e) that 0-forms and n-forms on Rn correspond
to scalar fields (that is, functions), and no wonder:

(
n
0

)
=
(
n
n

)
= 1. Further,

we know (recall (15d1)) that (n− 1)-forms correspond to vector fields. Also
1-forms correspond to vector fields,

F1 dx1 + · · ·+ Fn dxn ←→ F ,

and no wonder:
(
n
1

)
=
(
n
n−1

)
= n. For other k it is harder to visualize k-forms,

since
(
n
k

)
> n.

Dimension 3 is of special interest, and luckily, for n = 3 the four cases
0, 1, (n−1), n exhaust all k. A single notion “exterior derivative” corresponds
(for n = 3) to three well-known operations of vector calculus: gradient (∇),
curl (curl), and divergence (div), as follows.
(16e12)

0-form oo
ω = f //

d
��

function

∇
��

1-form oo
ω = F1 dx1 + F2 dx2 + F3 dx3 //

d
��

vector field

curl
��

2-form oo
ω = F1 dx2 ∧ dx3 + F2 dx3 ∧ dx1 + F3 dx1 ∧ dx2 //

d
��

vector field

div
��

3-form oo
ω = f dx1 ∧ dx2 ∧ dx3 // function
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Using 16b9, 16b10, d(F1 dx1 + F2 dx2 + F3 dx3) = dF1 ∧ dx1 + dF2 ∧ dx2 +
dF3 ∧ dx3 = (D1F2 −D2F1) dx1 ∧ dx2 + (D2F3 −D3F2) dx2 ∧ dx3 + (D3F1 −
D1F3) dx3 ∧ dx1, thus,

(16e13) curl(F1, F2, F3) = (D2F3 −D3F2, D3F1 −D1F3, D1F2 −D2F1) .

Stokes’ theorem for k = 2,
∫

Γ
dω =

∫
∂Γ
ω for a 1-form ω on R3, gives the

“classical Stokes’ theorem” (also known as “Kelvin-Stokes theorem”, “curl
theorem” and “Stokes’ formula”): for every1 vector field F (of class C1) on
R3 and every singular 2-box Γ in R3,

(16e14) the circulation of F around γ = ∂Γ

is equal to the flux of curlF through Γ ,

the circulation of F around γ being defined as
∫ t1
t0
〈F (γ(t)), γ′(t)〉 dt.

In this sense, the curl is the circulation density, called also “vor-
ticity” (and its flux is called also the net vorticity of F through-
out Γ). A small paddle-wheel in the flow spins the fastest when
its axle points in the direction of the curl vector, and in this
case its angular speed is half the length of the curl vector.2

Index

change of variable, 266
classical Stokes’ theorem, 277
curl, 277

pullback, 265

vorticity, 277

dϕ1 ∧ · · · ∧ dϕk, 267

dx1 ∧ · · · ∧ dxn, 267
fm1,...,mk

, 268
µk, 266
µn, 267
νk−1, 272
Γ∗ω, 266
ϕ∗ω, 265
xi, 267

1Since every F corresponds to some ω.
2Shifrin p. 394.
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