3 Open mappings and constrained optimization

3a What is the problem 51
3b Open mappings 53
3c Linear and nonlinear 55
3d Curves 58
3e Surfaces 59
3f Lagrange multipliers 59
3g Example: arithmetic, geometric, harmonic, and more general means 61
3h Example: Three points on a spheroid 65
$3 i$ Example: Singular value decomposition 67
3j Sensitivity of optimum to parameters 69

Continuously differentiable mappings behave locally like linear, which is easy to guess but not easy to prove. A first order necessary condition ("Lagrange multipliers") for constrained extrema is proved and used for optimization.

3a What is the problem

By (2c3), local extrema of a differentiable function f can be found using the necessary condition $(D f)_{x}=0$, which is important for optimization. Now we turn to a harder task: to maximize $f(x, y)$ subject to a constraint $g(x, y)=0$; in other words, to maximize f on the set $Z_{g}=\{(x, y): g(x, y)=0\}$. Here $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are given differentiable functions (the objective function and the constraint function).

It is easy to guess a necessary condition: ∇f and ∇g must be collinear. [Sh:Sect.5.4] It is easy to prove this guess taking for granted that Z_{g}, being a curve, can be parametrized by a differentiable path γ, that is, $g(x, y)=$ $0 \Longleftrightarrow \exists t(x, y)=\gamma(t)$. Is it really the general case?

Rather unexpectedly, every closed subset of \mathbb{R}^{2} is Z_{g} for some $g \in \mathbb{C}^{1}\left(\mathbb{R}^{2}\right)$. (The proof is beyond this course.) ${ }^{1}$

A simple example: $g(x, y)=x^{2}-y^{2} ; g \in \mathbb{C}^{1}\left(\mathbb{R}^{2}\right) ; Z_{g}$ is the union of two straight lines intersecting at the origin. Note that $\nabla g=0$ at the origin.

Another example:

$$
g(x, y)= \begin{cases}x^{2}+y^{2} & \text { for } x \leq 0 \\ y^{2} & \text { for } x \geq 0\end{cases}
$$

Again, $g \in \mathbb{C}^{1}\left(\mathbb{R}^{2}\right)$ (think, why); $Z_{g}=[0, \infty) \times\{0\}$, a ray from the origin. Again, $\nabla g=0$ at the origin. The function $f:(x, y) \mapsto x$ reaches its minimum on Z_{g} at the origin. Can we say that ∇f and ∇g are collinear at the origin? Rather, they are linearly dependent.

We assume that $\nabla f\left(x_{0}, y_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}\right)$ are linearly independent, $g\left(x_{0}, y_{0}\right)=0$, and want to prove that $\left(x_{0}, y_{0}\right)$ cannot be a local constrained ${ }^{2}$ extremum 3 of f on Z_{g}. Assume for simplicity $x_{0}=y_{0}=0$ and $f(0,0)=0$. Consider the mapping $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, h(x, y)=(f(x, y), g(x, y))$ near the origin, and its linear approximation $T=(D h)_{(0,0)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} ; T(x, y)=$ $(a x+b y, c x+d y)$ where $a=\left(D_{1} f\right)_{(0,0)}, b=\left(D_{2} f\right)_{(0,0)}, c=\left(D_{1} g\right)_{(0,0)}$, $d=\left(D_{2} g\right)_{(0,0)}$. Vectors $\nabla f(0,0)=(a, b)$ and $\nabla g(0,0)=(c, d)$ are linearly independent, thus $\left|\begin{array}{ll}a & b \\ c & b\end{array}\right| \neq 0$, which means that T is invertible. (Alternatively, use Lemma 2f2.)

It follows that $T\left(x_{1}, y_{1}\right)=(1,0)$ for some x_{1}, y_{1}. We have

$$
f\left(t x_{1}, t y_{1}\right)=t+o(t), \quad g\left(t x_{1}, t y_{1}\right)=o(t) .
$$

Does it show that the origin cannot be a local constrained extremum of f on Z_{g} ? No, it does not. We still did not find x_{t}, y_{t} such that

$$
f\left(x_{t}, y_{t}\right)=t+o(t), \quad g\left(x_{t}, y_{t}\right)=0
$$

[^0]In other words: we know that the image $V=h(U)$ of a neighborhood U of the origin contains a differentiable path $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{2}$ such that $\gamma(0)=(0,0)$ and $\gamma^{\prime}(0)=(1,0)$, but we still do not know, whether V contains $(-\varepsilon, \varepsilon) \times\{0\}$ or not.

We know that T is onto, but we still do not know, whether h is locally onto. In more technical language: whether h is an open mapping, as defined below.

Of course, we need a multidimensional theory; \mathbb{R}^{2} is only the simplest case.

3b Open mappings

3b1 Definition. Let X, Y be metrizable spaces. A mapping $f: X \rightarrow Y$ is open if $f(U) \subset Y$ is open for every open $U \subset X$.

This is a local notion, due to an equivalent definition 3b2,
3b2 Definition. (equivalent to 3b1)
Let X, Y be metrizable spaces. A mapping $f: X \rightarrow Y$ is open if for every $x \in X$ and every neighborhood U of x the set $f(U)$ is a neighborhood of $f(x)$.

Reminder: a neighborhood need not be open.
3b3 Exercise. Prove equivalence of these two definitions.
A bijection $f: X \rightarrow Y$ is open if and only if $f^{-1}: Y \rightarrow X$ is continuous. Thus, a continuous bijection is open if and only if it is a homeomorphism. By 1a14, every continuous bijection $\mathbb{R} \rightarrow \mathbb{R}$ is open (hence, homeomorphism). But generally (for $X \rightarrow Y$) it is not; recall 1a15-1a17.

3b4 Exercise. Prove or disprove: a continuous function $\mathbb{R} \rightarrow \mathbb{R}$ is open if and only if it is strictly monotone.

The usual projection $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is continuous and open, but not one-to-one.

The usual embedding $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ (or \mathbb{R}^{n+k}) is a homeomorphism $\mathbb{R}^{n} \rightarrow f\left(\mathbb{R}^{n}\right) \subset \mathbb{R}^{n+1}$, but not an open mapping. If $U \subset \mathbb{R}^{n}$ is open then $f(U)$ is relatively open in $f\left(\mathbb{R}^{n}\right)$, but not open in \mathbb{R}^{n+1} (unless $U=\emptyset$). In this
case $f(\bar{U})=\overline{f(U)}$, but $f(\partial U) \neq \partial(f(U))$ since $\partial(f(U))=\overline{f(U)} \backslash f(U)^{\circ}=$ $f(\bar{U}) \backslash \emptyset=f(\bar{U})$. Rather, $f(\partial U)$ is the relative boundary of U in $f\left(\mathbb{R}^{n}\right)$.

Let X be a metrizable space and $A \subset X$. Every subset $U \subset A$ open in X is relatively open in A (recall 1c3).

3b5 Exercise. A set A in a metrizable space X is open if and only if every relatively open subset of A is open (in X).

Prove it.
3b6 Exercise. Let X, Y be metrizable spaces, $U \subset X, V \subset Y, f: U \rightarrow V$ a homeomorphism, and U is open. Than f is open if and only if V is open.

Prove it.
Let $U \subset \mathbb{R}^{n}$ be relatively open in its closure \bar{U}. As we know, U need not be open (in \mathbb{R}^{n}). We seek a useful sufficient condition for U to be open. To this end we introduce two technical notions. ${ }^{1}$ We call $a \in U$ a bad point if there exist $x_{1}, x_{2}, \cdots \in \mathbb{R}^{n} \backslash U$ such that $x_{n} \rightarrow a$. We call $a \in U$ a very bad point if there exists $x \in \mathbb{R}^{n}$ such that $\operatorname{dist}(x, U)=|x-a|>0$. (Here $\operatorname{dist}(x, U)=\inf _{y \in U}|x-y|$, of course. $)^{2}$
Clearly, U is open if and only if it has no bad points, and every very bad point is a bad point. A bad point need not be very bad, and nevertheless, existence of a bad point implies existence of a very bad point. A wonder!

3b7 Lemma. Let $U \subset \mathbb{R}^{n}$ be relatively open in its closure. If U has no very bad points then U is open.

Proof. Let $a \in U$; we need a neighborhood of a contained in U. We note that $\operatorname{dist}(a, \bar{U} \backslash U)>0$ (since U is relatively open in \bar{U}) and introduce $\varepsilon=$ $\frac{1}{2} \operatorname{dist}(a, \bar{U} \backslash U)$. It is sufficient to prove that U contains $\left\{x \in \mathbb{R}^{n}:|x-a|<\varepsilon\right\}$.

Assuming the contrary we have $x \in \mathbb{R}^{n} \backslash U$ such that $|x-a|<\varepsilon$, thus $x \notin \bar{U} \backslash U$ (since $|a-x|<\operatorname{dist}(a, \bar{U} \backslash U)$); taking into account that $x \notin U$ we get $x \notin \bar{U}$.

[^1]By compactness (of the relevant part of \bar{U}), $\operatorname{dist}(x, \bar{U})=|x-y|>0$ for some $y \in \bar{U}$; we'll prove that y is a very bad point of U.

We introduce $\delta=|x-y|$ and note that $\delta=\operatorname{dist}(x, \bar{U}) \leq|x-a|<\varepsilon$. Thus $|a-y| \leq|a-x|+|x-y|<\varepsilon+\delta<2 \varepsilon=\operatorname{dist}(a, \bar{U} \backslash U)$, which gives $y \notin \bar{U} \backslash U$, that is, $y \in U$. Finally, y is very bad since $|x-y|=\operatorname{dist}(x, \bar{U}) \leq$ $\operatorname{dist}(x, U) \leq|x-y|$.

3c Linear and nonlinear

3c1 Definition. A mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a (local) homeomorphism near a point $x \in \mathbb{R}^{n}$ if there exist neighborhoods U of x and V of $f(x)$ such that $\left.f\right|_{U}$ is a homeomorphism $U \rightarrow V$.

The same applies to mappings from one n-dimensional affine space to another.

We know (recall Sect. 1d) that a linear operator $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a homeomorphism if and only if it is bijective. Otherwise it cannot be a homeomorphism near 0 (or any other point).
3c2 Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$. If f is continuously differentiable near x and the linear operator $(D f)_{x}$ is a homeomorphism then f is a homeomorphism near x.

The same holds for mappings from one n-dimensional affine space to another.

We prove 3 c 2 in two stages. First, we get a homeomorphism $U \rightarrow f(U)$ for some neighborhood U of x. Second, we prove that $f(U)$ is a neighborhood of $f(x)$. Here is the exact formulation of the first stage.
3c3 Proposition. Assume that $x_{0} \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is differentiable near $x_{0}, D f$ is continuous at $x_{0},{ }^{1}$ and the operator $(D f)_{x_{0}}$ is invertible. Then there exists a bounded open neighborhood U of x_{0} such that $\left.f\right|_{\bar{U}}$ is a homeomorphism $\bar{U} \rightarrow f(\bar{U})$, and f is differentiable on U, and the operator $(D f)_{x}$ is invertible for all $x \in U$.

Spaces treated in Sect. 1b help to prove 3c3.
3c4 Lemma. WLOG we may assume that $x_{0}=0, f\left(x_{0}\right)=0$, and $(D f)_{0}=$ id.
Proof. We generalize 3c3 replacing $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $f: X \rightarrow Y$ where X, Y are n-dimensional affine spaces. ${ }^{2}$ We upgrade X, Y to vector spaces taking $x_{0}=0$ and $f\left(x_{0}\right)=0 .{ }^{3}$ We choose a basis $\left(e_{1}, \ldots, e_{n}\right)$ in X, thus

[^2]upgrading X to a Cartesian space. We choose in Y the corresponding basis $\left((D f)_{0} e_{1}, \ldots,(D f)_{0} e_{n}\right)$, thus upgrading Y to a Cartesian space and in addition ensuring that the matrix of the operator $(D f)_{0}$ is the unit matrix. ${ }^{1}$ Now $x_{0}=0, f\left(x_{0}\right)=0$, and $(D f)_{0}=\mathrm{id}$.

Proof of Prop. $3 \mathrm{3c} 3$ for $x_{0}=0, f\left(x_{0}\right)=0$, and $(D f)_{0}=\mathrm{id}$.
We have $(D f)_{x} \rightarrow(D f)_{0}=\mathrm{id}$, that is,

$$
\left\|(D f)_{x}-\mathrm{id}\right\| \rightarrow 0 \quad \text { as } x \rightarrow 0
$$

For every $\varepsilon>0$ there exists a neighborhood U_{ε} of 0 such that f is continuous on $\overline{U_{\varepsilon}}$, differentiable on U_{ε}, and

$$
\left\|(D f)_{x}-\mathrm{id}\right\| \leq \varepsilon \quad \text { for all } x \in U_{\varepsilon}
$$

We choose U_{ε} to be convex (just a ball, if you like) and apply 2 d 10 to the mapping f - id (its derivative being $D f-\mathrm{id}):|(f-\mathrm{id})(x)-(f-\mathrm{id})(y)| \leq$ $\varepsilon|x-y|$, that is,

$$
|(f(x)-f(y))-(x-y)| \leq \varepsilon|x-y| \quad \text { for all } x, y \in \overline{U_{\varepsilon}}
$$

It follows (assuming $\varepsilon<1$) that $f(x)-f(y) \neq 0$ for $x-y \neq 0$; that is, $\left.f\right|_{\overline{U_{\varepsilon}}}$ is one-to-one. Moreover, the triangle inequality gives

$$
(1-\varepsilon)|x-y| \leq|f(x)-f(y)| \leq(1+\varepsilon)|x-y|
$$

for all $x, y \in \overline{U_{\varepsilon}}$. Thus, $\left.f\right|_{\overline{U_{\varepsilon}}}$ is a homeomorphism $\overline{U_{\varepsilon}} \rightarrow f\left(\overline{U_{\varepsilon}}\right)$.
Finally, $\left|\left((D f)_{x}-\mathrm{id}\right)(h)\right| \leq \varepsilon|h|$, that is,

$$
\left|(D f)_{x}(h)-h\right| \leq \varepsilon|h| \quad \text { for all } x \in U_{\varepsilon}, h \in V
$$

the triangle inequality (again) gives

$$
(1-\varepsilon)|h| \leq\left|(D f)_{x}(h)\right| \leq(1+\varepsilon)|h|,
$$

which shows that the operator $(D f)_{x}$ is one-to-one, therefore invertible.
The first stage of the proof of Theorem 3c2 is thus completed. On the second stage we prove that $f(U)$ is a neighborhood of $f(x)$. Here is the exact formulation.

[^3]3c5 Proposition. Assume that $U \subset \mathbb{R}^{n}$ is a bounded open set, $f: \bar{U} \rightarrow \mathbb{R}^{n}$ a homeomorphism $\bar{U} \rightarrow f(\bar{U}), f$ is differentiable on U, and the operator $(D f)_{x}$ is invertible for all $x \in U$. Then $f(U)$ is open.

Proof. By Lemma 3b7 it is sufficient to prove that the set $V=f(U)$ is relatively open in its closure and has no very bad points.

Being open in \mathbb{R}^{n}, U is relatively open in \bar{U}, therefore ${ }^{1} V=f(U)$ is relatively open in the set $f(\bar{U})$ of all $f\left(\lim _{k} x_{k}\right)$ for $x_{k} \in U$ such that $\left(x_{k}\right)_{k}$ converges. On the other hand, $\bar{V}=\overline{f(U)}$ is the set of all $\lim _{k} f\left(x_{k}\right)$ for $x_{k} \in U$ such that $\left(f\left(x_{k}\right)\right)_{k}$ converges. ${ }^{2}$ Continuity of f implies $f(\bar{U}) \subset \bar{V}$. Compactness of \bar{U} implies $f(\bar{U}) \supset \bar{V}$. Thus, V is relatively open in its closure $\bar{V}=f(\bar{U})$.

Assuming existence of a very bad point in V we get $V \ni b=f(a), a \in U$, and $x \in \mathbb{R}^{n}$ such that $\operatorname{dist}(x, V)=|x-b|>0$. A function $|x-f(\cdot)|$ on U has at a a minimum. However, this function is $\varphi \circ f$ where $\varphi(\cdot)=\left[x-\cdot \mid ;{ }^{3}\right.$ thus $D(\varphi \circ f)_{a}=(D \varphi)_{b} \circ(D f)_{a} \neq 0$, since $(D f)_{a}$ is bijective and $(D \varphi)_{b} \neq 0$. A contradiction.

3c6 Remark. In fact, for every open $U \subset \mathbb{R}^{n}$, every continuous one-to-one mapping $U \rightarrow \mathbb{R}^{n}$ is open (and therefore a homeomorphism $U \rightarrow f(U)$). This is a well-known topological result, "the Brouwer invariance of domain theorem". ${ }^{4}$ Then, why Lemma 3b7? ${ }^{5}$ For two reasons.

First, invariance of domain is proved using algebraic topology (the Brouwer fixed point theorem). Lemma 3b7, much simpler to prove, suffices due to differentiability.

Second, in this course we improve our understanding of differentiable mappings. Continuous mappings in general are a different story.

3c7 Exercise. Prove invariance of domain in dimension one. ${ }^{6}$
3c8 Exercise. Consider the set $U \subset \mathbb{R}^{n}$ of all $\left(a_{0}, \ldots, a_{n-1}\right)$ such that the polynomial

$$
t \mapsto t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}
$$

has n pairwise distinct real roots.

[^4](a) Prove that U is open.
(b) Define $\psi: U \rightarrow \mathbb{R}^{n}$ by $\psi\left(a_{0}, \ldots, a_{n-1}\right)=\left(t_{1}, \ldots, t_{n}\right)$ where $t_{1}<\cdots<$ t_{n} are the roots of the polynomial. Prove that ψ is a homeomorphism $U \rightarrow V$ where $V=\left\{\left(t_{1}, \ldots, t_{n}\right): t_{1}<\cdots<t_{n}\right\} .{ }^{1}$

3d Curves

We return to the problem discussed in Sect. 3a,
3d1 Proposition. Assume that $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuously differentiable near a given point $\left(x_{0}, y_{0}\right)$; vectors $\nabla f\left(x_{0}, y_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}\right)$ are linearly independent; and $g\left(x_{0}, y_{0}\right)=0$. Denote $z_{0}=f\left(x_{0}, y_{0}\right)$. Then there exist $\varepsilon>0$ and a path $\gamma:\left(z_{0}-\varepsilon, z_{0}+\varepsilon\right) \rightarrow \mathbb{R}^{2}$ such that $\gamma\left(z_{0}\right)=\left(x_{0}, y_{0}\right)$, $f(\gamma(t))=t$ and $g(\gamma(t))=0$ for all $t \in\left(z_{0}-\varepsilon, z_{0}+\varepsilon\right)$.

Proof. The mapping $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $h(x, y)=(f(x, y), g(x, y))$ is continuously differentiable near $\left(x_{0}, y_{0}\right)$, and $(D h)_{\left(x_{0}, y_{0}\right)}$ is invertible by 2 f 2 . Theorem 3c2 provides a neighborhood U of $\left(x_{0}, y_{0}\right)$ such that $V=h(U)$ is a neighborhood of $h\left(x_{0}, y_{0}\right)=\left(z_{0}, 0\right)$ and $\left.h\right|_{U}$ is a homeomorphism $U \rightarrow V$. We take $\varepsilon>0$ such that $(t, 0) \in V$ for all $t \in\left(z_{0}-\varepsilon, z_{0}+\varepsilon\right)$ and define γ by

$$
\gamma(t)=\left(\left.h\right|_{U}\right)^{-1}(t, 0) .
$$

Clearly γ is continuous, $\gamma\left(z_{0}\right)=\left(x_{0}, y_{0}\right), \gamma(t) \in U$ and $h(\gamma(t))=(t, 0)$, that is, $f(\gamma(t))=t$ and $g(\gamma(t))=0$.

3d2 Corollary. If f, g, x_{0}, y_{0} are as in 3 d 1 then $\left(x_{0}, y_{0}\right)$ cannot be a local constrained extremum of f on Z_{g}.

3d3 Remark. (a) Prop. 3d1 does not claim differentiability of the path γ (but only its continuity).
(b) Prop. 3d1 does not claim that γ covers all points of Z_{g} near $\left(x_{0}, y_{0}\right)$. Moreover, the set $U \cap Z_{g}$ need not be connected.

We'll return to these points later (in 4c12).
The next case is, dimension three. We guess that a single constraint $g(x, y, z)=0$ leads to a surface Z_{g}, not a curve; a curve is rather $Z_{g_{1}, g_{2}}=$ $Z_{g_{1}} \cap Z_{g_{2}}$.

3d4 Proposition. Assume that $f, g_{1}, g_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are continuously differentiable near a given point $\left(x_{0}, y_{0}, z_{0}\right)$; vectors $\nabla f\left(x_{0}, y_{0}, z_{0}\right), \nabla g_{1}\left(x_{0}, y_{0}, z_{0}\right)$ and $\nabla g_{2}\left(x_{0}, y_{0}, z_{0}\right)$ are linearly independent; and $g_{1}\left(x_{0}, y_{0}, z_{0}\right)=g_{2}\left(x_{0}, y_{0}, z_{0}\right)=$

[^5]0 . Denote $w_{0}=f\left(x_{0}, y_{0}, z_{0}\right)$. Then there exist $\varepsilon>0$ and a path $\gamma:$ $\left(w_{0}-\varepsilon, w_{0}+\varepsilon\right) \rightarrow \mathbb{R}^{3}$ such that $\gamma\left(w_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right), f(\gamma(t))=t$ and $g_{1}(\gamma(t))=g_{2}(\gamma(t))=0$ for all $t \in\left(w_{0}-\varepsilon, w_{0}+\varepsilon\right)$.

3d5 Exercise. Prove Prop. 3d4. ${ }^{1}$
3d6 Corollary. If $f, g_{1}, g_{2}, x_{0}, y_{0}, z_{0}$ are as in 3 d 4 then $\left(x_{0}, y_{0}, z_{0}\right)$ cannot be a local constrained extremum of f on $Z_{g_{1}, g_{2}}$.

3d7 Exercise. Generalize 3d4 and 3d6 to $f, g_{1}, \ldots, g_{n-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

3e Surfaces

We turn to a single constraint $g(x, y, z)=0$ in \mathbb{R}^{3}, and a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$. How to proceed? The mapping $(x, y, z) \mapsto(f(x, y, z), g(x, y, z))$ from \mathbb{R}^{3} to \mathbb{R}^{2} surely is not expected to be a local homeomorphism. However, we may add another constraint, getting a curve on the surface!

3e1 Proposition. Assume that $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are continuously differentiable near a given point $\left(x_{0}, y_{0}, z_{0}\right)$; vectors $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}, z_{0}\right)$ are linearly independent; and $g\left(x_{0}, y_{0}, z_{0}\right)=0$. Denote $w_{0}=f\left(x_{0}, y_{0}, z_{0}\right)$. Then there exist $\varepsilon>0$ and a path $\gamma:\left(w_{0}-\varepsilon, w_{0}+\varepsilon\right) \rightarrow \mathbb{R}^{3}$ such that $\gamma\left(w_{0}\right)=$ $\left(x_{0}, y_{0}, z_{0}\right), f(\gamma(t))=t$ and $g(\gamma(t))=0$ for all $t \in\left(w_{0}-\varepsilon, w_{0}+\varepsilon\right)$.

Proof. We choose a vector $a \in \mathbb{R}^{3}$ such that the three vectors $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$, $\nabla g\left(x_{0}, y_{0}, z_{0}\right)$ and a are linearly independent. We choose a function $g_{2}: \mathbb{R}^{3} \rightarrow$ \mathbb{R}, continuously differentiable near $\left(x_{0}, y_{0}, z_{0}\right)$, such that $g_{2}\left(x_{0}, y_{0}, z_{0}\right)=0$ and $\nabla g_{2}\left(x_{0}, y_{0}, z_{0}\right)=a$ (for example, an affine function $g_{2}(\cdot)=\langle\cdot, a\rangle+$ const). It remains to apply Prop. 3d4 to f, g, g_{2}.
$3 \mathbf{e} 2$ Corollary. If $f, g, x_{0}, y_{0}, z_{0}$ are as in 3 e 1 then $\left(x_{0}, y_{0}, z_{0}\right)$ cannot be a local constrained extremum of f on Z_{g}.

3e3 Exercise. Generalize 3 e 1 and 3 e 2 to $f, g_{1}, \ldots, g_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}, 1 \leq m \leq$ $n-1$.

3f Lagrange multipliers

3f1 Theorem. Assume that $x_{0} \in \mathbb{R}^{n}, 1 \leq m \leq n-1$, functions f, g_{1}, \ldots, g_{m} : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ are continuously differentiable near $x_{0}, g_{1}\left(x_{0}\right)=\cdots=g_{m}\left(x_{0}\right)=0$, and vectors $\nabla g_{1}\left(x_{0}\right), \ldots, \nabla g_{m}\left(x_{0}\right)$ are linearly independent. If x_{0} is a local

[^6]constrained extremum of f subject to $g_{1}(\cdot)=\cdots=g_{m}(\cdot)=0$ then there exist $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ such that
$$
\nabla f\left(x_{0}\right)=\lambda_{1} \nabla g_{1}\left(x_{0}\right)+\cdots+\lambda_{m} \nabla g_{m}\left(x_{0}\right) .
$$

This is a reformulation of the generalization meant in 3 e 3 .
The numbers $\lambda_{1}, \ldots, \lambda_{m}$ are called Lagrange multipliers.
A physicist could say: in equilibrium, the driving force is neutralized by constraints reaction forces.

In practice, seeking local constrained extrema of f on $Z=Z_{g_{1}, \ldots, g_{m}}$ one solves (that is, finds all solutions of) a system of $m+n$ equations

$$
\begin{array}{ll}
g_{1}(x)=\cdots=g_{m}(x)=0, & (m \text { equations) } \\
\nabla f(x)=\lambda_{1} \nabla g_{1}(x)+\cdots+\lambda_{m} \nabla g_{m}(x) & \text { (} n \text { equations) }
\end{array}
$$

for $m+n$ variables

$\lambda_{1}, \ldots, \lambda_{m}$,	$(m$ variables $)$
x.	$(n$ variables $)$

For each solution $\left(\lambda_{1}, \ldots, \lambda_{m}, x\right)$ one ignores $\lambda_{1}, \ldots, \lambda_{m}$ and checks $f(x) .{ }^{1}$
In addition, one checks $f(x)$ for all points x that violate the conditions of 3f1; that is, $\nabla g_{1}(x), \ldots, \nabla g_{m}(x)$ are linearly dependent, or f, g_{1}, \ldots, g_{m} fail to be continuously differentiable near x.

If the set Z is not compact, one checks all relevant limits of f.
If all that is feasible (which is not guaranteed!), one finally obtains the infimum and supremum of f on Z.

More formally: $\sup _{Z} f=\lim _{k} f\left(x_{k}\right) \in(-\infty,+\infty]$ for some $x_{1}, x_{2}, \cdots \in Z$. Choosing a subsequence we ensure either $x_{k} \rightarrow x$ for some $x \in \bar{Z}$ or $\left|x_{k}\right| \rightarrow \infty$. In the case $x \in Z$ the point x must violate conditions of 3f1. That is enough if Z is compact. Otherwise, if Z is bounded and not closed, the case $x \in \bar{Z} \backslash Z$ must be examined. And if Z is unbounded, the case $\left|x_{k}\right| \rightarrow \infty$ must be examined.

Theorem 3f1 generalizes readily from \mathbb{R}^{n} to an n-dimensional Euclidean affine space. But if no Euclidean norm is given on the affine space then the gradient is not defined. However, the gradient vector $\nabla f\left(x_{0}\right)$ is rather a substitute of the linear function $(D f)_{x_{0}}$, namely, $(D f)_{x_{0}}: h \mapsto\left\langle\nabla f\left(x_{0}\right), h\right\rangle$ (recall Sect. 2f). Thus, the relation $\nabla f\left(x_{0}\right)=\lambda_{1} \nabla g_{1}\left(x_{0}\right)+\cdots+\lambda_{m} \nabla g_{m}\left(x_{0}\right)$ between vectors may be replaced with a relation

$$
(D f)_{x_{0}}=\lambda_{1}\left(D g_{1}\right)_{x_{0}}+\cdots+\lambda_{m}\left(D g_{m}\right)_{x_{0}}
$$

[^7]between linear functions. And linear independence of vectors $\nabla g_{1}\left(x_{0}\right), \ldots, \nabla g_{m}\left(x_{0}\right)$ may be replaced with linear independence of linear functions $\left(D g_{1}\right)_{x_{0}}, \ldots,\left(D g_{m}\right)_{x_{0}}$; or, due to Lemma 2f2, we may say instead that $(D g)_{x_{0}}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}. Now it is clear how to generalize Th. 3f1 from \mathbb{R}^{n} to an n-dimensional affine space.

3g Example: arithmetic, geometric, harmonic, and more general means

Here is an isoperimetric inequality for triangles Δ on the plane:

$$
\operatorname{area}(\Delta) \leq \frac{1}{12 \sqrt{3}}(\operatorname{perimeter}(\Delta))^{2}
$$

and equality is attained for equilateral triangles and only for them. In other words, among all triangles with the given perimeter, the equilateral one has the largest area. ${ }^{1}$

The proof is based on Heron's formula for the area A of a triangle whose side lengths are x, y, z (and perimeter $L=x+y+z$):

$$
A^{2}=\frac{L}{2}\left(\frac{L}{2}-x\right)\left(\frac{L}{2}-y\right)\left(\frac{L}{2}-z\right) .
$$

The sum of the three positive ${ }^{2}$ numbers $\frac{L}{2}-x, \frac{L}{2}-y, \frac{L}{2}-z$ is fixed (equal to $\frac{3 L}{2}-L=\frac{L}{2}$); their product is claimed to be maximal when these numbers are equal (to $L / 6$), and then $A^{2}=\frac{L}{2}\left(\frac{L}{6}\right)^{3}=\frac{L^{4}}{2^{4} \cdot 3^{3}} ; A=\frac{L^{2}}{2^{2} \cdot 3 \sqrt{3}}$.

More generally, $\max \left\{x_{1} \ldots x_{n}: x_{1}, \ldots, x_{n} \geq 0, x_{1}+\cdots+x_{n}=c\right\}$ is reached for $x_{1}=\cdots=x_{n}=c / n$ and is equal to $(c / n)^{n}$. Equivalently, $\max \left\{\left(x_{1} \ldots x_{n}\right)^{1 / n}: x_{1}, \ldots, x_{n} \geq 0,\left(x_{1}+\cdots+x_{n}\right) / n=c\right\}$ is reached for $x_{1}=\cdots=x_{n}=c$ and is equal to c, which is the well-known inequality for geometric mean and arithmetic mean,
$(3 \mathrm{~g} 1)\left(x_{1} \ldots x_{n}\right)^{1 / n} \leq \frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) \quad$ for $n=1,2, \ldots$ and $x_{1}, \ldots, x_{n} \geq 0$.
It follows easily from concavity of the logarithm: the set $A=\{(x, y): x \in$ $(0, \infty), y \leq \ln x\}$ is convex, therefore the convex combination $\left(\frac{1}{n}\left(x_{1}+\cdots+\right.\right.$ $\left.\left.x_{n}\right), \frac{1}{n}\left(\ln x_{1}+\cdots+\ln x_{n}\right)\right)$ of points $\left(x_{1}, \ln x_{1}\right), \ldots,\left(x_{n}, \ln x_{n}\right) \in A$ belongs to A, which gives (3g1). And still, it is worth to exercise Lagrange multipliers.

[^8]3g2 Exercise. Prove (3g1) via Lagrange multipliers.
By the way, the harmonic mean h defined by $\frac{1}{h}=\frac{1}{n}\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right)$ satisfies $h \leq\left(x_{1} \ldots x_{n}\right)^{1 / n}$; just apply (3g1) to $\frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}$.

More generally, the Hölder mean (called also power mean) with exponent $p \in(-\infty, 0) \cup(0, \infty)$ is

$$
M_{p}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{1 / p} \quad \text { for } x_{1}, \ldots, x_{n}>0
$$

In particular, M_{1} is the arithmetic mean and M_{-1} is the harmonic mean. For $p \rightarrow 0$ L'Hôpital's rule gives

$$
\begin{aligned}
& \ln \lim _{p \rightarrow 0} M_{p}\left(\left(x_{1}, \ldots, x_{n}\right)=\lim _{p \rightarrow 0} \frac{1}{p} \ln \frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}=\right. \\
& \quad=\lim _{p \rightarrow 0} \frac{x_{1}^{p} \ln x_{1}+\cdots+x_{n}^{p} \ln x_{n}}{x_{1}^{p}+\cdots+x_{n}^{p}}=\frac{\ln x_{1}+\cdots+\ln x_{n}}{n}=\ln \left(x_{1} \ldots x_{n}\right)^{1 / n} ;
\end{aligned}
$$

accordingly, one defines

$$
M_{0}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \ldots x_{n}\right)^{1 / n}
$$

and observes that $M_{-1}\left(x_{1}, \ldots, x_{n}\right) \leq M_{0}\left(x_{1}, \ldots, x_{n}\right) \leq M_{1}\left(x_{1}, \ldots, x_{n}\right)$. For $p \rightarrow+\infty$ we have

$$
\frac{1}{n} \max \left(x_{1}^{p}, \ldots, x_{n}^{p}\right) \leq \frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n} \leq \max \left(x_{1}^{p}, \ldots, x_{n}^{p}\right)
$$

therefore $M_{p}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \max \left(x_{1}, \ldots, x_{n}\right)$; one writes

$$
M_{+\infty}\left(x_{1}, \ldots, x_{n}\right)=\max \left(x_{1}, \ldots, x_{n}\right) ; \quad M_{-\infty}\left(x_{1}, \ldots, x_{n}\right)=\min \left(x_{1}, \ldots, x_{n}\right)
$$

(the latter being similar to the former) and observes that $M_{-\infty}\left(x_{1}, \ldots, x_{n}\right) \leq$ $M_{-1}\left(x_{1}, \ldots, x_{n}\right) \leq M_{0}\left(x_{1}, \ldots, x_{n}\right) \leq M_{1}\left(x_{1}, \ldots, x_{n}\right) \leq M_{+\infty}\left(x_{1}, \ldots, x_{n}\right)$. That is interesting! Maybe $M_{p} \leq M_{q}$ whenever $p \leq q$?

We treat M_{p} as a function on $(0, \infty)^{n} \subset \mathbb{R}^{n}$ and calculate its gradient ∇M_{p}, or rather, the direction of the vector ∇M_{p}; indeed, we only need to know when two vectors $\nabla M_{p}, \nabla M_{q}$ are linearly dependent, that is, collinear (denote it ॥). We have $\nabla M_{p} \| \nabla M_{p}^{p}$ ॥ $\nabla\left(n M_{p}^{p}\right) ॥\left(x_{1}^{p-1}, \ldots, x_{n}^{p-1}\right)$ for $p \neq$ 0 ; however, this result holds for $p=0$ as well, since $\nabla M_{0} \| \nabla \ln M_{0}$ ॥ $\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right)$. Thus, $\nabla M_{p}, \nabla M_{q}$ are collinear if and only if $\frac{x_{1}^{q-1}}{x_{1}^{p-1}}=\cdots=$ $\frac{x_{n}^{q-1}}{x_{n}^{p-1}}$, that is, $x_{1}^{q-p}=\cdots=x_{n}^{q-p}$, or just $x_{1}=\cdots=x_{n}$. In this case, evidently,
$M_{p}=M_{q}$. Does it prove that $M_{p} \leq M_{q}$ always? Not yet. Functions M_{p}, M_{q} are continuously differentiable on the open set $G=(0, \infty)^{n}$, and on the set $Z_{p}=\left\{x \in G: M_{p}(x)=1\right\}^{1}$ the conditions of 3f1 are violated at one point $(1, \ldots, 1)$ only. This could not happen on a compact Z_{p} ! Surely Z_{p} is not compact, and we must examine $\bar{Z}_{p} \backslash Z_{p}$ and/or ∞.

CASE 1: $0<p<q<\infty$. The set Z_{p} is bounded, since $\max \left(x_{1}, \ldots, x_{n}\right) \leq$ $\left(x_{1}^{p}+\cdots+x_{n}^{p}\right)^{1 / p}=n^{1 / p} M_{p}\left(x_{1}, \ldots, x_{n}\right)=n^{1 / p}$, but not closed. ${ }^{2}$ Functions M_{p}, M_{q} are continuous on $\bar{G}=[0, \infty)^{n}$. Maybe the (global) minimum of M_{q} on $\overline{Z_{p}}=\left\{x \in \bar{G}: M_{p}(x)=1\right\}$ is reached at some $x \in \bar{Z}_{p} \backslash Z_{p}$? In this case at least one coordinate of x vanishes. We use induction in n. For $n=1$, $M_{p}(x)=x=M_{q}(x)$. Having $M_{p} \leq M_{q}$ in dimension $n-1$ we get (assuming $x_{n}=0$)

$$
\begin{aligned}
\frac{M_{q}(x)}{M_{p}(x)}= & \frac{\left(\frac{1}{n}\left(x_{1}^{q}+\cdots+x_{n-1}^{q}+0^{q}\right)\right)^{1 / q}}{\left(\frac{1}{n}\left(x_{1}^{p}+\cdots+x_{n-1}^{p}+0^{p}\right)\right)^{1 / p}}= \\
& =\left(\frac{n}{n-1}\right)^{\frac{1}{p}-\frac{1}{q}} \frac{\left(\frac{1}{n-1}\left(x_{1}^{q}+\cdots+x_{n-1}^{q}\right)\right)^{1 / q}}{\left(\frac{1}{n-1}\left(x_{1}^{p}+\cdots+x_{n-1}^{p}\right)\right)^{1 / p}} \geq\left(\frac{n}{n-1}\right)^{\frac{1}{p}-\frac{1}{q}}>1,
\end{aligned}
$$

therefore $M_{q}>M_{p}$ on $\bar{Z}_{p} \backslash Z_{p}$.
Case 2: $0=p<q<\infty$. Follows from Case 1 via the limiting procedure $p \rightarrow 0+$.

Case 3: $-\infty<p<q<0$. Follows from Case 1 applied to $1 / x_{1}, \ldots, 1 / / x_{n}$, since

$$
\begin{gathered}
1 / M_{-p}\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right)=\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{1 / p}=M_{p}\left(x_{1}, \ldots, x_{n}\right) \\
M_{p}\left(x_{1}, \ldots, x_{n}\right)=1 / M_{-p}\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right) \leq 1 / M_{-q}\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right)=M_{q}\left(x_{1}, \ldots, x_{n}\right)
\end{gathered}
$$

Case 4: $-\infty<p<q=0$. Follows from Case 3 via the limiting procedure $q \rightarrow 0-$.

Case 5: $-\infty<p<0<q<\infty$. Follows from Cases 2 and 4: $M_{p} \leq$ $M_{0} \leq M_{q}$.

So, $M_{p} \leq M_{q}$ whenever $p \leq q$.
Some practical advice.

[^9]The system of $m+n$ equations proposed in Sect. $3 f$ is only one way of finding local constrained extrema. Not necessarily the simplest way.

No need to find ∇f when $f(\cdot)=\varphi(g(\cdot))$; just find ∇g and note that ∇f is collinear to ∇g.

In many cases there are alternatives to the Lagrange method. For example, we could replace $\inf \left\{M_{q}(x): M_{p}(x)=1\right\}$ with $\inf \left\{\frac{M_{q}(x)}{M_{p}(x)}: M_{1}(x)=1\right\}$, substitute $x_{n}=n-\left(x_{1}+\cdots+x_{n-1}\right)$ and optimize in x_{1}, \ldots, x_{n-1} without constraints. Alternatively we could use convexity of the function $t \mapsto t^{q / p}$, that is, convexity of the set $A=\left\{(t, u): t \in(0, \infty), u \geq t^{q / p}\right\}$. The convex combination $\left(\frac{1}{n}\left(x_{1}^{p}+\cdots+x_{n}^{p}\right), \frac{1}{n}\left(x_{1}^{q}+\cdots+x_{n}^{q}\right)\right)$ of points $\left(x_{1}^{p}, x_{1}^{q}\right), \ldots,\left(x_{n}^{p}, x_{n}^{q}\right) \in A$ belongs to A, which gives $\left(\frac{1}{n}\left(x_{1}^{p}+\cdots+x_{n}^{p}\right)\right)^{q / p} \leq \frac{1}{n}\left(x_{1}^{q}+\cdots+x_{n}^{q}\right)$, that is, $M_{p} \leq M_{q}$. Moreover, the same applies to weighted mean

$$
M_{p, w}(x)=\left(x_{1}^{p} w_{1}+\cdots+x_{n}^{p} w_{n}\right)^{1 / p}
$$

for given $w_{1}, \ldots, w_{n} \geq 0$ satisfying $w_{1}+\cdots+w_{n}=1$. In particular, $M_{1, w}(x) \leq$ $M_{p, w}(x)$ for $p \geq 1$, that is, $x_{1} w_{1}+\cdots+x_{n} w_{n} \leq\left(x_{1}^{p} w_{1}+\cdots+x_{n}^{p} w_{n}\right)^{1 / p}$. Substituting $x_{i}=a_{i} b_{i}^{-q / p}$ and $w_{i}=b_{i}^{q}$ where q is such that $\frac{1}{p}+\frac{1}{q}=1$ we have $\sum_{i} a_{i} b_{i}^{-q / p} b_{i}^{q} \leq\left(\sum_{i} a_{i}^{p} b_{i}^{-q} b_{i}^{q}\right)^{1 / p}$, that is, $\sum_{i} a_{i} b_{i} \leq\left(\sum_{i} a_{i}^{p}\right)^{1 / p}$ provided that $\sum_{i} b_{i}^{q}=1$. This leads easily to the Hölder's inequality

$$
\left|\sum_{i} x_{i} y_{i}\right| \leq\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i}\left|y_{i}\right|^{q}\right)^{1 / q}
$$

for $p, q \in(1, \infty), \frac{1}{p}+\frac{1}{q}=1$, and arbitrary $x_{i}, y_{i} \in \mathbb{R}$. The right-hand side may be rewritten as $n M_{p}(|x|) M_{q}(|y|)$, admitting $p, q \in[1, \infty]$. Note the special cases $p=q=2$ and $p=1, q=\infty$.

However, the shown way to this inequality is rather tricky.
3g3 Exercise. Given $a_{1}, \ldots, a_{n}>0$, maximize $a_{1} x_{1}+\cdots+a_{n} x_{n}$ on $\{x \in$ $\left.[0, \infty)^{n}: x_{1}^{p}+\cdots+x_{n}^{p}=1\right\}$ using the Lagrange method. ${ }^{1}$ Deduce Hölder's inequality.

Hölder's inequality persists in the case of countably many variables x_{i} and y_{i}. If two series $\sum\left|x_{i}\right|^{p}$ and $\sum\left|y_{i}\right|^{q}$ converge (and $\frac{1}{p}+\frac{1}{q}=1$), then the series $\sum x_{i} y_{i}$ also converges (and the inequality holds).

3 g 4 Exercise. Given $a, b, c, k>0$, find the maximum of the function $f(x, y, z)=$ $x^{a} y^{b} z^{c}$ where $x, y, z \in[0, \infty)$ and $x^{k}+y^{k}+z^{k}=1$.

[^10]3 g 5 Exercise. Find the maximum of y over all points $(x, y) \in \mathbb{R}^{2}$ that satisfy the equation $x^{2}+x y+y^{2}=27$.
[Sh:Sect.5.4]

3h Example: Three points on a spheroid

We consider an ellipsoid of revolution (in other words, spheroid)

$$
x^{2}+y^{2}+\alpha z^{2}=1
$$

for some $\alpha \in(0,1) \cup(1, \infty)$, and three points P, Q, R on this surface. We want to maximize $|P Q|^{2}+|Q R|^{2}+|R P|^{2}$.

We'll see that the maximum is reached when P, Q, R are situated either in the horizontal plane $z=0$ or the vertical plane $y=0$ (or another vertical plane through the origin; they all are equivalent due to symmetry). Thus, the three-dimensional problem boils down to a pair of two-dimensional problems (not to be solved here).

We introduce 9 coordinates,

$$
P=\left(x_{1}, y_{1}, z_{1}\right), \quad Q=\left(x_{2}, y_{2}, z_{2}\right), \quad R=\left(x_{3}, y_{3}, z_{3}\right)
$$

and 4 functions $f, g_{1}, g_{2}, g_{3}: \mathbb{R}^{9} \rightarrow \mathbb{R}$ of these coordinates,

$$
\begin{aligned}
f\left(x_{1}, \ldots, z_{3}\right) & =\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2} \\
& +\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}+\left(z_{2}-z_{3}\right)^{2} \\
& +\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}+\left(z_{3}-z_{1}\right)^{2} ; \\
g_{1}\left(x_{1}, \ldots, z_{3}\right)= & x_{1}^{2}+y_{1}^{2}+\alpha z_{1}^{2}-1 \\
g_{2}\left(x_{1}, \ldots, z_{3}\right)= & x_{2}^{2}+y_{2}^{2}+\alpha z_{2}^{2}-1 \\
g_{3}\left(x_{1}, \ldots, z_{3}\right)= & x_{3}^{2}+y_{3}^{2}+\alpha z_{3}^{2}-1 .
\end{aligned}
$$

We use the approach of Sect. 3f with $n=9, m=3$. The functions f, g_{1}, g_{2}, g_{3} are continuously differentiable on \mathbb{R}^{9}. The set $Z=Z_{g_{1}, g_{2}, g_{3}} \subset \mathbb{R}^{9}$ is compact. The gradients of g_{1}, g_{2}, g_{3} do not vanish on Z (check it) and are linearly independent (and moreover, orthogonal).

We introduce Lagrange multipliers $\lambda_{1}, \lambda_{2}, \lambda_{3}$ corresponding to g_{1}, g_{2}, g_{3} and consider a system of $m+n=12$ equations for 12 unknowns. The first three equations are

$$
x_{1}^{2}+y_{1}^{2}+\alpha z_{1}^{2}=1, \quad x_{2}^{2}+y_{2}^{2}+\alpha z_{2}^{2}=1, \quad x_{3}^{2}+y_{3}^{2}+\alpha z_{3}^{2}=1 .
$$

Now, the partial derivatives. We have

$$
\frac{\partial f}{\partial x_{1}}=2\left(x_{1}-x_{2}\right)-2\left(x_{3}-x_{1}\right)=4 x_{1}-2 x_{2}-2 x_{3}
$$

which is convenient to write as $6 x_{1}-2\left(x_{1}+x_{2}+x_{3}\right)$; similarly,

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{k}}=6 x_{k}-2\left(x_{1}+x_{2}+x_{3}\right) \\
& \frac{\partial f}{\partial y_{k}}=6 y_{k}-2\left(y_{1}+y_{2}+y_{3}\right) \\
& \frac{\partial f}{\partial z_{k}}=6 z_{k}-2\left(z_{1}+z_{2}+z_{3}\right)
\end{aligned}
$$

for $k=1,2,3$. Also,

$$
\frac{\partial g_{k}}{\partial x_{k}}=2 x_{k}, \quad \frac{\partial g_{k}}{\partial y_{k}}=2 y_{k}, \quad \frac{\partial g_{k}}{\partial z_{k}}=2 \alpha z_{k}
$$

other partial derivatives vanish. We get 9 more equations:

$$
\begin{aligned}
6 x_{k}-2\left(x_{1}+x_{2}+x_{3}\right) & =\lambda_{k} \cdot 2 x_{k}, \\
6 y_{k}-2\left(y_{1}+y_{2}+y_{3}\right) & =\lambda_{k} \cdot 2 y_{k}, \\
6 z_{k}-2\left(z_{1}+z_{2}+z_{3}\right) & =\lambda_{k} \cdot 2 \alpha z_{k}
\end{aligned}
$$

for $k=1,2,3$. That is,

$$
\begin{aligned}
\left(3-\lambda_{k}\right) x_{k} & =x_{1}+x_{2}+x_{3} \\
\left(3-\lambda_{k}\right) y_{k} & =y_{1}+y_{2}+y_{3} \\
\left(3-\alpha \lambda_{k}\right) z_{k} & =z_{1}+z_{2}+z_{3}
\end{aligned}
$$

We note that

$$
\left(x_{1}+x_{2}+x_{3}\right) y_{k}=\left(3-\lambda_{k}\right) x_{k} y_{k}=\left(y_{1}+y_{2}+y_{3}\right) x_{k}
$$

for $k=1,2,3$.
CASE 1: $x_{1}+x_{2}+x_{3} \neq 0$ or $y_{1}+y_{2}+y_{3} \neq 0$.
Then P, Q, R are situated on the vertical plane $\left\{(x, y, z):\left(x_{1}+x_{2}+x_{3}\right) y=\right.$ $\left.\left(y_{1}+y_{2}+y_{3}\right) x\right\}$.

CASE 2: $\quad x_{1}+x_{2}+x_{3}=y_{1}+y_{2}+y_{3}=0$ and $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \neq(3,3,3)$.
If $\lambda_{1} \neq 3$ then $x_{1}=y_{1}=0$; the three vectors $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2}$ (of zero sum!) are collinear; therefore P, Q, R are situated on a vertical plane (again). The same holds if $\lambda_{2} \neq 3$ or $\lambda_{3} \neq 3$.

CASE 3: $\quad x_{1}+x_{2}+x_{3}=y_{1}+y_{2}+y_{3}=0$ and $\lambda_{1}=\lambda_{2}=\lambda_{3}=3$.
Then $z_{1}=z_{2}=z_{3}=\frac{z_{1}+z_{2}+z_{3}}{3-3 \alpha}$, therefore $z_{1}=z_{2}=z_{3}=0($ since $\alpha \neq 1)$; P, Q, R are situated on the horizontal plane $\{(x, y, z): z=0\}$.

Another practical advice.
If Lagrange method does not solve a problem to the end, it may still give a useful information. Combine it with other methods as needed.

3h1 Exercise. ${ }^{1}$

Let $a, b \in \mathbb{R}^{n}$ be linearly independent, $|a|=5,|b|=10$. Functions φ_{a}, φ_{b} on the sphere $S_{1}(0)=\{x:|x|=1\} \subset$ \mathbb{R}^{n} are defined as follows: $\varphi_{a}(x)$ is the angular diameter of the sphere $S_{1}(a)=\{y:|y-a|=1\}$ viewed from x;
 similarly, $\varphi_{b}(x)$ is the angular diameter of $S_{1}(b)$ from x. Prove that every point of local extremum of the function $\varphi_{a}+\varphi_{b}$ on $S_{1}(0)$ is some linear combination of $a, b .^{2}$

3i Example: Singular value decomposition

3i1 Proposition. Every linear operator from one finite-dimensional Euclidean vector space to another sends some orthonormal basis of the first space into an orthogonal system in the second space.

This is called the Singular Value Decomposition. ${ }^{3}$ It may be reformulated as follows.
$3 i 2$ Proposition. Every linear operator from an n-dimensional Euclidean vector space to an m-dimensional Euclidean vector space has a diagonal $m \times n$ matrix in some pair of orthonormal bases.

In particular, this holds for every linear operator $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. It does not mean that every matrix is diagonalizable! Two bases give much more freedom than one basis.

Do you think this is unrelated to constrained optimization? Wait a little.
Prop. 3 il will be derived from Prop. 3 i 3 below.
3i3 Proposition. Every finite-dimensional vector space endowed with two Euclidean metrics contains a basis orthonormal in the first metric and orthogonal in the second metric.

[^11]Proof. Let an n-dimensional vector space V be endowed with two Euclidean metrics. It means, two norms $|\cdot|$ and $|\cdot|_{1}$ corresponding to two inner products $\langle\cdot, \cdot\rangle$ and $\langle\cdot, \cdot\rangle_{1}$ by $|x|^{2}=\langle x, x\rangle$ and $|x|_{1}^{2}=\langle x, x\rangle_{1}$. We denote by E the Euclidean space ($V,|\cdot|$) and define a mapping $A: E \rightarrow E$ by

$$
\forall x, y \in E \quad\langle x, y\rangle_{1}=\langle A(x), y\rangle
$$

it is well-defined, since the linear form $\langle x, \cdot\rangle_{1}$, as every linear form, is $\langle a, \cdot\rangle$ for some $a \in E$. It is easy to see that A is a linear operator, symmetric in the sense that

$$
\forall x, y \in E \quad\langle A x, y\rangle=\langle x, A y\rangle .
$$

We want to maximize $|\cdot|_{1}^{2}$ on the sphere $S=\{x \in E:|x|=1\}$. We have ${ }^{1}$

$$
\nabla|x|^{2}=2 x, \quad \nabla|x|_{1}^{2}=2 A x
$$

by 2 b 11 , or just by a very simple calculation:

$$
\begin{gathered}
|x+h|^{2}=|x|^{2}+\langle x, h\rangle+\langle h, x\rangle+|h|^{2}=|x|^{2}+2\langle x, h\rangle+o(|h|), \\
|x+h|_{1}^{2}=|x|_{1}^{2}+\langle x, h\rangle_{1}+\langle h, x\rangle_{1}+|h|_{1}^{2}=|x|_{1}^{2}+2\langle A x, h\rangle+o(|h|) .
\end{gathered}
$$

These two gradients are collinear if and only if $\exists \lambda A x=\lambda x$; it means, x is an eigenvector of A, and λ is the eigenvalue. Now we could use well-known results of linear algebra, but here is the analytic way.

By compactness, $|\cdot|_{1}^{2}$ reaches its maximum on S; by Theorem 3f1, a maximizer is an eigenvector. Existence of an eigenvector is thus proved. Denote it by e_{n}, and the eigenvalue by λ_{n}.

If $x \perp e_{n}$ then $A x \perp e_{n}$ due to symmetry of $A:\left\langle A x, e_{n}\right\rangle=\left\langle x, A e_{n}\right\rangle=$ $\left\langle x, \lambda_{n} e_{n}\right\rangle=\lambda_{n}\left\langle x, e_{n}\right\rangle=0$. We consider a hyperplane (that is, $(n-1)$-dimensional subspace)

$$
E_{n-1}=\left\{x \in E: x \perp e_{n}\right\}
$$

and the restricted operator

$$
A_{n-1}: E_{n-1} \rightarrow E_{n-1}, \quad A_{n-1} x=A x \text { for } x \in E_{n-1} .
$$

The Euclidean space E_{n-1} is endowed with two Euclidean metrics $|\cdot|$ and $|\cdot|_{1}\left(\right.$ restricted to $\left.E_{n-1}\right)$, and $\langle x, y\rangle_{1}=\left\langle A_{n-1} x, y\right\rangle$ for $x, y \in E_{n-1}$.

Now we use induction in n. The case $n=1$ is trivial. The claim for $n-1$ applied to E_{n-1} gives a basis $\left(e_{1}, \ldots, e_{n-1}\right)$ of E_{n-1} orthonormal in $|\cdot|$ and orthogonal in $|\cdot|_{1}$. Thus, $\left(e_{1}, \ldots, e_{n-1}, e_{n}\right)$ is a basis of E. We normalize e_{n} to $\left|e_{n}\right|=1$; now this basis is orthonormal in $|\cdot|$. It is also orthogonal in $|\cdot|_{1}$, since $\left\langle e_{k}, e_{n}\right\rangle_{1}=\left\langle A e_{k}, e_{n}\right\rangle=0$ for $k=1, \ldots, n-1$.

[^12]3i4 Remark. Positivity of the quadratic form $x \mapsto|x|_{1}^{2}=\langle x, x\rangle_{1}$ was not used. The same holds for arbitrary quadratic form on a Euclidean space. (In contrast, positivity of $|\cdot|^{2}$ was used.)

Proof of Prop. [3i1. We have two Euclidean spaces E, E_{2} and a linear operator $T: E \rightarrow E_{2}$. First, assume in addition that T is one-to-one. Then T induces a second Euclidean metric on E :

$$
|x|_{1}=|T x| ; \quad\langle x, y\rangle_{1}=\langle T x, T y\rangle
$$

(of course, $|T x|$ is the norm in E_{2}). Prop. 3 i 3 gives an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of E, orthogonal in the second metric: $\left\langle e_{k}, e_{l}\right\rangle=0$ for $k \neq l$. That is, $\left\langle T e_{k}, T e_{l}\right\rangle=0$, which shows that $\left(T e_{1}, \ldots, T e_{n}\right)$ is an orthogonal system in E_{2}.

If T is not one-to-one, the same argument applies due to Remark 3 i4. ${ }^{1}$
Prop. 3 3i2 follows immediately, and gives a diagonal matrix. Its diagonal elements can be made ≥ 0 (changing signs of basis vectors as needed) and decreasing (renumbering basis vectors as needed); this way one gets the socalled singular values of the given operator T. They depend on T only, not on the choice of the pair of bases, ${ }^{23}$ and are the square roots of the eigenvalues of the operator $A=T^{*} T$. The highest singular value is the operator norm $\|T\|$ of T (think, why). The lowest singular value (if not 0) is $1 /\left\|T^{-1}\right\|$.

3j Sensitivity of optimum to parameters

When using a mathematical model one often bothers about sensitivity ${ }^{4}$ of the result (the output of the model) to the assumptions (the input). Here is one of such questions. ${ }^{5}$

What happens if the restrictions $g_{1}(x)=\cdots=g_{m}(x)=0$ are replaced with $g_{1}(x)=c_{1}, \ldots, g_{m}(x)=c_{m}$?

Assume that the system of $m+n$ equations

$$
\begin{array}{ll}
g_{1}(x)=c_{1}, \ldots, g_{m}(x)=c_{m}, & (m \text { equations) } \\
\nabla f(x)=\lambda_{1} \nabla g_{1}(x)+\cdots+\lambda_{m} \nabla g_{m}(x) & \text { (} n \text { equations) }
\end{array}
$$

[^13]for $(\lambda, x) \in \mathbb{R}^{m} \times \mathbb{R}^{n}$ has a solution $(\lambda(c), x(c))$ for all $c \in \mathbb{R}^{m}$ near 0 , and the mapping $c \mapsto x(c)$ is differentiable at 0 . Then, by the chain rule,
$$
\left.\frac{\partial}{\partial c_{k}}\right|_{c=0} f(x(c))=\left\langle\nabla f(x(0)),\left.\frac{\partial}{\partial c_{k}}\right|_{c=0} x(c)\right\rangle \quad \text { for } k=1, \ldots, m
$$

On the other hand,

$$
\nabla f(x(0))=\lambda_{1}(0) \nabla g_{1}(x(0))+\cdots+\lambda_{m}(0) \nabla g_{m}(x(0))
$$

and

$$
\left\langle\nabla g_{1}(x(0)),\left.\frac{\partial}{\partial c_{k}}\right|_{c=0} x(c)\right\rangle=\left.\frac{\partial}{\partial c_{k}}\right|_{c=0} g_{1}(x(c))= \begin{cases}1, & \text { if } k=1 \\ 0, & \text { otherwise }\end{cases}
$$

(since $\left.g_{1}(x(c))=c_{1}\right)$. The same holds for g_{2}, \ldots, g_{m}. Therefore

$$
\left.\frac{\partial}{\partial c_{k}}\right|_{c=0} f(x(c))=\lambda_{k}(0)
$$

It means that $\lambda_{k}=\lambda_{k}(0)$ is the sensitivity of the critical value to the level c_{k} of the constraint $g_{k}(x)=c_{k}$. That is,

$$
f(x(c))=f(x(0))+\lambda_{1}(0) c_{1}+\cdots+\lambda_{m}(0) c_{m}+o(|c|)
$$

Does it mean that

$$
\begin{equation*}
\sup _{Z_{c}} f=\sup _{Z_{0}} f+\lambda_{1}(0) c_{1}+\cdots+\lambda_{m}(0) c_{m}+o(|c|) \tag{3j1}
\end{equation*}
$$

where $Z_{c}=\left\{x: g_{1}(x)=c_{1}, \ldots, g_{m}(x)=c_{m}\right\}$? Not necessarily, for several reasons (possible non-compactness, non-differentiability, greater or equal value at another critical point when $c=0$). But if $\sup _{Z_{c}} f=f(x(c))$ for all c near 0 then (3j1) holds. ${ }^{1}$

Index

constraint function, 51
Hölder mean, 62
Hölder's inequality, 64
homeomorphism near a point, 55
invariance of domain, 57

Lagrange multipliers, 60
objective function, 51
open mapping, 53

$$
\begin{aligned}
& Z_{g}, 51 \\
& Z_{g_{1}, g_{2}}, 58
\end{aligned}
$$

[^14]
[^0]: ${ }^{1}$ Hint: cover the complement with a sequence of open disks and take the sum of an appropriate series of functions positive inside these disks and vanishing outside.
 ${ }^{2}$ In other words, conditional.
 ${ }^{3}$ Not necessarily strict; that is, either $f\left(x_{0}, y_{0}\right) \leq f(x, y)$ for all $(x, y) \in Z_{g}$ near $\left(x_{0}, y_{0}\right)$ (minimum), or " \geq " (maximum).

[^1]: ${ }^{1}$ Not a standard terminology; introduced for convenience, to be used within sections 3 b 3 d only.
 ${ }^{2}$ It may seem that bad points are well-defined in affine spaces while very bad points are well-defined only in presence of Euclidean metric. In fact, Euclidean metric does not matter. But never mind, we do not need this fact.

[^2]: ${ }^{1}$ We could assume that $D f$ is continuous near x_{0}, but this would not simplify the proof.
 ${ }^{2}$ Did you know that sometimes a more general claim is easier to prove?
 ${ }^{3}$ We could not do it dealing with a single space.

[^3]: ${ }^{1}$ Once again, we could not do it dealing with a single space. By the way, an arbitrary matrix is not diagonalizable in the single-space setup, but diagonalizable in the two-spaces setup.

[^4]: ${ }^{1}$ Recall Sect. 1c.
 ${ }^{2}$ True, $x_{k} \rightarrow x \Longleftrightarrow f\left(x_{k}\right) \rightarrow f(x)$ for $x, x_{k} \in \bar{U}$, but the question is, what to do if $f\left(x_{k}\right) \rightarrow y \in \bar{V} \backslash f(\bar{U})$; the answer is, choose a convergent $\left(x_{k_{i}}\right)_{i}$.
 ${ }^{3}$ Alternatively, consider a path $\gamma:\left[t_{0}, t_{1}\right] \rightarrow U$ such that some $t \in\left(t_{0}, t_{1}\right)$ satisfies $\gamma(t)=a$ and $\gamma^{\prime}(t)=\left((D f)_{a}\right)^{-1}(b-x)$.
 ${ }^{4}$ By the way, it follows from the Brouwer invariance of domain theorem that an open set in \mathbb{R}^{n+1} cannot be homeomorphic to any set in \mathbb{R}^{n} (unless it is empty). Think, why.
 ${ }^{5}$ Still another alternative to Lemma 3b7 will be discussed in Sect. 4d, see 4d2.
 ${ }^{6}$ Hint: recall 3b4.

[^5]: ${ }^{1}$ Hint: use 2e11(b).

[^6]: ${ }^{1}$ Hint: similar to the proof of 3 d 1$\}(x, y, z)=\left(f(x, y, z), g_{1}(x, y, z), g_{2}(x, y, z)\right), \ldots$

[^7]: ${ }^{1}$ Being ignored in this framework, $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ are of interest in another framework, see Sect. 3j.

[^8]: ${ }^{1}$ Generally, $\operatorname{area}(G) \leq \frac{1}{4 \pi}(\operatorname{perimeter}(G))^{2}$ for any G on the plane, and equality is attained for disks only. This is a famous deep fact. But I do not give an exact formulation (nor a proof, of course).
 $2 \frac{L}{2}-x=\frac{x+y+z}{2}-x=\frac{y+z-x}{2}>0$ by the triangle inequality.

[^9]: ${ }^{1}$ No need to consider $M_{p}(x)=c$, since $M_{p}(\lambda x)=\lambda M_{p}(x)$ for all $\lambda \in(0, \infty)$ and all p, thus $\frac{M_{q}(\lambda x)}{M_{p}(\lambda x)}$ does not depend on λ.
 ${ }^{2}$ For example, the point $\left(n^{1 / p}, 0, \ldots, 0\right)$ belongs to ∂Z_{p}.

[^10]: ${ }^{1}$ Hint: induction in n is needed again.

[^11]: ${ }^{1}$ Exam of 26.01.14, Question 2.
 ${ }^{2}$ Hint: show that $\sin \frac{1}{2} \varphi_{a}(x)=1 /|x-a|$; use the gradient.
 ${ }^{3}$ See: Todd Will, "Introduction to the Singular Value Decomposition", http://www.uwlax.edu/faculty/will/svd/index.html Quote:

 The Singular Value Decomposition (SVD) is a topic rarely reached in undergraduate linear algebra courses and often skipped over in graduate courses.

 Consequently relatively few mathematicians are familiar with what M.I.T. Professor Gilbert Strang calls "absolutely a high point of linear algebra."

[^12]: ${ }^{1}$ All gradients are taken in $E=(V,|\cdot|)$, not $\left(V,|\cdot|_{1}\right)$!

[^13]: ${ }^{1}$ Alternatively, define $|x|_{1}^{2}=|T x|^{2}+|x|^{2},\langle x, y\rangle_{1}=\langle T x, T y\rangle+\langle x, y\rangle$.
 ${ }^{2}$ The only freedom in this choice (in addition to sign change and renumbering) is, rotation within each eigenspace of dimension >1 (if any).
 ${ }^{3}$ On the space of operators, the Schatten norm is $\|T\|_{p}=\left(\left|s_{1}\right|^{p}+\cdots+\left|s_{n}\right|^{p}\right)^{1 / p}$ where s_{1}, \ldots, s_{n} are the singular values of T (and $1 \leq p \leq \infty$).
 ${ }^{4}$ Closely related ideas: stability, robustness; uncertainty; elasticity, ...
 ${ }^{5}$ A more general one: $g_{1}\left(x, c_{1}\right)=0, \ldots, g_{m}\left(x, c_{m}\right)=0$.

[^14]: ${ }^{1}$ See also Sect. 13.2 in book: J. Cooper, "Working analysis", Elsevier 2005.

