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Continuously differentiable mappings behave locally like linear, which is easy
to guess but not easy to prove. A first order necessary condition (“Lagrange
multipliers”) for constrained extrema is proved and used for optimization.

3a What is the problem

By (2c3), local extrema of a differentiable function f can be found using the
necessary condition (Df)x = 0, which is important for optimization. Now we
turn to a harder task: to maximize f(x, y) subject to a constraint g(x, y) = 0;
in other words, to maximize f on the set Zg = {(x, y) : g(x, y) = 0}. Here
f, g : R2 → R are given differentiable functions (the objective function and
the constraint function).

f=const g=0

It is easy to guess a necessary condition: ∇f and ∇g must be collinear.
[Sh:Sect.5.4] It is easy to prove this guess taking for granted that Zg, being
a curve, can be parametrized by a differentiable path γ, that is, g(x, y) =
0 ⇐⇒ ∃t (x, y) = γ(t). Is it really the general case?
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Rather unexpectedly, every closed subset of R2 is Zg for some g ∈ C1(R2).
(The proof is beyond this course.)1

A simple example: g(x, y) = x2 − y2; g ∈ C1(R2); Zg is the union of two
straight lines intersecting at the origin. Note that ∇g = 0 at the origin.

Another example:

g(x, y) =

{
x2 + y2 for x ≤ 0,

y2 for x ≥ 0.

Again, g ∈ C1(R2) (think, why); Zg = [0,∞) × {0}, a ray from the origin.
Again,∇g = 0 at the origin. The function f : (x, y) 7→ x reaches its minimum
on Zg at the origin. Can we say that ∇f and ∇g are collinear at the origin?
Rather, they are linearly dependent.

We assume that ∇f(x0, y0) and ∇g(x0, y0) are linearly independent,
g(x0, y0) = 0, and want to prove that (x0, y0) cannot be a local constrained2

extremum3 of f on Zg. Assume for simplicity x0 = y0 = 0 and f(0, 0) = 0.
Consider the mapping h : R2 → R2, h(x, y) =

(
f(x, y), g(x, y)

)
near the

origin, and its linear approximation T = (Dh)(0,0) : R2 → R2; T (x, y) =
(ax + by, cx + dy) where a = (D1f)(0,0), b = (D2f)(0,0), c = (D1g)(0,0),
d = (D2g)(0,0). Vectors ∇f(0, 0) = (a, b) and ∇g(0, 0) = (c, d) are linearly
independent, thus | a bc d | 6= 0, which means that T is invertible. (Alternatively,
use Lemma 2f2.)

It follows that T (x1, y1) = (1, 0) for some x1, y1. We have

f(tx1, ty1) = t+ o(t) , g(tx1, ty1) = o(t) .

Does it show that the origin cannot be a local constrained extremum of f on
Zg? No, it does not. We still did not find xt, yt such that

f(xt, yt) = t+ o(t) , g(xt, yt) = 0 .

1Hint: cover the complement with a sequence of open disks and take the sum of an
appropriate series of functions positive inside these disks and vanishing outside.

2In other words, conditional.
3Not necessarily strict; that is, either f(x0, y0) ≤ f(x, y) for all (x, y) ∈ Zg near (x0, y0)

(minimum), or “≥” (maximum).
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In other words: we know that the image V = h(U) of a neighborhood U of the
origin contains a differentiable path γ : (−ε, ε)→ R2 such that γ(0) = (0, 0)
and γ′(0) = (1, 0), but we still do not know, whether V contains (−ε, ε)×{0}
or not.

?

?
γh

We know that T is onto, but we still do not know, whether h is locally onto.
In more technical language: whether h is an open mapping, as defined below.

Of course, we need a multidimensional theory; R2 is only the simplest
case.

3b Open mappings

3b1 Definition. Let X, Y be metrizable spaces. A mapping f : X → Y is
open if f(U) ⊂ Y is open for every open U ⊂ X.

This is a local notion, due to an equivalent definition 3b2.

3b2 Definition. (equivalent to 3b1)
Let X, Y be metrizable spaces. A mapping f : X → Y is open if for

every x ∈ X and every neighborhood U of x the set f(U) is a neighborhood
of f(x).

Reminder: a neighborhood need not be open.

3b3 Exercise. Prove equivalence of these two definitions.

A bijection f : X → Y is open if and only if f−1 : Y → X is continuous.
Thus, a continuous bijection is open if and only if it is a homeomorphism.
By 1a14, every continuous bijection R → R is open (hence, homeomor-

phism). But generally (for X → Y ) it is not; recall 1a15–1a17.

3b4 Exercise. Prove or disprove: a continuous function R → R is open if
and only if it is strictly monotone.

The usual projection g : Rn+1 → Rn is continuous and open, but not
one-to-one.

The usual embedding f : Rn → Rn+1 (or Rn+k) is a homeomorphism
Rn → f(Rn) ⊂ Rn+1, but not an open mapping. If U ⊂ Rn is open then
f(U) is relatively open in f(Rn), but not open in Rn+1 (unless U = ∅). In this
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case f(U) = f(U), but f(∂U) 6= ∂(f(U)) since ∂(f(U)) = f(U) \ f(U)◦ =
f(U) \ ∅ = f(U). Rather, f(∂U) is the relative boundary of U in f(Rn).

Let X be a metrizable space and A ⊂ X. Every subset U ⊂ A open in
X is relatively open in A (recall 1c3).

3b5 Exercise. A set A in a metrizable space X is open if and only if every
relatively open subset of A is open (in X).

Prove it.

3b6 Exercise. Let X, Y be metrizable spaces, U ⊂ X, V ⊂ Y , f : U → V
a homeomorphism, and U is open. Than f is open if and only if V is open.

Prove it.

Let U ⊂ Rn be relatively open in its closure U . As we know, U need
not be open (in Rn). We seek a useful sufficient condition for U to be open.
To this end we introduce two technical notions.1 We call a ∈ U a bad point
if there exist x1, x2, · · · ∈ Rn \ U such that xn → a. We call a ∈ U a very
bad point if there exists x ∈ Rn such that dist(x, U) = |x − a| > 0. (Here
dist(x, U) = infy∈U |x− y|, of course.)2

Clearly, U is open if and only if it has no bad points, and
every very bad point is a bad point. A bad point need
not be very bad, and nevertheless, existence of a bad
point implies existence of a very bad point. A wonder!

a

U

3b7 Lemma. Let U ⊂ Rn be relatively open in its closure. If U has no very
bad points then U is open.

Proof. Let a ∈ U ; we need a neighborhood of a contained in U . We note
that dist(a, U \ U) > 0 (since U is relatively open in U) and introduce ε =
1
2

dist(a, U\U). It is sufficient to prove that U contains {x ∈ Rn : |x−a| < ε}.

ε

2ε

a

U \ U

U

a

y

x

δ

Assuming the contrary we have x ∈ Rn\U such that |x−a| < ε, thus x /∈ U\U
(since |a−x| < dist(a, U \U)); taking into account that x /∈ U we get x /∈ U .

1Not a standard terminology; introduced for convenience, to be used within sections
3b–3c only.

2It may seem that bad points are well-defined in affine spaces while very bad points
are well-defined only in presence of Euclidean metric. In fact, Euclidean metric does not
matter. But never mind, we do not need this fact.
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By compactness (of the relevant part of U), dist(x, U) = |x−y| > 0 for some
y ∈ U ; we’ll prove that y is a very bad point of U .

We introduce δ = |x − y| and note that δ = dist(x, U) ≤ |x − a| < ε.
Thus |a − y| ≤ |a − x| + |x − y| < ε + δ < 2ε = dist(a, U \ U), which gives
y /∈ U \ U , that is, y ∈ U . Finally, y is very bad since |x− y| = dist(x, U) ≤
dist(x, U) ≤ |x− y|.

3c Linear and nonlinear

3c1 Definition. A mapping f : Rn → Rn is a (local) homeomorphism near
a point x ∈ Rn if there exist neighborhoods U of x and V of f(x) such that
f |U is a homeomorphism U → V .

The same applies to mappings from one n-dimensional affine space to
another.

We know (recall Sect. 1d) that a linear operator Rn → Rn is a homeomor-
phism if and only if it is bijective. Otherwise it cannot be a homeomorphism
near 0 (or any other point).

3c2 Theorem. Let f : Rn → Rn and x ∈ Rn. If f is continuously differen-
tiable near x and the linear operator (Df)x is a homeomorphism then f is a
homeomorphism near x.

The same holds for mappings from one n-dimensional affine space to
another.

We prove 3c2 in two stages. First, we get a homeomorphism U → f(U)
for some neighborhood U of x. Second, we prove that f(U) is a neighborhood
of f(x). Here is the exact formulation of the first stage.

3c3 Proposition. Assume that x0 ∈ Rn, f : Rn → Rn is differentiable
near x0, Df is continuous at x0,

1 and the operator (Df)x0 is invertible.
Then there exists a bounded open neighborhood U of x0 such that f |U is a
homeomorphism U → f(U), and f is differentiable on U , and the operator
(Df)x is invertible for all x ∈ U .

Spaces treated in Sect. 1b help to prove 3c3.

3c4 Lemma. WLOG we may assume that x0 = 0, f(x0) = 0, and (Df)0 =
id.

Proof. We generalize 3c3 replacing f : Rn → Rn with f : X → Y where
X, Y are n-dimensional affine spaces.2 We upgrade X, Y to vector spaces
taking x0 = 0 and f(x0) = 0.3 We choose a basis (e1, . . . , en) in X, thus

1We could assume that Df is continuous near x0, but this would not simplify the proof.
2Did you know that sometimes a more general claim is easier to prove?
3We could not do it dealing with a single space.
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upgrading X to a Cartesian space. We choose in Y the corresponding basis(
(Df)0e1, . . . , (Df)0en

)
, thus upgrading Y to a Cartesian space and in ad-

dition ensuring that the matrix of the operator (Df)0 is the unit matrix.1

Now x0 = 0, f(x0) = 0, and (Df)0 = id.

Proof of Prop. 3c3 for x0 = 0, f(x0) = 0, and (Df)0 = id.
We have (Df)x → (Df)0 = id, that is,

‖(Df)x − id ‖ → 0 as x→ 0 .

For every ε > 0 there exists a neighborhood Uε of 0 such that f is continuous
on Uε, differentiable on Uε, and

‖(Df)x − id ‖ ≤ ε for all x ∈ Uε .

We choose Uε to be convex (just a ball, if you like) and apply 2d10 to the
mapping f − id (its derivative being Df − id): |(f − id)(x)− (f − id)(y)| ≤
ε|x− y|, that is,

|(f(x)− f(y))− (x− y)| ≤ ε|x− y| for all x, y ∈ Uε .

It follows (assuming ε < 1) that f(x)− f(y) 6= 0 for x− y 6= 0; that is, f |Uε

is one-to-one. Moreover, the triangle inequality gives

(1− ε)|x− y| ≤ |f(x)− f(y)| ≤ (1 + ε)|x− y|

for all x, y ∈ Uε. Thus, f |Uε
is a homeomorphism Uε → f(Uε).

Finally,
∣∣((Df)x − id

)
(h)
∣∣ ≤ ε|h|, that is,

|(Df)x(h)− h| ≤ ε|h| for all x ∈ Uε , h ∈ V ;

the triangle inequality (again) gives

(1− ε)|h| ≤ |(Df)x(h)| ≤ (1 + ε)|h| ,

which shows that the operator (Df)x is one-to-one, therefore invertible.

The first stage of the proof of Theorem 3c2 is thus completed. On the
second stage we prove that f(U) is a neighborhood of f(x). Here is the exact
formulation.

1Once again, we could not do it dealing with a single space. By the way, an arbitrary
matrix is not diagonalizable in the single-space setup, but diagonalizable in the two-spaces
setup.
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3c5 Proposition. Assume that U ⊂ Rn is a bounded open set, f : U → Rn

a homeomorphism U → f(U), f is differentiable on U , and the operator
(Df)x is invertible for all x ∈ U . Then f(U) is open.

Proof. By Lemma 3b7 it is sufficient to prove that the set V = f(U) is
relatively open in its closure and has no very bad points.

Being open in Rn, U is relatively open in U , therefore1 V = f(U) is
relatively open in the set f(U) of all f(limk xk) for xk ∈ U such that (xk)k
converges. On the other hand, V = f(U) is the set of all limk f(xk) for
xk ∈ U such that

(
f(xk)

)
k converges.2 Continuity of f implies f(U) ⊂ V .

Compactness of U implies f(U) ⊃ V . Thus, V is relatively open in its closure
V = f(U).

Assuming existence of a very bad point in V we get V 3 b = f(a), a ∈ U ,
and x ∈ Rn such that dist(x, V ) = |x − b| > 0. A function |x − f(·)| on U
has at a a minimum. However, this function is ϕ ◦ f where ϕ(·) = [x − ·|;3
thus D(ϕ ◦ f)a = (Dϕ)b ◦ (Df)a 6= 0, since (Df)a is bijective and (Dϕ)b 6= 0.
A contradiction.

3c6 Remark. In fact, for every open U ⊂ Rn, every continuous one-to-one
mapping U → Rn is open (and therefore a homeomorphism U → f(U)).
This is a well-known topological result, “the Brouwer invariance of domain
theorem”.4 Then, why Lemma 3b7? 5 For two reasons.

First, invariance of domain is proved using algebraic topology (the Brouwer
fixed point theorem). Lemma 3b7, much simpler to prove, suffices due to dif-
ferentiability.

Second, in this course we improve our understanding of differentiable
mappings. Continuous mappings in general are a different story.

3c7 Exercise. Prove invariance of domain in dimension one.6

3c8 Exercise. Consider the set U ⊂ Rn of all (a0, . . . , an−1) such that the
polynomial

t 7→ tn + an−1t
n−1 + · · ·+ a0

has n pairwise distinct real roots.

1Recall Sect. 1c.
2True, xk → x ⇐⇒ f(xk) → f(x) for x, xk ∈ U , but the question is, what to do if

f(xk)→ y ∈ V \ f(U); the answer is, choose a convergent (xki)i.
3Alternatively, consider a path γ : [t0, t1] → U such that some t ∈ (t0, t1) satisfies

γ(t) = a and γ′(t) =
(
(Df)a

)−1(b− x).
4By the way, it follows from the Brouwer invariance of domain theorem that an open

set in Rn+1 cannot be homeomorphic to any set in Rn (unless it is empty). Think, why.
5Still another alternative to Lemma 3b7 will be discussed in Sect. 4d, see 4d2.
6Hint: recall 3b4.
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(a) Prove that U is open.
(b) Define ψ : U → Rn by ψ(a0, . . . , an−1) = (t1, . . . , tn) where t1 < · · · <

tn are the roots of the polynomial. Prove that ψ is a homeomorphism U → V
where V = {(t1, . . . , tn) : t1 < · · · < tn}.1

3d Curves

We return to the problem discussed in Sect. 3a.

3d1 Proposition. Assume that f, g : R2 → R are continuously differentiable
near a given point (x0, y0); vectors ∇f(x0, y0) and ∇g(x0, y0) are linearly
independent; and g(x0, y0) = 0. Denote z0 = f(x0, y0). Then there exist
ε > 0 and a path γ : (z0 − ε, z0 + ε) → R2 such that γ(z0) = (x0, y0),
f(γ(t)) = t and g(γ(t)) = 0 for all t ∈ (z0 − ε, z0 + ε).

Proof. The mapping h : R2 → R2 defined by h(x, y) =
(
f(x, y), g(x, y)

)
is

continuously differentiable near (x0, y0), and (Dh)(x0,y0) is invertible by 2f2.
Theorem 3c2 provides a neighborhood U of (x0, y0) such that V = h(U) is
a neighborhood of h(x0, y0) = (z0, 0) and h|U is a homeomorphism U → V .
We take ε > 0 such that (t, 0) ∈ V for all t ∈ (z0 − ε, z0 + ε) and define γ by

γ(t) = (h|U)−1(t, 0) .

Clearly γ is continuous, γ(z0) = (x0, y0), γ(t) ∈ U and h(γ(t)) = (t, 0), that
is, f(γ(t)) = t and g(γ(t)) = 0.

3d2 Corollary. If f, g, x0, y0 are as in 3d1 then (x0, y0) cannot be a local
constrained extremum of f on Zg.

3d3 Remark. (a) Prop. 3d1 does not claim differentiability of the path γ
(but only its continuity).

(b) Prop. 3d1 does not claim that γ covers all points of Zg near (x0, y0).
Moreover, the set U ∩ Zg need not be connected.

We’ll return to these points later (in 4c12).

The next case is, dimension three. We guess that a single constraint
g(x, y, z) = 0 leads to a surface Zg, not a curve; a curve is rather Zg1,g2 =
Zg1 ∩ Zg2 .

3d4 Proposition. Assume that f, g1, g2 : R3 → R are continuously differen-
tiable near a given point (x0, y0, z0); vectors∇f(x0, y0, z0),∇g1(x0, y0, z0) and
∇g2(x0, y0, z0) are linearly independent; and g1(x0, y0, z0) = g2(x0, y0, z0) =

1Hint: use 2e11(b).
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0. Denote w0 = f(x0, y0, z0). Then there exist ε > 0 and a path γ :
(w0 − ε, w0 + ε) → R3 such that γ(w0) = (x0, y0, z0), f(γ(t)) = t and
g1(γ(t)) = g2(γ(t)) = 0 for all t ∈ (w0 − ε, w0 + ε).

3d5 Exercise. Prove Prop. 3d4.1

3d6 Corollary. If f, g1, g2, x0, y0, z0 are as in 3d4 then (x0, y0, z0) cannot be
a local constrained extremum of f on Zg1,g2 .

3d7 Exercise. Generalize 3d4 and 3d6 to f, g1, . . . , gn−1 : Rn → R.

3e Surfaces

We turn to a single constraint g(x, y, z) = 0 in R3, and a function f : R3 → R.
How to proceed? The mapping (x, y, z) 7→

(
f(x, y, z), g(x, y, z)

)
from R3 to

R2 surely is not expected to be a local homeomorphism. However, we may
add another constraint, getting a curve on the surface!

3e1 Proposition. Assume that f, g : R3 → R are continuously differentiable
near a given point (x0, y0, z0); vectors ∇f(x0, y0, z0) and ∇g(x0, y0, z0) are
linearly independent; and g(x0, y0, z0) = 0. Denote w0 = f(x0, y0, z0). Then
there exist ε > 0 and a path γ : (w0 − ε, w0 + ε) → R3 such that γ(w0) =
(x0, y0, z0), f(γ(t)) = t and g(γ(t)) = 0 for all t ∈ (w0 − ε, w0 + ε).

Proof. We choose a vector a ∈ R3 such that the three vectors ∇f(x0, y0, z0),
∇g(x0, y0, z0) and a are linearly independent. We choose a function g2 : R3 →
R, continuously differentiable near (x0, y0, z0), such that g2(x0, y0, z0) = 0 and
∇g2(x0, y0, z0) = a (for example, an affine function g2(·) = 〈·, a〉+ const). It
remains to apply Prop. 3d4 to f, g, g2.

3e2 Corollary. If f, g, x0, y0, z0 are as in 3e1 then (x0, y0, z0) cannot be a
local constrained extremum of f on Zg.

3e3 Exercise. Generalize 3e1 and 3e2 to f, g1, . . . , gm : Rn → R, 1 ≤ m ≤
n− 1.

3f Lagrange multipliers

3f1 Theorem. Assume that x0 ∈ Rn, 1 ≤ m ≤ n−1, functions f, g1, . . . , gm :
Rn → R are continuously differentiable near x0, g1(x0) = · · · = gm(x0) = 0,
and vectors ∇g1(x0), . . . ,∇gm(x0) are linearly independent. If x0 is a local

1Hint: similar to the proof of 3d1; h(x, y, z) = (f(x, y, z), g1(x, y, z), g2(x, y, z)), . . .
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constrained extremum of f subject to g1(·) = · · · = gm(·) = 0 then there
exist λ1, . . . , λm ∈ R such that

∇f(x0) = λ1∇g1(x0) + · · ·+ λm∇gm(x0) .

This is a reformulation of the generalization meant in 3e3.
The numbers λ1, . . . , λm are called Lagrange multipliers.
A physicist could say: in equilibrium, the driving force is neutralized by

constraints reaction forces.
In practice, seeking local constrained extrema of f on Z = Zg1,...,gm one

solves (that is, finds all solutions of) a system of m+ n equations

g1(x) = · · · = gm(x) = 0 , (m equations)

∇f(x) = λ1∇g1(x) + · · ·+ λm∇gm(x) (n equations)

for m+ n variables

λ1, . . . , λm , (m variables)

x . (n variables)

For each solution (λ1, . . . , λm, x) one ignores λ1, . . . , λm and checks f(x).1

In addition, one checks f(x) for all points x that violate the conditions of
3f1; that is, ∇g1(x), . . . ,∇gm(x) are linearly dependent, or f, g1, . . . , gm fail
to be continuously differentiable near x.

If the set Z is not compact, one checks all relevant limits of f .
If all that is feasible (which is not guaranteed!), one finally obtains the

infimum and supremum of f on Z.
More formally: supZ f = limk f(xk) ∈ (−∞,+∞] for some x1, x2, · · · ∈ Z.

Choosing a subsequence we ensure either xk → x for some x ∈ Z or |xk| → ∞.
In the case x ∈ Z the point x must violate conditions of 3f1. That is enough if
Z is compact. Otherwise, if Z is bounded and not closed, the case x ∈ Z \Z
must be examined. And if Z is unbounded, the case |xk| → ∞ must be
examined.

Theorem 3f1 generalizes readily from Rn to an n-dimensional Euclidean
affine space. But if no Euclidean norm is given on the affine space then the
gradient is not defined. However, the gradient vector ∇f(x0) is rather a
substitute of the linear function (Df)x0 , namely, (Df)x0 : h 7→ 〈∇f(x0), h〉
(recall Sect. 2f). Thus, the relation ∇f(x0) = λ1∇g1(x0) + · · ·+ λm∇gm(x0)
between vectors may be replaced with a relation

(Df)x0 = λ1(Dg1)x0 + · · ·+ λm(Dgm)x0
1Being ignored in this framework, (λ1, . . . , λm) are of interest in another framework,

see Sect. 3j.
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between linear functions. And linear independence of vectors
∇g1(x0), . . . ,∇gm(x0) may be replaced with linear independence of linear
functions (Dg1)x0 , . . . , (Dgm)x0 ; or, due to Lemma 2f2, we may say instead
that (Dg)x0 maps Rn onto Rm. Now it is clear how to generalize Th. 3f1
from Rn to an n-dimensional affine space.

3g Example: arithmetic, geometric, harmonic, and more
general means

Here is an isoperimetric inequality for triangles ∆ on the plane:

area(∆) ≤ 1

12
√

3

(
perimeter(∆)

)
2 ,

and equality is attained for equilateral triangles and only for them. In other
words, among all triangles with the given perimeter, the equilateral one has
the largest area.1

The proof is based on Heron’s formula for the area A of a triangle whose
side lengths are x, y, z (and perimeter L = x+ y + z):

A2 =
L

2

(
L

2
− x
)(

L

2
− y
)(

L

2
− z
)
.

The sum of the three positive2 numbers L
2
− x, L

2
− y, L

2
− z is fixed (equal

to 3L
2
−L = L

2
); their product is claimed to be maximal when these numbers

are equal (to L/6), and then A2 = L
2

(
L
6

)
3 = L4

24·33 ; A = L2

22·3
√
3
.

More generally, max{x1 . . . xn : x1, . . . , xn ≥ 0, x1 + · · · + xn = c} is
reached for x1 = · · · = xn = c/n and is equal to (c/n)n. Equivalently,
max{(x1 . . . xn)1/n : x1, . . . , xn ≥ 0, (x1 + · · · + xn)/n = c} is reached for
x1 = · · · = xn = c and is equal to c, which is the well-known inequality for
geometric mean and arithmetic mean,

(3g1) (x1 . . . xn)1/n ≤ 1

n
(x1+· · ·+xn) for n = 1, 2, . . . and x1, . . . , xn ≥ 0 .

It follows easily from concavity of the logarithm: the set A = {(x, y) : x ∈
(0,∞), y ≤ lnx} is convex, therefore the convex combination

(
1
n
(x1 + · · · +

xn), 1
n
(lnx1 + · · ·+ lnxn)

)
of points (x1, lnx1), . . . , (xn, lnxn) ∈ A belongs to

A, which gives (3g1). And still, it is worth to exercise Lagrange multipliers.

1Generally, area(G) ≤ 1
4π

(
perimeter(G)

)
2 for any G on the plane, and equality is

attained for disks only. This is a famous deep fact. But I do not give an exact formulation
(nor a proof, of course).

2 L
2 − x = x+y+z

2 − x = y+z−x
2 > 0 by the triangle inequality.
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3g2 Exercise. Prove (3g1) via Lagrange multipliers.

By the way, the harmonic mean h defined by 1
h

= 1
n

(
1
x1

+ · · ·+ 1
xn

)
satisfies

h ≤ (x1 . . . xn)1/n; just apply (3g1) to 1
x1
, . . . , 1

xn
.

More generally, the Hölder mean (called also power mean) with exponent
p ∈ (−∞, 0) ∪ (0,∞) is

Mp(x1, . . . , xn) =

(
xp1 + · · ·+ xpn

n

)1/p

for x1, . . . , xn > 0 .

In particular, M1 is the arithmetic mean and M−1 is the harmonic mean. For
p→ 0 L’Hôpital’s rule gives

ln lim
p→0

Mp((x1, . . . , xn) = lim
p→0

1

p
ln
xp1 + · · ·+ xpn

n
=

= lim
p→0

xp1 lnx1 + · · ·+ xpn lnxn
xp1 + · · ·+ xpn

=
lnx1 + · · ·+ lnxn

n
= ln(x1 . . . xn)1/n ;

accordingly, one defines

M0(x1, . . . , xn) = (x1 . . . xn)1/n ,

and observes that M−1(x1, . . . , xn) ≤ M0(x1, . . . , xn) ≤ M1(x1, . . . , xn). For
p→ +∞ we have

1

n
max(xp1, . . . , x

p
n) ≤ xp1 + · · ·+ xpn

n
≤ max(xp1, . . . , x

p
n) ,

therefore Mp(x1, . . . , xn)→ max(x1, . . . , xn); one writes

M+∞(x1, . . . , xn) = max(x1, . . . , xn) ; M−∞(x1, . . . , xn) = min(x1, . . . , xn)

(the latter being similar to the former) and observes that M−∞(x1, . . . , xn) ≤
M−1(x1, . . . , xn) ≤ M0(x1, . . . , xn) ≤ M1(x1, . . . , xn) ≤ M+∞(x1, . . . , xn).
That is interesting! Maybe Mp ≤Mq whenever p ≤ q?

We treat Mp as a function on (0,∞)n ⊂ Rn and calculate its gradient
∇Mp, or rather, the direction of the vector ∇Mp; indeed, we only need to
know when two vectors ∇Mp, ∇Mq are linearly dependent, that is, collinear
(denote it q ). We have ∇Mp q ∇Mp

p q ∇(nMp
p ) q (xp−11 , . . . , xp−1n ) for p 6=

0; however, this result holds for p = 0 as well, since ∇M0 q ∇ lnM0 q
(x−11 , . . . , x−1n ). Thus, ∇Mp, ∇Mq are collinear if and only if

xq−1
1

xp−1
1

= · · · =

xq−1
n

xp−1
n

, that is, xq−p1 = · · · = xq−pn , or just x1 = · · · = xn. In this case, evidently,
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Mp = Mq. Does it prove that Mp ≤Mq always? Not yet. Functions Mp,Mq

are continuously differentiable on the open set G = (0,∞)n, and on the set
Zp = {x ∈ G : Mp(x) = 1}1 the conditions of 3f1 are violated at one point
(1, . . . , 1) only. This could not happen on a compact Zp! Surely Zp is not
compact, and we must examine Zp \ Zp and/or ∞.

Case 1: 0 < p < q <∞. The set Zp is bounded, since max(x1, . . . , xn) ≤
(xp1 + · · · + xpn)1/p = n1/pMp(x1, . . . , xn) = n1/p, but not closed.2 Functions
Mp,Mq are continuous on G = [0,∞)n. Maybe the (global) minimum of Mq

on Zp = {x ∈ G : Mp(x) = 1} is reached at some x ∈ Zp \ Zp? In this case
at least one coordinate of x vanishes. We use induction in n. For n = 1,
Mp(x) = x = Mq(x). Having Mp ≤Mq in dimension n− 1 we get (assuming
xn = 0)

Mq(x)

Mp(x)
=

(
1
n
(xq1 + · · ·+ xqn−1 + 0q)

)1/q
(

1
n
(xp1 + · · ·+ xpn−1 + 0p)

)1/p =

=
( n

n− 1

) 1
p
− 1

q

(
1

n−1(xq1 + · · ·+ xqn−1)
)1/q

(
1

n−1(xp1 + · · ·+ xpn−1)
)1/p ≥ ( n

n− 1

) 1
p
− 1

q
> 1 ,

therefore Mq > Mp on Zp \ Zp.
Case 2: 0 = p < q <∞. Follows from Case 1 via the limiting procedure

p→ 0+.
Case 3: −∞ < p < q < 0. Follows from Case 1 applied to 1/x1, . . . , 1//xn,

since

1/M−p(x
−1
1 , . . . , x−1n ) =

(xp1 + · · ·+ xpn
n

)1/p
= Mp(x1, . . . , xn) ;

Mp(x1, . . . , xn) = 1/M−p(x
−1
1 , . . . , x−1n ) ≤ 1/M−q(x

−1
1 , . . . , x−1n ) = Mq(x1, . . . , xn) .

Case 4: −∞ < p < q = 0. Follows from Case 3 via the limiting
procedure q → 0−.

Case 5: −∞ < p < 0 < q < ∞. Follows from Cases 2 and 4: Mp ≤
M0 ≤Mq.

So, Mp ≤Mq whenever p ≤ q.
Some practical advice.

1No need to consider Mp(x) = c, since Mp(λx) = λMp(x) for all λ ∈ (0,∞) and all p,

thus
Mq(λx)
Mp(λx)

does not depend on λ.
2For example, the point (n1/p, 0, . . . , 0) belongs to ∂Zp.
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The system of m + n equations proposed in Sect. 3f is only one way of
finding local constrained extrema. Not necessarily the simplest way.

No need to find ∇f when f(·) = ϕ(g(·)); just find ∇g and note that ∇f
is collinear to ∇g.

In many cases there are alternatives to the Lagrange method. For exam-
ple, we could replace inf{Mq(x) : Mp(x) = 1} with inf

{Mq(x)

Mp(x)
: M1(x) = 1

}
,

substitute xn = n−(x1+· · ·+xn−1) and optimize in x1, . . . , xn−1 without con-
straints. Alternatively we could use convexity of the function t 7→ tq/p, that
is, convexity of the set A = {(t, u) : t ∈ (0,∞), u ≥ tq/p}. The convex combi-
nation

(
1
n
(xp1 + · · ·+xpn), 1

n
(xq1 + · · ·+xqn)

)
of points (xp1, x

q
1), . . . , (x

p
n, x

q
n) ∈ A

belongs to A, which gives
(
1
n
(xp1 + · · · + xpn)

)
q/p ≤ 1

n
(xq1 + · · · + xqn), that is,

Mp ≤Mq. Moreover, the same applies to weighted mean

Mp,w(x) = (xp1w1 + · · ·+ xpnwn)1/p

for given w1, . . . , wn ≥ 0 satisfying w1+· · ·+wn = 1. In particular, M1,w(x) ≤
Mp,w(x) for p ≥ 1, that is, x1w1 + · · · + xnwn ≤ (xp1w1 + · · · + xpnwn)1/p.

Substituting xi = aib
−q/p
i and wi = bqi where q is such that 1

p
+ 1

q
= 1 we have∑

i aib
−q/p
i bqi ≤

(∑
i a

p
i b
−q
i bqi

)
1/p, that is,

∑
i aibi ≤ (

∑
i a

p
i )

1/p provided that∑
i b
q
i = 1. This leads easily to the Hölder’s inequality∣∣∣∑

i

xiyi

∣∣∣ ≤ (∑
i

|xi|p
)1/p(∑

i

|yi|q
)1/q

for p, q ∈ (1,∞), 1
p
+ 1

q
= 1, and arbitrary xi, yi ∈ R. The right-hand side may

be rewritten as nMp(|x|)Mq(|y|), admitting p, q ∈ [1,∞]. Note the special
cases p = q = 2 and p = 1, q =∞.

However, the shown way to this inequality is rather tricky.

3g3 Exercise. Given a1, . . . , an > 0, maximize a1x1 + · · · + anxn on {x ∈
[0,∞)n : xp1 + · · · + xpn = 1} using the Lagrange method.1 Deduce Hölder’s
inequality.

Hölder’s inequality persists in the case of countably many variables xi
and yi. If two series

∑ |xi|p and
∑ |yi|q converge (and 1

p
+ 1

q
= 1), then the

series
∑
xiyi also converges (and the inequality holds).

3g4 Exercise. Given a, b, c, k > 0, find the maximum of the function f(x, y, z) =
xaybzc where x, y, z ∈ [0,∞) and xk + yk + zk = 1.

1Hint: induction in n is needed again.
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3g5 Exercise. Find the maximum of y over all points (x, y) ∈ R2 that satisfy
the equation x2 + xy + y2 = 27.

[Sh:Sect.5.4]

3h Example: Three points on a spheroid

We consider an ellipsoid of revolution (in other words, spheroid)

x2 + y2 + αz2 = 1

for some α ∈ (0, 1) ∪ (1,∞), and three points P,Q,R on this surface. We
want to maximize |PQ|2 + |QR|2 + |RP |2.

We’ll see that the maximum is reached when P,Q,R are situated either
in the horizontal plane z = 0 or the vertical plane y = 0 (or another vertical
plane through the origin; they all are equivalent due to symmetry). Thus, the
three-dimensional problem boils down to a pair of two-dimensional problems
(not to be solved here).

We introduce 9 coordinates,

P = (x1, y1, z1) , Q = (x2, y2, z2) , R = (x3, y3, z3)

and 4 functions f, g1, g2, g3 : R9 → R of these coordinates,

f(x1, . . . , z3) =(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
+(x2 − x3)2 + (y2 − y3)2 + (z2 − z3)2
+(x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2 ;

g1(x1, . . . , z3) =x21 + y21 + αz21 − 1 ,

g2(x1, . . . , z3) =x22 + y22 + αz22 − 1 ,

g3(x1, . . . , z3) =x23 + y23 + αz23 − 1 .

We use the approach of Sect. 3f with n = 9, m = 3. The functions f, g1, g2, g3
are continuously differentiable on R9. The set Z = Zg1,g2,g3 ⊂ R9 is compact.
The gradients of g1, g2, g3 do not vanish on Z (check it) and are linearly
independent (and moreover, orthogonal).

We introduce Lagrange multipliers λ1, λ2, λ3 corresponding to g1, g2, g3
and consider a system of m + n = 12 equations for 12 unknowns. The first
three equations are

x21 + y21 + αz21 = 1 , x22 + y22 + αz22 = 1 , x23 + y23 + αz23 = 1 .

Now, the partial derivatives. We have

∂f

∂x1
= 2(x1 − x2)− 2(x3 − x1) = 4x1 − 2x2 − 2x3 ,
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which is convenient to write as 6x1 − 2(x1 + x2 + x3); similarly,

∂f

∂xk
= 6xk − 2(x1 + x2 + x3) ,

∂f

∂yk
= 6yk − 2(y1 + y2 + y3) ,

∂f

∂zk
= 6zk − 2(z1 + z2 + z3)

for k = 1, 2, 3. Also,

∂gk
∂xk

= 2xk ,
∂gk
∂yk

= 2yk ,
∂gk
∂zk

= 2αzk ;

other partial derivatives vanish. We get 9 more equations:

6xk − 2(x1 + x2 + x3) = λk · 2xk ,
6yk − 2(y1 + y2 + y3) = λk · 2yk ,
6zk − 2(z1 + z2 + z3) = λk · 2αzk

for k = 1, 2, 3. That is,

(3− λk)xk = x1 + x2 + x3 ,

(3− λk)yk = y1 + y2 + y3 ,

(3− αλk)zk = z1 + z2 + z3 .

We note that

(x1 + x2 + x3)yk = (3− λk)xkyk = (y1 + y2 + y3)xk

for k = 1, 2, 3.
Case 1: x1 + x2 + x3 6= 0 or y1 + y2 + y3 6= 0.
Then P,Q,R are situated on the vertical plane {(x, y, z) : (x1+x2+x3)y =

(y1 + y2 + y3)x}.
Case 2: x1 + x2 + x3 = y1 + y2 + y3 = 0 and (λ1, λ2, λ3) 6= (3, 3, 3).
If λ1 6= 3 then x1 = y1 = 0; the three vectors (x1, y1), (x2, y2), (x3, y3) ∈ R2

(of zero sum!) are collinear; therefore P,Q,R are situated on a vertical plane
(again). The same holds if λ2 6= 3 or λ3 6= 3.

Case 3: x1 + x2 + x3 = y1 + y2 + y3 = 0 and λ1 = λ2 = λ3 = 3.
Then z1 = z2 = z3 = z1+z2+z3

3−3α , therefore z1 = z2 = z3 = 0 (since α 6= 1);
P,Q,R are situated on the horizontal plane {(x, y, z) : z = 0}.

Another practical advice.

If Lagrange method does not solve a problem to the end, it may still give
a useful information. Combine it with other methods as needed.
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3h1 Exercise. 1

Let a, b ∈ Rn be linearly independent, |a| = 5, |b| = 10.
Functions ϕa, ϕb on the sphere S1(0) = {x : |x| = 1} ⊂
Rn are defined as follows: ϕa(x) is the angular diameter
of the sphere S1(a) = {y : |y − a| = 1} viewed from x;
similarly, ϕb(x) is the angular diameter of S1(b) from x.

x
ϕa(x)a

Prove that every point of local extremum of the function ϕa +ϕb on S1(0) is
some linear combination of a, b.2

3i Example: Singular value decomposition

3i1 Proposition. Every linear operator from one finite-dimensional Eu-
clidean vector space to another sends some orthonormal basis of the first
space into an orthogonal system in the second space.

This is called the Singular Value Decomposition.3 It may be reformulated
as follows.

3i2 Proposition. Every linear operator from an n-dimensional Euclidean
vector space to an m-dimensional Euclidean vector space has a diagonal m×n
matrix in some pair of orthonormal bases.

m < n m = n

m > n

In particular, this holds for every linear operator Rn → Rn. It does not
mean that every matrix is diagonalizable! Two bases give much more freedom
than one basis.

Do you think this is unrelated to constrained optimization? Wait a little.
Prop. 3i1 will be derived from Prop. 3i3 below.

3i3 Proposition. Every finite-dimensional vector space endowed with two
Euclidean metrics contains a basis orthonormal in the first metric and or-
thogonal in the second metric.

1Exam of 26.01.14, Question 2.
2Hint: show that sin 1

2ϕa(x) = 1/|x− a|; use the gradient.
3See: Todd Will, ”Introduction to the Singular Value Decomposition”,

http://www.uwlax.edu/faculty/will/svd/index.html Quote:
The Singular Value Decomposition (SVD) is a topic rarely reached in undergraduate

linear algebra courses and often skipped over in graduate courses.
Consequently relatively few mathematicians are familiar with what M.I.T. Professor

Gilbert Strang calls ”absolutely a high point of linear algebra.”

http://www.uwlax.edu/faculty/will/svd/index.html
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Proof. Let an n-dimensional vector space V be endowed with two Euclidean
metrics. It means, two norms |·| and |·|1 corresponding to two inner products
〈·, ·〉 and 〈·, ·〉1 by |x|2 = 〈x, x〉 and |x|21 = 〈x, x〉1. We denote by E the
Euclidean space (V, | · |) and define a mapping A : E → E by

∀x, y ∈ E 〈x, y〉1 = 〈A(x), y〉 ;

it is well-defined, since the linear form 〈x, ·〉1, as every linear form, is 〈a, ·〉
for some a ∈ E. It is easy to see that A is a linear operator, symmetric in
the sense that

∀x, y ∈ E 〈Ax, y〉 = 〈x,Ay〉 .
We want to maximize | · |21 on the sphere S = {x ∈ E : |x| = 1}. We have1

∇|x|2 = 2x , ∇|x|21 = 2Ax

by 2b11, or just by a very simple calculation:

|x+ h|2 = |x|2 + 〈x, h〉+ 〈h, x〉+ |h|2 = |x|2 + 2〈x, h〉+ o(|h|) ,
|x+ h|21 = |x|21 + 〈x, h〉1 + 〈h, x〉1 + |h|21 = |x|21 + 2〈Ax, h〉+ o(|h|) .

These two gradients are collinear if and only if ∃λ Ax = λx; it means, x is
an eigenvector of A, and λ is the eigenvalue. Now we could use well-known
results of linear algebra, but here is the analytic way.

By compactness, | · |21 reaches its maximum on S; by Theorem 3f1, a
maximizer is an eigenvector. Existence of an eigenvector is thus proved.
Denote it by en, and the eigenvalue by λn.

If x ⊥ en then Ax ⊥ en due to symmetry of A: 〈Ax, en〉 = 〈x,Aen〉 =
〈x, λnen〉 = λn〈x, en〉 = 0. We consider a hyperplane (that is, (n− 1)-dimen-
sional subspace)

En−1 = {x ∈ E : x ⊥ en}
and the restricted operator

An−1 : En−1 → En−1 , An−1x = Ax for x ∈ En−1 .

The Euclidean space En−1 is endowed with two Euclidean metrics | · | and
| · |1 (restricted to En−1), and 〈x, y〉1 = 〈An−1x, y〉 for x, y ∈ En−1.

Now we use induction in n. The case n = 1 is trivial. The claim for n− 1
applied to En−1 gives a basis (e1, . . . , en−1) of En−1 orthonormal in | · | and
orthogonal in | · |1. Thus, (e1, . . . , en−1, en) is a basis of E. We normalize en
to |en| = 1; now this basis is orthonormal in | · |. It is also orthogonal in | · |1,
since 〈ek, en〉1 = 〈Aek, en〉 = 0 for k = 1, . . . , n− 1.

1All gradients are taken in E = (V, | · |), not (V, | · |1)!
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3i4 Remark. Positivity of the quadratic form x 7→ |x|21 = 〈x, x〉1 was not
used. The same holds for arbitrary quadratic form on a Euclidean space. (In
contrast, positivity of | · |2 was used.)

Proof of Prop. 3i1. We have two Euclidean spaces E,E2 and a linear oper-
ator T : E → E2. First, assume in addition that T is one-to-one. Then T
induces a second Euclidean metric on E:

|x|1 = |Tx| ; 〈x, y〉1 = 〈Tx, Ty〉

(of course, |Tx| is the norm in E2). Prop. 3i3 gives an orthonormal basis
(e1, . . . , en) of E, orthogonal in the second metric: 〈ek, el〉 = 0 for k 6= l.
That is, 〈Tek, T el〉 = 0, which shows that (Te1, . . . , T en) is an orthogonal
system in E2.

If T is not one-to-one, the same argument applies due to Remark 3i4.1

Prop. 3i2 follows immediately, and gives a diagonal matrix. Its diagonal
elements can be made ≥ 0 (changing signs of basis vectors as needed) and
decreasing (renumbering basis vectors as needed); this way one gets the so-
called singular values of the given operator T . They depend on T only, not on
the choice of the pair of bases,2 3 and are the square roots of the eigenvalues
of the operator A = T ∗T . The highest singular value is the operator norm
‖T‖ of T (think, why). The lowest singular value (if not 0) is 1/‖T−1‖.

3j Sensitivity of optimum to parameters

When using a mathematical model one often bothers about sensitivity4 of
the result (the output of the model) to the assumptions (the input). Here is
one of such questions.5

What happens if the restrictions g1(x) = · · · = gm(x) = 0 are replaced
with g1(x) = c1, . . . , gm(x) = cm?

Assume that the system of m+ n equations

g1(x) = c1, . . . , gm(x) = cm , (m equations)

∇f(x) = λ1∇g1(x) + · · ·+ λm∇gm(x) (n equations)

1Alternatively, define |x|21 = |Tx|2 + |x|2, 〈x, y〉1 = 〈Tx, Ty〉+ 〈x, y〉.
2The only freedom in this choice (in addition to sign change and renumbering) is,

rotation within each eigenspace of dimension > 1 (if any).
3On the space of operators, the Schatten norm is ‖T‖p =

(
|s1|p + · · ·+ |sn|p

)
1/p where

s1, . . . , sn are the singular values of T (and 1 ≤ p ≤ ∞).
4Closely related ideas: stability, robustness; uncertainty; elasticity, . . .
5A more general one: g1(x, c1) = 0, . . . , gm(x, cm) = 0.
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for (λ, x) ∈ Rm × Rn has a solution (λ(c), x(c)) for all c ∈ Rm near 0, and
the mapping c 7→ x(c) is differentiable at 0. Then, by the chain rule,

∂

∂ck

∣∣∣
c=0
f(x(c)) =

〈
∇f(x(0)),

∂

∂ck

∣∣∣
c=0
x(c)

〉
for k = 1, . . . ,m .

On the other hand,

∇f(x(0)) = λ1(0)∇g1(x(0)) + · · ·+ λm(0)∇gm(x(0))

and 〈
∇g1(x(0)),

∂

∂ck

∣∣∣
c=0
x(c)

〉
=

∂

∂ck

∣∣∣
c=0
g1(x(c)) =

{
1, if k = 1,

0, otherwise

(since g1(x(c)) = c1). The same holds for g2, . . . , gm. Therefore

∂

∂ck

∣∣∣
c=0
f(x(c)) = λk(0) .

It means that λk = λk(0) is the sensitivity of the critical value to the level
ck of the constraint gk(x) = ck. That is,

f(x(c)) = f(x(0)) + λ1(0)c1 + · · ·+ λm(0)cm + o(|c|) .

Does it mean that

(3j1) sup
Zc

f = sup
Z0

f + λ1(0)c1 + · · ·+ λm(0)cm + o(|c|)

where Zc = {x : g1(x) = c1, . . . , gm(x) = cm}? Not necessarily, for sev-
eral reasons (possible non-compactness, non-differentiability, greater or equal
value at another critical point when c = 0). But if supZc

f = f(x(c)) for all
c near 0 then (3j1) holds.1

Index

constraint function, 51

Hölder mean, 62
Hölder’s inequality, 64
homeomorphism near a point, 55

invariance of domain, 57

Lagrange multipliers, 60

objective function, 51
open mapping, 53

Zg, 51
Zg1,g2 , 58

1See also Sect. 13.2 in book: J. Cooper, “Working analysis”, Elsevier 2005.
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