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The solution x = g(y) of an equation f(x) = y near a given nondegenerate
point is an easy matter in dimension one, but for f : Rn → Rn it means a
system of n (nonlinear) equations in n unknowns. Still, under appropriate
conditions, the inverse mapping to a continuously differentiable mapping is
continuously differentiable. An iterative process converges to the solution.

4a What is the problem

Recall the mapping f : R2 → R2,

f(r, θ) = (r cos θ, r sin θ) ,

treated in 2e8. It is not one-to-one, since f(r, θ+2π) = f(r, θ) and f(−r, θ+
π) = f(r, θ). However, its restriction to the open set U = (0,∞) × (−π, π)
is one-to-one, and f(U) is the open set V = R2 \ (−∞, 0] × {0}. Thus,
(f |U)−1 : V → U . By 2e8, f is differentiable on U . We wonder, is (f |U)−1

differentiable on V ?
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The first coordinate r =
√
x2 + y2 of (f |U)−1(x, y) evidently is differentiable

on V . The second coordinate θ is differentiable on V by the argument used
in 2b18(b):

θ=arcsin y√
x2+y2

θ=arccos x√
x2+y2

θ=− arccos x√
x2+y2

However, this is just good luck. In general, the inverse mapping is not a
combination of well-known functions. (Not even in dimension one; try for
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instance to find x from x5 + x = y, or x+ ex = y.) Can we deduce differen-
tiability of f−1 from differentiability of f?

Of course, we need a multidimensional theory; R2 is only the simplest
case.

4b Simple observations before the theorem

It is not a problem to differentiate the inverse mapping assuming that it is
differentiable. By the chain rule,

(Df−1)f(x0) ◦ (Df)x0 =
(
D(f−1 ◦ f)

)
x0 = I ,

therefore
(Df−1)y0 =

(
(Df)f−1(y0)

)−1 .
The same argument shows that f−1 cannot be differentiable at f(x0) if the
operator (Df)x0 is not invertible. (Recall also 2b13(b): x and y must be of
the same dimension.)

It can happen that (Df)x0 is not invertible and nevertheless f is invertible.
Example: f : R→ R, f(x) = x3, x0 = 0.

x

y

f(x)=x3

y

x

f−1(y)=y1/3

If f : R→ R is such that the operator (Df)x is invertible (that is, f ′(x) 6= 0)
for all x then f is one-to-one (think, why). This is not the case for f : R2 →
R2. Example: f(x, y) = (ex cos y, ex sin y).

Thus we turn to the local problem: the germ of f at x0 is given, and we
examine the germ of f−1 at y0 = f(x0).

It can happen that f is differentiable near x0 and (Df)x0 is invertible,
but f is not one-to-one near x0. Example: f : R → R, f(x) = x + 3x2 sin 1

x

for x 6= 0, f(0) = 0, x0 = 0.1 2

x

y

1Hint: consider f ′(x) for x→ 0. See also (2d2).
2Shifrin, Sect. 6.2, Example 1 on pp. 251–252.
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Thus, we assume that f is continuously differentiable near x0. That is, x 7→
(Df)x is continuous near x0. It follows that x 7→

(
(Df)x

)−1 is continuous
near x0, see Exercise 4b1 below. Now, assuming again that the inverse
mapping is differentiable (and therefore continuous) we see that it must be
continuously differentiable, since y 7→

(
(Df)f−1(y)

)−1 is continuous.

4b1 Exercise. If A,An ∈ Mn,n(R), An → A, and A is invertible then An is
invertible for all n large enough, and A−1n → A−1.

Prove it.1

4c The theorem

4c1 Definition. (a) A homeomorphism f : U → V between open sets
U, V ⊂ Rn is a diffeomorphism if f ∈ C1(U) and f−1 ∈ C1(V ).

(b) 2 A mapping f : Rn → Rn is a (local) diffeomorphism near a point
x ∈ Rn if there exist open neighborhoods U of x and V of f(x) such that
f |U is a diffeomorphism U → V .

The same applies to mappings from one n-dimensional affine space to
another.

Clearly, a linear operator Rn → Rn is a diffeomorphism if and only if it
is bijective. Otherwise it cannot be a diffeomorphism near 0 (or any other
point).

4c2 Theorem. 3 Let f : Rn → Rn and x ∈ Rn. If f is continuously
differentiable near x and the linear operator (Df)x is a diffeomorphism then
f is a diffeomorphism near x.

We reformulate it more explicitly.

4c3 Proposition. Assume that x0 ∈ Rn, f : Rn → Rn is continuously
differentiable near x0, and the operator (Df)x0 is invertible. Then there exists
an open neighborhood U of x0 and an open neighborhood V of y0 = f(x0)
such that f |U is a homeomorphism U → V , continuously differentiable on U ,
and the inverse mapping (f |U)−1 : V → U is continuously differentiable on
V .

1Hint. One way: use determinants. Another way: first, reduce the general case to the

special case A = I (via A−1An → I); second, prove that ‖A−1 − I‖ ≤ ‖A−I‖
1−‖A−I‖ whenever

‖A− I‖ < 1 (via the triangle inequality).
2Compare it with 3c1.
3Compare it with 3c2.



Tel Aviv University, 2014/15 Analysis-III,IV 74

4c4 Remark. The equality

(Dg)y0 =
(
(Df)x0

)−1
for g = (f |U)−1 is often included into this theorem. However, it is just an
immediate implication of the chain rule, as noted in Sect. 4b. Moreover,
(Dg)y =

(
(Df)x

)−1 whenever x ∈ U , y ∈ V , y = f(x).

4c5 Remark. Rn may be replaced with an arbitrary n-dimensional vector or
affine space. Moreover, 4c2–4c4 hold when f : S1 → S2 for two n-dimensional
affine spaces S1, S2; in this case x0 ∈ S1, y0 ∈ S2, (Df)x0 : ~S1 → ~S2 and

(Dg)y0 =
(
(Df)x0

)−1 : ~S2 → ~S1.

4c6 Remark. Only the germ of f at x0 is relevant. Thus, 4c3 may be
applied to a function defined on a neighborhood of x0 (rather than the whole
Rn). But never forget: U is generally smaller than the given neighborhood.
In contrast, the next result applies to the whole given U .

4c7 Proposition. Assume that U, V ⊂ Rn are open, f : U → V is a home-
omorphism, continuously differentiable, and the operator (Df)x is invertible
for all x ∈ U . Then the inverse mapping f−1 : V → U is continuously
differentiable.

Proof of Prop. 4c3 given Prop. 4c7. Prop. 3c3 and Prop. 3c5 provide open
sets U 3 x0 and V 3 f(x0) satisfying the conditions of Prop. 4c7. By
Prop. 4c7 these U, V satisfy the conclusion of Prop. 4c3.

Proof of Prop. 4c7. Let x0 ∈ U , y0 = f(x0) ∈ V ; it is sufficient to prove
that the mapping g = f−1 is differentiable at y0. (Continuity of Dg follows,
see the end of Sect. 4b.)

Similarly to 3c4 we reduce the general case to a special case: x0 = 0,
y0 = 0, and (Df)0 = id. Similarly to the proof of Prop. 3c3 we have Uε such
that

|(f(x1)− f(x2))− (x1 − x2)| ≤ ε|x1 − x2| ,
(1− ε)|x1 − x2| ≤ |f(x1)− f(x2)| ≤ (1 + ε)|x1 − x2|

for all x1, x2 ∈ Uε ,

and in particular (for x2 = 0, x1 = x),

|f(x)− x| ≤ ε|x| ,
(1− ε)|x| ≤ |f(x)| ≤ (1 + ε)|x|

for all x ∈ Uε .

The set Vε = f(Uε) is an open neighborhood of y0 (recall 3b6), and

|y − g(y)| ≤ ε|g(y)| ,
(1− ε)|g(y)| ≤ |y| ≤ (1 + ε)|g(y)|

for all y ∈ Vε .
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Therefore
|g(y)− y| ≤ ε

1− ε
|y| for all y ∈ Vε .

We see that g(y) = y + o(|y|), that is, id is the derivative of g at y0.

Theorem 4c2 is thus proved.

4c8 Remark. The equality (Dg)y0 =
(
(Df)x0

)−1 was known before, but
also follows from the proof above.

4c9 Remark. Continuity of Dg was known before, but also follows readily
from the arguments of the proof above, as follows. For all x1, x2 ∈ Uε,

|(f(x1)− f(x2))− (x1 − x2)| ≤ ε|x1 − x2| ,
(1− ε)|x1 − x2| ≤ |f(x1)− f(x2)| ≤ (1 + ε)|x1 − x2| ;

|(f(x1)− f(x2))− (x1 − x2)| ≤
ε

1− ε
|f(x1)− f(x2)| ;

therefore for all y1 = y, y2 = y1 + h ∈ Vε,

|(g(y2)− g(y1))− (y2 − y1)| ≤
ε

1− ε
|y2 − y1| ,

|g(y + h)− g(y)− h| ≤ ε

1− ε
|h| .

On the other hand,

g(y + h)− g(y) = (Dg)y(h) + o(|h|) .

It follows that
|(Dg)y(h)− h| ≤ ε

1− ε
|h|+ o(|h|) ;

|(Dg)y(h)− h| ≤ 2ε
1−ε |h| for all h near 0, therefore (by linearity1) for all h;

‖(Dg)y − id ‖ ≤ 2ε

1− ε
for all y ∈ Vε ;

(Dg)y → (Dg)y0 as y → y0.

4c10 Remark. We see that continuity of the map A 7→ A−1 is not necessarily
used when proving the inverse function theorem. Curiously enough, the
former can be deduced from the latter. To this end, consider the inverse to
a mapping (A, x) 7→ (A,Ax) from Mn,n(R) × Rn to itself. It gives not only
continuity of the map A 7→ A−1 (on the open set of all invertible matrices)
but also its continuous differentiability. But this is not a revelation: elements
of A−1 are just rational functions (that is, fractions of polynomials) of the
elements of A. (See also 2e9.)

1Compare it with 2a1.
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4c11 Exercise. (a) Let f : U → V be as in Prop. 4c7 and in addition
f ∈ C2(U) (recall Sect. 2g). Prove that f−1 ∈ C2(V ).1

(b) The same for Ck(. . . ) where k = 3, 4, . . .

4c12 Remark. Now we see that the paths γ used in Sect. 3d, 3e are not just
continuous, they are continuously differentiable, which resolves the doubt of
3d3(a). In relation to 3d3(b) one may guess that a small ball must contain
a connected portion of the path. This need not hold for a continuous path
in general, not even for a differentiable path.

However, it holds for a continuously differentiable path, see 4c13 below.2

4c13 Exercise. Let γ : (−1, 1)→ Rn be continuously differentiable, γ′(0) 6=
0. Prove existence of ε > 0 such that the set {t ∈ (−ε, ε) : |γ(t)− γ(0)| < r}
is an interval provided that r is small enough.3

4c14 Exercise. Let ψ : U → V be as in 3c8(b). Prove that ψ is continuously
differentiable.

4d Iterations

We know that (under appropriate conditions) the solution x of the equation
f(x) = y exists and is unique. How to compute x numerically?

Taking into account that y is close to y0 = f(x0), x must be close to x0,
and the operator T = (Df)x0 is invertible, we guess that

y = f(x) = f(x0 + (x− x0)) ≈ y0 + T (x− x0) ,

and hopefully,

x ≈ x0 + T−1(y − y0) = x0 + T−1
(
y − f(x0)

)
.

We iterate this operation,

xn+1 = xn + T−1
(
y − f(xn)

)
for n = 0, 1, 2, . . .

and hope that xn → x.

1Hint: (Dg)y = ((Df)g(y))
−1 where g = f−1.

2A similar fact for surfaces is beyond our course.
3Hint: d

dt |γ(t)− γ(0)|2 = 2〈γ′(t), γ(t)− γ(0)〉 ≈ t|γ′(0)|2.
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These iterations are well-defined for a mapping f : S1 → S2 between
affine spaces (as in 4c5). Choosing appropriate coordinates we return to the
special case treated in the proof of 4c7: f : Rn → Rn, x0 = 0, y0 = 0, and
T = id. Now we may use neighborhoods Uε and the related inequalities.
Also, the iterations become just xn+1 = xn + y − f(xn), that is,

xn+1 − xn = y − f(xn) .

In particular, x1 − x0 = y − y0, that is, x1 = y.
We have

|(f(x1)− f(x2))− (x1 − x2)| ≤ ε|x1 − x2|

for all x1, x2 ∈ Uε. Assuming (for now) that xn ∈ Uε for all n ≥ 0 we get for
all n > 0

|xn+1 − xn| = |(xn + y − f(xn))− (xn−1 + y − f(xn−1))| =
= |(xn − xn−1)− (f(xn)− f(xn−1))| ≤ ε|xn − xn−1| ,

therefore for all n ≥ 0 and k ≥ 0

|xn+1 − xn| ≤ εn|x1| = εn|y| ;

|xn+k − xn| ≤ (εn + εn+1 + . . . )|y| = εn

1− ε
|y| ;

we see that xn are a Cauchy sequence, thus the limit x = limn xn must exist,
and

|x− xn| ≤
εn

1− ε
|y| .

Also,
|y − f(xn)| = |xn+1 − xn| ≤ εn|y| ,

which implies f(x) = y, provided that x ∈ Uε.
There exists r > 0 such that Uε contains the open r-ball centered at 0.

Assuming |y| < (1− ε)r we get

|xn| ≤
1

1− ε
|y| < r

(since |xk| = |x0+k − x0| ≤ ε0

1−ε |y|), which ensures that Uε contains x1, x2, . . .
and x.

We summarize.
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4d1 Proposition. Assume that x0 ∈ Rn, f : Rn → Rn is differentiable near
x0, Df is continuous at x0, and the operator T = (Df)x0 is invertible. Then
for every y near y0 = f(x0) the iterative process

xn+1 = xn + T−1
(
y − f(xn)

)
for n = 0, 1, 2, . . .

is well-defined and converges to a solution x of the equation f(x) = y. In
addition, |x− x0| = O(|y − y0|).

4d2 Remark. The proof of Prop. 4d1 does not involve Lemma 3b7 and may
be used instead of Lemma 3b7 in the proof of Prop. 3c5.
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