4 Inverse function theorem

4a What is the problem 71
4b Simple observations before the theorem 72
4c The theorem 73
4d Iterations 76

The solution $x=g(y)$ of an equation $f(x)=y$ near a given nondegenerate point is an easy matter in dimension one, but for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ it means a system of n (nonlinear) equations in n unknowns. Still, under appropriate conditions, the inverse mapping to a continuously differentiable mapping is continuously differentiable. An iterative process converges to the solution.

4a What is the problem

Recall the mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
f(r, \theta)=(r \cos \theta, r \sin \theta),
$$

treated in 2e8. It is not one-to-one, since $f(r, \theta+2 \pi)=f(r, \theta)$ and $f(-r, \theta+$ $\pi)=f(r, \theta)$. However, its restriction to the open set $U=(0, \infty) \times(-\pi, \pi)$ is one-to-one, and $f(U)$ is the open set $V=\mathbb{R}^{2} \backslash(-\infty, 0] \times\{0\}$. Thus, $\left(\left.f\right|_{U}\right)^{-1}: V \rightarrow U$. By 2e8, f is differentiable on U. We wonder, is $\left(\left.f\right|_{U}\right)^{-1}$ differentiable on V ?

The first coordinate $r=\sqrt{x^{2}+y^{2}}$ of $\left(\left.f\right|_{U}\right)^{-1}(x, y)$ evidently is differentiable on V. The second coordinate θ is differentiable on V by the argument used in 2b18(b):

$\theta=\arcsin \frac{y}{\sqrt{x^{2}+y^{2}}}$

However, this is just good luck. In general, the inverse mapping is not a combination of well-known functions. (Not even in dimension one; try for
instance to find x from $x^{5}+x=y$, or $x+\mathrm{e}^{x}=y$.) Can we deduce differentiability of f^{-1} from differentiability of f ?

Of course, we need a multidimensional theory; \mathbb{R}^{2} is only the simplest case.

4b Simple observations before the theorem

It is not a problem to differentiate the inverse mapping assuming that it is differentiable. By the chain rule,

$$
\left(D f^{-1}\right)_{f\left(x_{0}\right)} \circ(D f)_{x_{0}}=\left(D\left(f^{-1} \circ f\right)\right)_{x_{0}}=I
$$

therefore

$$
\left(D f^{-1}\right)_{y_{0}}=\left((D f)_{f^{-1}\left(y_{0}\right)}\right)^{-1} .
$$

The same argument shows that f^{-1} cannot be differentiable at $f\left(x_{0}\right)$ if the operator $(D f)_{x_{0}}$ is not invertible. (Recall also 2b13(b): x and y must be of the same dimension.)

It can happen that $(D f)_{x_{0}}$ is not invertible and nevertheless f is invertible. Example: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}, x_{0}=0$.

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that the operator $(D f)_{x}$ is invertible (that is, $f^{\prime}(x) \neq 0$) for all x then f is one-to-one (think, why). This is not the case for $f: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2}. Example: $f(x, y)=\left(\mathrm{e}^{x} \cos y, \mathrm{e}^{x} \sin y\right)$.

Thus we turn to the local problem: the germ of f at x_{0} is given, and we examine the germ of f^{-1} at $y_{0}=f\left(x_{0}\right)$.

It can happen that f is differentiable near x_{0} and $(D f)_{x_{0}}$ is invertible, but f is not one-to-one near x_{0}. Example: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+3 x^{2} \sin \frac{1}{x}$ for $x \neq 0, f(0)=0, x_{0}=0 .{ }^{12}$

[^0]Thus, we assume that f is continuously differentiable near x_{0}. That is, $x \mapsto$ $(D f)_{x}$ is continuous near x_{0}. It follows that $x \mapsto\left((D f)_{x}\right)^{-1}$ is continuous near x_{0}, see Exercise 4b1 below. Now, assuming again that the inverse mapping is differentiable (and therefore continuous) we see that it must be continuously differentiable, since $y \mapsto\left((D f)_{f^{-1}(y)}\right)^{-1}$ is continuous.

4b1 Exercise. If $A, A_{n} \in M_{n, n}(\mathbb{R}), A_{n} \rightarrow A$, and A is invertible then A_{n} is invertible for all n large enough, and $A_{n}^{-1} \rightarrow A^{-1}$.

Prove it. ${ }^{1}$

4c The theorem

4c1 Definition. (a) A homeomorphism $f: U \rightarrow V$ between open sets $U, V \subset \mathbb{R}^{n}$ is a diffeomorphism if $f \in C^{1}(U)$ and $f^{-1} \in C^{1}(V)$.
(b) ${ }^{2}$ A mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a (local) diffeomorphism near a point $x \in \mathbb{R}^{n}$ if there exist open neighborhoods U of x and V of $f(x)$ such that $\left.f\right|_{U}$ is a diffeomorphism $U \rightarrow V$.

The same applies to mappings from one n-dimensional affine space to another.

Clearly, a linear operator $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a diffeomorphism if and only if it is bijective. Otherwise it cannot be a diffeomorphism near 0 (or any other point).

4c2 Theorem. ${ }^{3}$ Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$. If f is continuously differentiable near x and the linear operator $(D f)_{x}$ is a diffeomorphism then f is a diffeomorphism near x.

We reformulate it more explicitly.
4c3 Proposition. Assume that $x_{0} \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuously differentiable near x_{0}, and the operator $(D f)_{x_{0}}$ is invertible. Then there exists an open neighborhood U of x_{0} and an open neighborhood V of $y_{0}=f\left(x_{0}\right)$ such that $\left.f\right|_{U}$ is a homeomorphism $U \rightarrow V$, continuously differentiable on U, and the inverse mapping $\left(\left.f\right|_{U}\right)^{-1}: V \rightarrow U$ is continuously differentiable on V.

[^1]4c4 Remark. The equality

$$
(D g)_{y_{0}}=\left((D f)_{x_{0}}\right)^{-1}
$$

for $g=\left(\left.f\right|_{U}\right)^{-1}$ is often included into this theorem. However, it is just an immediate implication of the chain rule, as noted in Sect. 4b, Moreover, $(D g)_{y}=\left((D f)_{x}\right)^{-1}$ whenever $x \in U, y \in V, y=f(x)$.

4 c 5 Remark. \mathbb{R}^{n} may be replaced with an arbitrary n-dimensional vector or affine space. Moreover, 4c2 4c4 hold when $f: S_{1} \rightarrow S_{2}$ for two n-dimensional affine spaces S_{1}, S_{2}; in this case $x_{0} \in S_{1}, y_{0} \in S_{2},(D f)_{x_{0}}: \vec{S}_{1} \rightarrow \vec{S}_{2}$ and $(D g)_{y_{0}}=\left((D f)_{x_{0}}\right)^{-1}: \vec{S}_{2} \rightarrow \vec{S}_{1}$.
4 c 6 Remark. Only the germ of f at x_{0} is relevant. Thus, 4c3 may be applied to a function defined on a neighborhood of x_{0} (rather than the whole \mathbb{R}^{n}). But never forget: U is generally smaller than the given neighborhood. In contrast, the next result applies to the whole given U.

4 c 7 Proposition. Assume that $U, V \subset \mathbb{R}^{n}$ are open, $f: U \rightarrow V$ is a homeomorphism, continuously differentiable, and the operator $(D f)_{x}$ is invertible for all $x \in U$. Then the inverse mapping $f^{-1}: V \rightarrow U$ is continuously differentiable.

Proof of Prop. 4c3 given Prop. 4c7. Prop. 3c3 and Prop. 3c5 provide open sets $U \ni x_{0}$ and $V \ni f\left(x_{0}\right)$ satisfying the conditions of Prop. 4c7. By Prop. 4c7 these U, V satisfy the conclusion of Prop. 4c3.

Proof of Prop. 4c7. Let $x_{0} \in U, y_{0}=f\left(x_{0}\right) \in V$; it is sufficient to prove that the mapping $g=f^{-1}$ is differentiable at y_{0}. (Continuity of $D g$ follows, see the end of Sect. 4b.)

Similarly to 3 c 4 we reduce the general case to a special case: $x_{0}=0$, $y_{0}=0$, and $(D f)_{0}=$ id. Similarly to the proof of Prop. 3c3 we have U_{ε} such that

$$
\begin{aligned}
\left|\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)-\left(x_{1}-x_{2}\right)\right| & \leq \varepsilon\left|x_{1}-x_{2}\right|,
\end{aligned} \quad \text { for all } x_{1}, x_{2} \in U_{\varepsilon},
$$

and in particular (for $x_{2}=0, x_{1}=x$),

$$
\begin{aligned}
& |f(x)-x| \leq \varepsilon|x|, \\
& \varepsilon)|x| \leq|f(x)| \leq(1+\varepsilon)|x| \quad \text { for all } x \in U_{\varepsilon} .
\end{aligned}
$$

The set $V_{\varepsilon}=f\left(U_{\varepsilon}\right)$ is an open neighborhood of y_{0} (recall 3b6), and

$$
\begin{gathered}
|y-g(y)| \leq \varepsilon|g(y)|, \\
(1-\varepsilon)|g(y)| \leq|y| \leq(1+\varepsilon)|g(y)| \quad \text { for all } y \in V_{\varepsilon}
\end{gathered}
$$

Therefore

$$
|g(y)-y| \leq \frac{\varepsilon}{1-\varepsilon}|y| \quad \text { for all } y \in V_{\varepsilon}
$$

We see that $g(y)=y+o(|y|)$, that is, id is the derivative of g at y_{0}.
Theorem 4 c 2 is thus proved.
4c8 Remark. The equality $(D g)_{y_{0}}=\left((D f)_{x_{0}}\right)^{-1}$ was known before, but also follows from the proof above.
4 c 9 Remark. Continuity of $D g$ was known before, but also follows readily from the arguments of the proof above, as follows. For all $x_{1}, x_{2} \in U_{\varepsilon}$,

$$
\begin{gathered}
\left|\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)-\left(x_{1}-x_{2}\right)\right| \leq \varepsilon\left|x_{1}-x_{2}\right| \\
(1-\varepsilon)\left|x_{1}-x_{2}\right| \leq\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq(1+\varepsilon)\left|x_{1}-x_{2}\right| ; \\
\left|\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)-\left(x_{1}-x_{2}\right)\right| \leq \frac{\varepsilon}{1-\varepsilon}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| ;
\end{gathered}
$$

therefore for all $y_{1}=y, y_{2}=y_{1}+h \in V_{\varepsilon}$,

$$
\begin{aligned}
\left|\left(g\left(y_{2}\right)-g\left(y_{1}\right)\right)-\left(y_{2}-y_{1}\right)\right| & \leq \frac{\varepsilon}{1-\varepsilon}\left|y_{2}-y_{1}\right| \\
|g(y+h)-g(y)-h| & \leq \frac{\varepsilon}{1-\varepsilon}|h| .
\end{aligned}
$$

On the other hand,

$$
g(y+h)-g(y)=(D g)_{y}(h)+o(|h|) .
$$

It follows that

$$
\left|(D g)_{y}(h)-h\right| \leq \frac{\varepsilon}{1-\varepsilon}|h|+o(|h|)
$$

$\left|(D g)_{y}(h)-h\right| \leq \frac{2 \varepsilon}{1-\varepsilon}|h|$ for all h near 0 , therefore (by linearity ${ }^{1}$) for all h;

$$
\left\|(D g)_{y}-\mathrm{id}\right\| \leq \frac{2 \varepsilon}{1-\varepsilon} \quad \text { for all } y \in V_{\varepsilon}
$$

$(D g)_{y} \rightarrow(D g)_{y_{0}}$ as $y \rightarrow y_{0}$.
$4 \mathbf{c} 10$ Remark. We see that continuity of the map $A \mapsto A^{-1}$ is not necessarily used when proving the inverse function theorem. Curiously enough, the former can be deduced from the latter. To this end, consider the inverse to a mapping $(A, x) \mapsto(A, A x)$ from $M_{n, n}(\mathbb{R}) \times \mathbb{R}^{n}$ to itself. It gives not only continuity of the map $A \mapsto A^{-1}$ (on the open set of all invertible matrices) but also its continuous differentiability. But this is not a revelation: elements of A^{-1} are just rational functions (that is, fractions of polynomials) of the elements of A. (See also 2e9.)

[^2]4c11 Exercise. (a) Let $f: U \rightarrow V$ be as in Prop. 4 c 7 and in addition $f \in C^{2}(U)$ (recall Sect. 2g). Prove that $f^{-1} \in C^{2}(V) .{ }^{1}$
(b) The same for $C^{k}(\ldots)$ where $k=3,4, \ldots$

4c12 Remark. Now we see that the paths γ used in Sect. 3d, 3e are not just continuous, they are continuously differentiable, which resolves the doubt of $3 \mathrm{~d} 3(\mathrm{a})$. In relation to $3 \mathrm{~d} 3(\mathrm{~b})$ one may guess that a small ball must contain a connected portion of the path. This need not hold for a continuous path in general, not even for a differentiable path.

However, it holds for a continuously differentiable path, see 4c13 below. ${ }^{2}$
4c13 Exercise. Let $\gamma:(-1,1) \rightarrow \mathbb{R}^{n}$ be continuously differentiable, $\gamma^{\prime}(0) \neq$ 0 . Prove existence of $\varepsilon>0$ such that the set $\{t \in(-\varepsilon, \varepsilon):|\gamma(t)-\gamma(0)|<r\}$ is an interval provided that r is small enough. ${ }^{3}$

4c14 Exercise. Let $\psi: U \rightarrow V$ be as in 3c8(b). Prove that ψ is continuously differentiable.

4d Iterations

We know that (under appropriate conditions) the solution x of the equation $f(x)=y$ exists and is unique. How to compute x numerically?

Taking into account that y is close to $y_{0}=f\left(x_{0}\right), x$ must be close to x_{0}, and the operator $T=(D f)_{x_{0}}$ is invertible, we guess that

$$
y=f(x)=f\left(x_{0}+\left(x-x_{0}\right)\right) \approx y_{0}+T\left(x-x_{0}\right),
$$

and hopefully,

$$
x \approx x_{0}+T^{-1}\left(y-y_{0}\right)=x_{0}+T^{-1}\left(y-f\left(x_{0}\right)\right) .
$$

We iterate this operation,

$$
x_{n+1}=x_{n}+T^{-1}\left(y-f\left(x_{n}\right)\right) \quad \text { for } n=0,1,2, \ldots
$$

and hope that $x_{n} \rightarrow x$.

[^3]These iterations are well-defined for a mapping $f: S_{1} \rightarrow S_{2}$ between affine spaces (as in 4c5). Choosing appropriate coordinates we return to the special case treated in the proof of 4c7; $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x_{0}=0, y_{0}=0$, and $T=$ id. Now we may use neighborhoods U_{ε} and the related inequalities. Also, the iterations become just $x_{n+1}=x_{n}+y-f\left(x_{n}\right)$, that is,

$$
x_{n+1}-x_{n}=y-f\left(x_{n}\right) .
$$

In particular, $x_{1}-x_{0}=y-y_{0}$, that is, $x_{1}=y$.
We have

$$
\left|\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)-\left(x_{1}-x_{2}\right)\right| \leq \varepsilon\left|x_{1}-x_{2}\right|
$$

for all $x_{1}, x_{2} \in U_{\varepsilon}$. Assuming (for now) that $x_{n} \in U_{\varepsilon}$ for all $n \geq 0$ we get for all $n>0$

$$
\begin{aligned}
\left|x_{n+1}-x_{n}\right|=\left|\left(x_{n}+y-f\left(x_{n}\right)\right)-\left(x_{n-1}+y-f\left(x_{n-1}\right)\right)\right| & = \\
=\left|\left(x_{n}-x_{n-1}\right)-\left(f\left(x_{n}\right)-f\left(x_{n-1}\right)\right)\right| & \leq \varepsilon\left|x_{n}-x_{n-1}\right|,
\end{aligned}
$$

therefore for all $n \geq 0$ and $k \geq 0$

$$
\begin{gathered}
\left|x_{n+1}-x_{n}\right| \leq \varepsilon^{n}\left|x_{1}\right|=\varepsilon^{n}|y| \\
\left|x_{n+k}-x_{n}\right| \leq\left(\varepsilon^{n}+\varepsilon^{n+1}+\ldots\right)|y|=\frac{\varepsilon^{n}}{1-\varepsilon}|y|
\end{gathered}
$$

we see that x_{n} are a Cauchy sequence, thus the limit $x=\lim _{n} x_{n}$ must exist, and

$$
\left|x-x_{n}\right| \leq \frac{\varepsilon^{n}}{1-\varepsilon}|y| .
$$

Also,

$$
\left|y-f\left(x_{n}\right)\right|=\left|x_{n+1}-x_{n}\right| \leq \varepsilon^{n}|y|,
$$

which implies $f(x)=y$, provided that $x \in U_{\varepsilon}$.
There exists $r>0$ such that U_{ε} contains the open r-ball centered at 0 . Assuming $|y|<(1-\varepsilon) r$ we get

$$
\left|x_{n}\right| \leq \frac{1}{1-\varepsilon}|y|<r
$$

(since $\left|x_{k}\right|=\left|x_{0+k}-x_{0}\right| \leq \frac{\varepsilon^{0}}{1-\varepsilon}|y|$), which ensures that U_{ε} contains x_{1}, x_{2}, \ldots and x.

We summarize.

4d1 Proposition. Assume that $x_{0} \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is differentiable near $x_{0}, D f$ is continuous at x_{0}, and the operator $T=(D f)_{x_{0}}$ is invertible. Then for every y near $y_{0}=f\left(x_{0}\right)$ the iterative process

$$
x_{n+1}=x_{n}+T^{-1}\left(y-f\left(x_{n}\right)\right) \quad \text { for } n=0,1,2, \ldots
$$

is well-defined and converges to a solution x of the equation $f(x)=y$. In addition, $\left|x-x_{0}\right|=O\left(\left|y-y_{0}\right|\right)$.

4d2 Remark. The proof of Prop. 4d1 does not involve Lemma 3b7 and may be used instead of Lemma 3b7 in the proof of Prop. 3c5.

Index

[^0]: ${ }^{1}$ Hint: consider $f^{\prime}(x)$ for $x \rightarrow 0$. See also (2d2).
 ${ }^{2}$ Shifrin, Sect. 6.2, Example 1 on pp. 251-252.

[^1]: ${ }^{1}$ Hint. One way: use determinants. Another way: first, reduce the general case to the special case $A=I$ (via $A^{-1} A_{n} \rightarrow I$); second, prove that $\left\|A^{-1}-I\right\| \leq \frac{\|A-I\|}{1-\|A-I\|}$ whenever $\|A-I\|<1$ (via the triangle inequality).
 ${ }^{2}$ Compare it with 3 c 1 .
 ${ }^{3}$ Compare it with 3 c 2 .

[^2]: ${ }^{1}$ Compare it with 2 a 1.

[^3]: ${ }^{1}$ Hint: $(D g)_{y}=\left((D f)_{g(y)}\right)^{-1}$ where $g=f^{-1}$.
 ${ }^{2} \mathrm{~A}$ similar fact for surfaces is beyond our course.
 ${ }^{3}$ Hint: $\frac{\mathrm{d}}{\mathrm{d} t}|\gamma(t)-\gamma(0)|^{2}=2\left\langle\gamma^{\prime}(t), \gamma(t)-\gamma(0)\right\rangle \approx t\left|\gamma^{\prime}(0)\right|^{2}$.

