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Integral is a bridge between functions of point and functions of set.

6a What is the problem

A quote:

As already pointed out, many of the quantities of interest in con-
tinuum mechanics represent extensive properties, such as mass,
momentum and energy. An extensive property assigns a value to
each part of the body. From the mathematical point of view, an
extensive property can be regarded as a set function, in the sense
that it assigns a value to each subset of a given set. Consider, for
example, the case of the mass property. Given a material body,
this property assigns to each subbody its mass. Other examples
of extensive properties are: volume, electric charge, internal en-
ergy, linear momentum. Intensive properties, on the other hand,
are represented by fields, assigning to each point of the body a def-
inite value. Examples of intensive properties are: temperature,
displacement, strain.

As the example of mass clearly shows, very often the extensive
properties of interest are additive set functions, namely, the value
assigned to the union of two disjoint subsets is equal to the sum
of the values assigned to each subset separately. Under suitable
assumptions of continuity, it can be shown that an additive set
function is expressible as the integral of a density function over
the subset of interest. This density, measured in terms of prop-
erty per unit size, is an ordinary pointwise function defined over
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the original set. In other words, the density associated with a
continuous additive set function is an intensive property. Thus,
for example, the mass density is a scalar field.

Marcelo Epstein1

We need a mathematical theory of the correspondence between set func-
tions Rn ⊃ E 7→ F (E) ∈ R and (ordinary) functions Rn 3 x 7→ f(x) ∈ R
via integration, F (E) =

∫
E
f . The theory should address (in particular) the

following questions.

∗ What are admissible sets E and functions f? (Arbitrary sets are as
useless here as arbitrary functions.)

∗ What is meant by “disjoint”?

∗ What is meant by integral?

∗ What are the general properties of the integral?

∗ How to calculate the integral explicitly for given f and E ?

We start the integration theory based on two postulates. First,

(6a1) vol(B) inf
B
f ≤ F (B) ≤ vol(B) sup

B
f

whenever B is a box (to be defined). Second,

(6a2) F (B1 ∪ · · · ∪Bk) = F (B1) + · · ·+ F (Bk)

whenever a box B is split into k boxes B1, . . . , Bk.
For boxes the theory is similar to the one-dimensional Riemann integra-

tion. However, two problems need additional effort:

∗ E need not be a box (it may be a ball, a cone, etc.);

∗ rotation invariance should be proved.

These problems do not appear in dimension one; there an (ordinary) function
F : R→ R such that F ′ = f leads to the set function [s, t] 7→ F (t)− F (s) =∫ t
s
f .

6b Dimension one, revisited

It is frequently claimed that Lebesgue integration is as easy to
teach as Riemann integration. This is probably true, but I have
yet to be convinced that it is as easy to learn.

T.W. Körner2

1“The elements of continuum biomechanics”, Wiley 2012. (See Sect. 2.2.1.)
2“A companion to analysis: A second first and first second course in analysis”, AMS

2004. (See page 197.) Among our textbooks Shurman, Shirfin and Zorich treat Riemann
integral, Fleming treats Lebesgue integral, and Hubbard treats both.
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One-dimensional Riemann integration was treated in Analysis-II; the in-
tegral

∫ t
s
f(x) dx, defined for integrable functions f : [s, t] → R, is additive

in the interval [s, t] and linear in the function f . Now we’ll do a bit more:
the lower and upper integrals ∗

∫
[s,t]

f ,
∗∫

[s,t]
f will be defined for all bounded

functions f : [s, t]→ R; they are additive in the interval [s, t] but not linear
in the function f ; and they are equal if and only if f is integrable.

We treat dimension 1 as a special case of dimension n (treated later); this
is why our terminology and notation are rather ugly in dimension 1.

Intervals [s, t], (s, t), [s, t) and (s, t] for −∞ < s < t < ∞ will be called
1-dimensional boxes and denoted by B (or C). We do not care whether B is
open, closed, or neither; instead, we use the closure B or the interior B◦ as
needed. The length t− s of the box will be called its 1-dimensional volume
and denoted by vol(B).

A finite subset of B◦ divides B into finitely many subintervals; the set P
of these subintervals will be called a partition of B;

(6b1) B =
⋃
C∈P

C ; C◦1 ∩ C◦2 = ∅ for C1, C2 ∈ P, C1 6= C2 .

The volume is additive:

(6b2) vol(B) =
∑
C∈P

vol(C) .

Adding more points to the finite subset of B◦ we get a refinement P ′ of
the partition P ; this is another partition such that for every C ∈ P ,

(6b3) the set P ′|C = {C ′ ∈ P ′ : C ′ ⊂ C} is a partition of C ,

and these fragments together give P ′:

(6b4) P ′ =
⊎
C∈P

P ′|C .

In particular, P is a refinement of itself.
The union of two finite subsets of B◦ leads to the common refinement

P1P2 of two partitions P1 and P2:

(6b5) P1P2 = {C1 ∩ C2 : C1 ∈ P1, C2 ∈ P2, C
◦
1 ∩ C◦2 6= ∅} .

Thus, P ′ is a refinement of P if and only if P ′ = PP ′.
Now let a function f : R → R be locally bounded, that is, bounded on

every box (or, equivalently, on every bounded subset of R). For arbitrary
box B ⊂ R we consider

sup
B

f = sup
x∈B

f(x) ,
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and for arbitrary partition P of B we introduce the upper Darboux sum

(6b6) U(f, P ) =
∑
C∈P

vol(C) sup
C

f .

The inequality

(6b7) U(f, P ) ≤ vol(B) sup
B

f

follows immediately from additivity of volume (6b2) and the trivial relation

(6b8) sup
C

f ≤ sup
B

f whenever C ⊂ B .

In other words, we have a box function

(6b9) B 7→ vol(B) sup
B

f for all boxes B ⊂ R ,

and it is superadditive:

(6b10) vol(B) sup
B

f ≥
∑
C∈P

vol(C) sup
C

f .

It follows that

(6b11) U(f, P ) ≥ U(f, P ′) whenever P ′ is finer than P ;

proof: by (6b4),

(6b12) U(f, P ′) =
∑
C∈P

U(f, P ′|C) ;

and

(6b13) U(f, P ′|C) ≤ vol(C) sup
C

f

by (6b7) and (6b3).
We define the upper integral

(6b14)
∗∫
B

f = inf
P
U(f, P ) ,

the infimum being taken over all partitions P of the box B. However, it may
be taken only over partitions P ′ finer than a given partition P :

(6b15) inf
P ′
U(f, P ′) = inf

P ′=PP ′
U(f, P ′) .
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Proof: “≤” is trivial; “≥”: U(f, P ′) ≥ U(f, PP ′).
Now, a partition P ′ finer than P consists of its “fragments”, the partitions

P ′|C for C ∈ P ; the infimum over all such P ′ is the infimum over all frag-
ments. By (6b12), U(f, P ′) is the sum of contributions of these fragments,
and we may take each infimum separately:1

(6b16)
∗∫
B

f =
∑
C∈P

∗∫
C

f ,

which means that the upper integral is an additive box function.2

Clearly,
∗∫
B
f =

∗∫
B
g whenever f |B = g|B. Thus,

∗∫
B
f is well-defined for

bounded f : B → R, and moreover, due to 6b18 below we have

(6b17)
∗∫
B

f is well-defined for bounded f : B◦ → R .

6b18 Lemma.
∗∫
B
f =

∗∫
B
g whenever f |B◦ = g|B◦ .

Proof. Given ε > 0, we take a partition P = {C1, C2, C3} of B in three
parts such that C2 ⊂ B◦ and vol(C2) ≥ vol(B)− ε. Then∣∣∣∣ ∗∫

B

f−
∗∫
B

g

∣∣∣∣ =

∣∣∣∣( ∗∫
C1

f+
∗∫
C2

f+
∗∫
C3

f

)
−
( ∗∫

C1

g+
∗∫
C2

g+
∗∫
C3

g

)∣∣∣∣ ≤
≤
∣∣∣∣ ∗∫

C1

f −
∗∫
C1

g

∣∣∣∣+

∣∣∣∣ ∗∫
C2

f −
∗∫
C2

g

∣∣∣∣︸ ︷︷ ︸
=0

+

∣∣∣∣ ∗∫
C3

f −
∗∫
C3

g

∣∣∣∣ ≤
≤
∣∣∣∣ ∗∫

C1

f

∣∣∣∣+

∣∣∣∣ ∗∫
C1

g

∣∣∣∣+

∣∣∣∣ ∗∫
C3

f

∣∣∣∣+

∣∣∣∣ ∗∫
C3

g

∣∣∣∣ ≤
≤
(
vol(C1) + vol(C3)

)︸ ︷︷ ︸
≤ε

(
sup
B

|f |+ sup
B

|g|
)

for all ε > 0.

6b19 Lemma. If boxes B,C satisfy C ⊂ B, and f = 0 on B◦ \ C, then
∗∫
B
f =

∗∫
C
f .

Proof. We take a partition P of B in at most 3 parts such that C ∈ P . By
6b18,

∗∫
D
f =

∗∫
D

0 = 0 for all D ∈ P , D 6= C. Thus,
∗∫
B
f =

∑
D∈P

∗∫
D
f =

∗∫
C
f .

1Generally, infx,y(f(x) + g(y)) = infx f(x) + infy g(y) (and the same holds for more
than two summands). But do not think that infx(f(x) + g(x)) = infx f(x) + infx g(x)!

2In fact, every superadditive box function F leads to an additive box function G;
G(B) = infP

∑
C∈P F (C) is the greatest additive box function satisfying G ≤ F .
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It means that
∗∫

R f is well-defined for bounded f : R → R such that
the set {x ∈ R : f(x) 6= 0} is bounded; these will be called functions with
bounded support. Namely,1

(6b20)
∗∫
R
f =

∗∫
B

f whenever f = 0 on R \B .

Lower Darboux sums

(6b21) L(f, P ) =
∑
C∈P

vol(C) inf
C
f

may be treated similarly, with all inequalities reversed: L(f, P ) ≤ L(f, P ′)
whenever P ′ is finer than P ; etc. Alternatively, one may use the equality
L(f, P ) = −U(−f, P ). The lower integral

(6b22)
∗

∫
B

f = sup
P
L(f, P )

is another additive box function. Clearly, L(f, P ) ≤ U(f, P ); it follows that
L(f, P1) ≤ U(f, P2), since L(f, P1) ≤ L(f, P1P2) ≤ U(f, P1P2) ≤ U(f, P2).
Therefore2

(6b23)
∗

∫
B

f ≤
∗∫
B

f .

Also,

(6b24)
∗

∫
B

f = −
∗∫
B

(−f) .

If ∗

∫
B
f =

∗∫
B
f , one says that f is integrable (on B), and then

(6b25)
∗

∫
B

f =

∫
B

f =
∗∫
B

f .

The same holds in a one-dimensional Euclidean affine space instead of R.
Accordingly, the integral (as well as the lower and upper integral) is invariant
under translation: for every r ∈ R,

(6b26)

∫
[s,t]

f =

∫
[s+r,t+r]

g where g(u) = f(u− r) ,

and reflection:

(6b27)

∫
[s,t]

f =

∫
[−t,−s]

g where g(u) = f(−u) .

1Indeed, any two such boxes are both contained in some third such box.
2Generally, if f(x) ≤ g(y) for all x, y, then supx f(x) ≤ infy g(y).
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6b28 Exercise. (a) If f and F satisfy (6a1) and (6a2) then ∗

∫
B
f ≤ F (B) ≤

∗∫
B
f , and therefore F (B) =

∫
B
f if f is integrable. Thus, F is uniquely

determined by f if f is integrable.
(b) Both F : B 7→ ∗

∫
B
f and F : B 7→ ∗∫

B
f satisfy (together with f)

(6a1) and (6a2). Thus, F fails to be uniquely determined by f if f is not
integrable.

Formulate it accurately, and prove.

6b29 Exercise. Let

f(x) = 1 , g(x) = 0 for all rational x ,

f(x) = 0 , g(x) = 1 for all irrational x .

Prove that

∗

∫
B

(af + bg) = min(a, b) vol(B) ,

∗∫
B

(af + bg) = max(a, b) vol(B)

for all a, b ∈ R and all boxes B.

6b30 Exercise. Find
∫ 1

0
x dx using only the theory of Sect. 6b. (That is,∫

[0,1]
f where f(t) = t.)1

6b31 Exercise. Let f : [0, 1)→ [0, 1) be defined via binary digits, by

f(x) =
∞∑
k=1

β2k(x)

2k
for x =

∞∑
k=1

βk(x)

2k
, βk(x) ∈ {0, 1} , lim inf

k
βk(x) = 0 .

Prove that f is integrable on [0, 1] and find
∫
[0,1]

f .2

1Hint: split [0, 1] into 2k equal intervals and calculate lower and upper Darboux sums.
2Hint: split [0, 1] into 22k equal intervals and calculate lower and upper Darboux sums.
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6c Higher dimensions

An n-dimensional box B ⊂ Rn is, by definition, the (Cartesian) product B =
b1×· · ·× bn of n one-dimensional boxes b1, . . . , bn ⊂ R. The (n-dimensional)
volume of B is, by definition, the product of lengths,

(6c1) voln(B) = vol1(b1) . . . vol1(bn) .

A partition P of B is, by definition, the
product of one-dimensional partitions pk of
bk (k = 1, . . . , n) in the sense that yes yes no

(6c2) P = {c1 × · · · × cn : c1 ∈ p1, . . . , cn ∈ pn} .

Additivity of volume (6b2) holds as before: vol(B) =
∑

C∈P vol(C).
Proof:∑

C∈P

vol(C) =
∑

c1∈p1,...,cn∈pn

voln(c1 × · · · × cn) =
∑

c1∈p1,...,cn∈pn

vol1(c1) . . . vol1(cn) =

=

( ∑
c1∈p1

vol1(c1)

)
. . .

( ∑
cn∈pn

vol1(cn)

)
= vol1(b1) . . . vol1(bn) = vol(B) .

Writing (6c2) as P = p1 × · · · × pn we define a refinement P ′ of P as
P ′ = p′1 × · · · × p′n where each p′k is a refinement of pk.

The common refinement of P1 = p1,1×· · ·×p1,n and P2 = p2,1×· · ·×p2,n is
P1P2 = p1×· · ·×pn where each pk is the one-dimensional common refinement
p1,kp2,k.

P1 P2 P1P2

Now the theory of Sect. 6b holds exactly as written! Just read (6b1)–
(6b16) and (6b21)–(6b25) again, interpreting all boxes as n-dimensional.
Lemmas 6b18, 6b19 still hold; the only change needed in their proofs is,
to replace “3 parts” with “3n parts”. Thus, (6b17) and (6b20) hold.

The same applies to the product S1 × · · · × Sn of n one-dimensional
Euclidean affine spaces instead of Rn. Accordingly, the integral (as well
as the lower and upper integrals) is invariant under translations: for every
r ∈ Rn,

(6c3)

∫
B

f =

∫
B+r

g where g(u) = f(u− r) ,
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and reflections (of some or all the coordinates). Permutations of coordinates
are also unproblematic. However, for now we cannot integrate over an arbi-
trary n-dimensional Euclidean space, since rotation invariance of the integral
is not proved yet.

6c4 Exercise. Consider modified upper Darboux sums

U◦(f, P ) =
∑
C∈P

vol(C) sup
C◦

f

and prove that they lead to the same upper integral:1

inf
P
U◦(f, P ) =

∗∫
B

f .

6c5 Exercise. Let f : [0, 1)× [0, 1)→ [0, 1) be defined by

f(x, y) =
∞∑
k=1

βk(x)

22k−1 +
∞∑
k=1

βk(y)

22k

(where βk(·) are as in 6b31). Prove that f is integrable on [0, 1]× [0, 1] and
find

∫
[0,1]×[0,1] f .

6d Basic properties of integrals

[Sh:6.2]
The constant function a1l : x 7→ a is integrable, and

(6d1)

∫
B

a1l = a vol(B) for all a ∈ R .

(Do not bother to use additivity of volume; just take the trivial partition P
and observe that L(f, P ) = U(f, P ) = a vol(B).) Using (6b20),

(6d2)

∫
Rn
a1lB = a vol(B) for every box B ⊂ Rn, and a ∈ R .

A number of properties of integrals are proved according to the pattern

(6d3)

sup
C
f // U(f, P ) //

∗∫
B

f
))
∫
B

f .

inf
C
f // L(f, P ) //

∗

∫
B

f

55

1Hint: vol(C) supC◦ f ≥ ∗
∫
C
f .
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It means: an evident property of supC f implies the corresponding property
of U(f, P ) and then of

∗∫
B
f (assuming only boundedness); similarly, from

infC f to ∗

∫
B
f ; and finally, assuming integrability, the properties of

∗∫
B
f

and ∗

∫
B
f are combined into a property of

∫
B
f .

Properties of integrals over Rn follow easily from properties of integrals
over boxes via (6b20). Each property below holds in two versions:

∗ all integrals are taken over a box B, and all functions are defined on
B◦ and bounded;

∗ all integrals are taken over Rn, and all functions are defined on Rn,
bounded, with bounded support.

(Note that bounded functions with bounded support are a vector space.1)
Monotonicity:

if f(·) ≤ g(·) then
∗

∫
f ≤

∗

∫
g ,

∗∫
f ≤

∗∫
g ,(6d4)

and for integrable f, g,

∫
f ≤

∫
g .(6d5)

(It can happen that
∗∫
f > ∗

∫
g; find an example.)

Homogeneity:

∗

∫
cf = c

∗

∫
f ,

∗∫
cf = c

∗∫
f for c ≥ 0 ;(6d6)

∗

∫
cf = c

∗∫
f ,

∗∫
cf = c

∗

∫
f for c ≤ 0 ;(6d7)

if f is integrable then cf is, and

∫
cf = c

∫
f for all c ∈ R .(6d8)

(Sub-, super-) additivity:

∗∫
(f + g) ≤

∗∫
f +

∗∫
g ;(6d9)

∗

∫
(f + g) ≥

∗

∫
f +

∗

∫
g ;(6d10)

if f, g are integrable then f + g is, and

∫
(f + g) =

∫
f +

∫
g .(6d11)

(It can happen that
∗∫

(f + g) <
∗∫
f +

∗∫
g; find an example.)

1Infinite-dimensional, of course.
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Combining properties (6d8) and (6d11) we get linearity (for integrable
functions only):

(6d12)

∫
(c1f1 + · · ·+ ckfk) = c1

∫
f1 + · · ·+ ck

∫
fk

for c1, . . . , ck ∈ R and integrable f1, . . . , fk.

6d13 Exercise. Prove (6d4)–(6d12).

Translation invariance (see (6c3)): if g(·) = f(· − r) then

(6d14)

∫
B

f =

∫
B+r

g ;

∫
Rn
f =

∫
Rn
g ;

and the same holds for upper and lower integrals.

6d15 Exercise. For bounded f, g : B → R prove that
(a)

∗∫
B
|fg| ≤ 1

2

(∗∫
B
f 2 +

∗∫
B
g2
)
;

(b)
∗∫
B
|fg| ≤ minc>0

1
2

(
c
∗∫
B
f 2 + 1

c

∗∫
B
g2
)

=
√
∗∫
B
f 2

√
∗∫
B
g2.

6d16 Exercise. (a) For f, g as in 6b29 prove that

∗

∫
B

(af + b)(cg + d) =
(
min(ad, bc) + bd

)
vol(B) ,

∗

∫
B

(af + b)2 = min
(
(a+ b)2, b2

)
vol(B) ,

∗

∫
B

(cg + d)2 = min
(
(c+ d)2, d2

)
vol(B)

for all a, b, c, d ∈ R and all intervals B.
(b) Prove existence of bounded f, g : B → R such that ∗

∫
B
|fg| >√

∗

∫
B
f 2

√
∗

∫
B
g2.

6d17 Exercise. For given s1, . . . , sn > 0 define T : Rn → Rn by T (t1, . . . , tn) =
(s1t1, . . . , sntn). Prove that

s1 . . . sn
∗

∫
f ◦ T =

∗

∫
f , s1 . . . sn

∗∫
f ◦ T =

∗∫
f

(for bounded f with bounded support); if f is integrable, then f ◦ T is
integrable and

s1 . . . sn

∫
Rn
f ◦ T =

∫
Rn
f .
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6e Normed space of equivalence classes

Let B ⊂ Rn be a box. All bounded functions B◦ → R are a vector space.1

On this space, the functional2

f 7→
∗∫
B

|f |

is a seminorm; that is, satisfies the first two conditions of 1e3(a),

∗∫
B

|cf | = |c|
∗∫
B

|f | ,
∗∫
B

|f + g| ≤
∗∫
B

|f |+
∗∫
B

|g|

(think, why), but violates the third condition,

∗∫
B

|f | > 0 whenever f 6= 0 . (Wrong!)

Functions f such that
∗∫
B
|f | = 0 will be called negligible. Functions f, g

such that f − g is negligible will be called equivalent. For example, for each
box B functions 1lB◦ , 1lB and 1lB are equivalent, see (6d2). The equivalence
class of f will be denoted [f ].

6e1 Exercise. (a) Negligible functions are an infinite-dimensional vector
space.

(b) Equivalence classes are an infinite-dimensional vector space; the func-
tional

[f ] 7→
∗∫
B

|f |

is well-defined on this vector space, and is a norm.3

Prove it.

Thus, equivalence classes are a normed space, therefore also a metric
space:

ρ
(
[f ], [g]

)
= ‖ [f ]− [g] ‖ =

∗∫
B

|f − g| ;

this metric will be called the integral metric, and the corresponding conver-
gence the integral convergence.

1Infinite-dimensional, of course.
2Functions on infinite-dimensional spaces are often called functionals.
3In fact, every seminorm on a vector space leads to a normed space of equivalence

classes.
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6e2 Exercise. Functionals

[f ] 7→
∗

∫
B

f , [f ] 7→
∗∫
B

f

on the normed space of equivalence classes are well-defined and continuous;
moreover,∣∣∣∣

∗

∫
B

f −
∗

∫
B

g

∣∣∣∣ ≤ ‖f − g‖ , ∣∣∣∣ ∗∫
B

f −
∗∫
B

g

∣∣∣∣ ≤ ‖f − g‖ .
Prove it.

Here and henceforth we often write ‖f‖ instead of ‖ [f ] ‖.

6e3 Exercise. (a) A function equivalent to an integrable function is inte-
grable;

(b) equivalence classes of integrable functions are a closed set in the
normed space of equivalence classes,1 and the functional [f ] 7→

∫
B
f on this

set is continuous.
Prove it.2

6e4 Exercise. (a) Uniform convergence of functions implies integral conver-
gence; prove it;

(b) the converse is wrong; find a counterexample.

6e5 Remark. Pointwise convergence does not imply integral convergence,
even if the functions are uniformly bounded.3 Here is a counterexample. We
take a sequence (xk)k of pairwise different points xk ∈ (0, 1) that is dense
in (0, 1) and consider dense countable sets Ak = {xk+1, xk+2, . . . }. Clearly,
A1 ⊃ A2 ⊃ . . . and

⋂
k Ak = ∅. Indicator functions fk = 1lAk converge to 0

pointwise (and monotonically). Nevertheless,
∗∫

(0,1)
fk = 1 for all k.

6e6 Remark. Integral convergence does not imply pointwise convergence,
even if the functions are continuous. Not even in “most” of the points. Here

1Two dense subsets of this closed set are treated in Sect. 6f: continuous functions, and
step functions. (Or rather, their equivalence classes.)

2Hint: use 6e2.
3It does, if the functions are integrable! But this fact is far beyond basis of integration.

We’ll return to it later.
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is a counterexample on B = (0, 1) ⊂ R:

f1 f2

f3

f4

f5

f6

f7

f8

f9

f10

(and so on)

6f Sandwiching a function

Given a partition P of a box B, and a bounded function f : B → R, we
introduce “step functions”

f−P (x) = min
C∈P :x∈C

inf
C
f , f+

P (x) = max
C∈P :x∈C

sup
C

f

and note that
f−P (·) ≤ f(·) ≤ f+

P (·)

and ∫
B

f−P = L(f, P ) ,

∫
B

f+
P = U(f, P ) ;

the latter follows from 6c4, since U◦(f+
P , P ) = U(f, P ) (and the same holds

for the modified lower Darboux sum L◦(f+
P , P )). By (6b14) and (6b22),

sup
P

∫
B

f−P =
∗

∫
B

f , inf
P

∫
B

f+
P =

∗∫
B

f .

If f is integrable then for every ε > 0 we can sandwich f between ε-close
step functions (for any given ε > 0):

f−P (·) ≤ f(·) ≤ f+
P (·) ,

∫
B

(f+
P − f

−
P ) ≤ ε .

If f is uniformly continuous on B then for every ε > 0 there exists P
such that f+

P (·)− f−P (·) ≤ ε on B (think, why), therefore
∗∫
B
f − ∗

∫
B
f ≤ ε,

which shows that

(6f1) every uniformly continuous function on a box is integrable.
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6f2 Exercise. Every continuous function on a box is integrable.
Prove it.1

What about sandwiching an integrable function between continuous func-
tions?

6f3 Lemma. For every box B ⊂ Rn and every ε > 0 there exist continuous
functions g, h : Rn → [0, 1] with bounded support such that g(·) ≤ 1lB(·) ≤
h(·) and

∗∫
Rn(h− g) ≤ ε.

Proof. We take a continuous h : Rn → [0, 1] such that h(·) = 1 on B and
h(·) = 0 outside the δ-neighborhood B+δ = {x : dist(x,B) ≤ δ}.2 Similarly
we take a continuous g : Rn → [0, 1] such that g(·) = 0 outside B, and
g(·) = 1 on B−δ = {x : dist(x,Rn \ B) ≥ δ}. We have

∗∫
Rn(h − g) ≤∫

Rn(1lB+δ
− 1lB−δ) = vol(B+δ)− vol(B−δ) ≤ ε if δ is small enough.3

We see that 1lB can be sandwiched between continuous functions (and by
continuity, the inequality g(·) ≤ 1lB(·) ≤ h(·) implies g(·) ≤ 1lB◦(·) ≤ 1lB(·) ≤
h(·)). The same holds for a1lB for arbitrary a ∈ R (think, what happens for
a < 0).

6f4 Exercise. Prove that ‖max(f1, f2)−max(g1, g2)‖ ≤ ‖f1−g1‖+‖f2−g2‖
for all bounded f1, f2, g1, g2 : B → R. 4 (Pointwise maxima are meant.)

If f1 and f2 can be sandwiched between continuous functions, then, by
6f4, also max(f1, f2) can be so sandwiched. The same holds for f1, . . . , fk.
Therefore, step functions f−P , f

+
P can be so sandwiched. Using h for f+

P , g for
f−P , and taking 6e2 into account, we get the following result.

6f5 Proposition. Let f : Rn → R be a bounded function with bounded
support, and ε > 0. Then there exist continuous g, h : Rn → R with bounded
support such that

g(·) ≤ f(·) ≤ h(·) ,
∫
Rn

(h− g) ≤ ε+
∗∫
Rn
f −

∗

∫
Rn
f .

And, of course,

(6f6)

∫
Rn
g ≥ −ε+

∗

∫
Rn
f ,

∫
Rn
h ≤ ε+

∗∫
Rn
f .

1Hint: similarly to the proof of 6b18, take a smaller box C ⊂ B◦, apply (6f1) to f |C ,
and use 6e3(b).

2There are many ways to do so. One way: do it first in one dimension, and then take
the product. Moreover, h ∈ C1(Rn) can be chosen.

3Indeed, (t1− s1 + 2δ) . . . (tn− sn + 2δ)− (t1− s1− 2δ) . . . (tn− sn− 2δ)→ 0 as δ → 0.
4Hint: |max(a1, a2)−max(b1, b2)| ≤ max(|a1 − b1|, |a2 − b2|) for all a1, a2, b1, b2 ∈ R.
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6f7 Corollary. Continuous functions are dense among integrable functions
(in the integral metric).

6f8 Exercise. (a) Binary operations

[f ], [g] 7→ [min(f, g)] , [f ], [g] 7→ [max(f, g)]

(pointwise minimum and maximum, denoted also f ∧ g and f ∨ g) on the
normed space of equivalence classes are well-defined and continuous.

(b) If f and g are integrable then min(f, g) and max(f, g) are integrable.
Prove it.1

6f9 Exercise. (a) Pointwise multiplication

[f ], [g] 7→ [fg]

on the normed space of equivalence classes is well-defined; it is continuous
on the subset of functions B → [−1, 1].

(b) If f and g are integrable then fg is integrable.
Prove it.2

6f10 Remark. The multiplication is also continuous on the subset of func-
tions B → [−M,M ] for every M , but not on the whole space.3 A counterex-
ample: B = (0, 1) ⊂ R, fk = gk = k1l(0,1/k2); then ‖fk‖ = ‖gk‖ = 1/k → 0,
but ‖fkgk‖ = 1 for all k.

6g Volume as Jordan measure

[Sh:6.5]
The indicator function 1lE of a bounded set E ⊂ Rn evidently is a bounded

function with bounded support.

6g1 Definition. Let E ⊂ Rn be a bounded set. Its inner Jordan measure
v∗(E) and outer Jordan measure v∗(E) are

v∗(E) =
∗

∫
Rn

1lE , v∗(E) =
∗∫
Rn

1lE .

1Hint: (a) use 6f4; (b) approximation (or sandwich).
2Hint: (a) ‖f1g1−f2g2‖ ≤ ‖f1−f2‖+‖g1− g2‖ for functions B → [−1, 1]; (b) WLOG,

f, g : B → [−1, 1].
3Even though the whole space is the union of these subsets! You see, these subsets

have no interior points.
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If they are equal (that is, if 1lE is integrable) then E is Jordan measurable,1

and its Jordan measure2 is

v(E) =

∫
Rn

1lE .

By (6d2), every box B ⊂ Rn is Jordan measurable, and

(6g2) v(B) = vol(B) .

Therefore its boundary ∂B = B \B◦ is Jordan measurable, and

(6g3) v(∂B) = 0 ,

since 1l∂B = 1lB − 1lB◦ and
∫

1lB =
∫

1lB◦ = vol(B).
Monotonicity (follows from (6d4)):

(6g4) E1 ⊂ E2 implies v∗(E1) ≤ v∗(E2) , v
∗(E1) ≤ v∗(E2) .

(Sub-, super-) additivity (follows from (6d9), (6d10), (6d11) and (6d4)):

v∗(E1 ∪ E2) ≤ v∗(E1) + v∗(E2) ,(6g5)

v∗(E1 ] E2) ≥ v∗(E1) + v∗(E2) ;(6g6)

if E1, E2 are Jordan measurable then E1 ] E2 is, and

v(E1 ] E2) = v(E1) + v(E2) .
(6g7)

Here “]” stands for disjoint union; that is, A ] B is just A ∪ B but only if
A ∩ B = ∅ (otherwise undefined). Thus, disjointedness is assumed in (6g6),
(6g7), and implies 1lE1]E2 = 1lE1 + 1lE2 .

Translation invariance (follows from (6d14)): for every r ∈ Rn,

(6g8) v∗(E + r) = v∗(E) , v∗(E + r) = v∗(E) .

We define a set of volume zero as a bounded set E ⊂ Rn such that
v∗(E) = 0. Equivalently: a Jordan measurable set such that v(E) = 0. Due
to (6g4), (6g5),

if E ⊂ F and F is of volume zero then E is ;(6g9)

if E1, . . . , Ek are of volume zero then E1 ∪ · · · ∪ Ek is .(6g10)

1Or just a Jordan set.
2Or the n-dimensional volume, or Jordan content, or Peano-Jordan measure, etc.
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6g11 Exercise. Prove that
(a) the inner Jordan measure of an open ball of radius r in Rn is ≥

(
2r√
n

)
n;

(b) every set of volume zero has empty interior.

6g12 Exercise. For s1, . . . , sn and T as in 6d17 prove that

v∗(T (E)) = s1 . . . snv∗(E) , v∗(T (E)) = s1 . . . snv
∗(E)

for every bounded E, and if E is Jordan measurable then T (E) is Jordan
measurable and v(T (E)) = s1 . . . snv(E). In particular, v(sE) = snv(E).

6g13 Exercise. If bounded functions f, g : Rn → R with bounded support
differ only on a set of volume zero then they are equivalent.

Prove it.1 2

We may safely ignore values of integrands on sets of volume zero (as far
as they are bounded). Likewise we may ignore sets of volume zero when
dealing with Jordan measure.

We may add “outside a set of volume zero” to (6d4)–(6d12), like this:
Monotonicity: if f(·) ≤ g(·) outside a set of volume zero then

∗

∫
f ≤

∗

∫
g ,

∗∫
f ≤

∗∫
g ,(6g14)

and for integrable f, g,

∫
f ≤

∫
g .(6g15)

Let f : Rn → R be an integrable function, and E ⊂ Rn a Jordan set. By
6f9(b), f · 1lE is integrable, and we define

(6g16)

∫
E

f =

∫
Rn
f · 1lE .

Similarly to (6g7),

(6g17)

∫
E1]E2

f =

∫
E1

f +

∫
E2

f .

Thus, the additive box function B 7→
∫
B
f is extended to an additive set

function E 7→
∫
E
f . If v(E) = 0 then

∫
E
f = 0 by 6g13. Otherwise

(6g18)

∫
E

f =

∫
E

a where a =
1

v(E)

∫
E

f ;

this a is called the mean (value) of f on E. Note that a ∈ [infE f, supE f ].
Values of f outside E being irrelevant, integrability on E and integral on E
are well-defined for f : E → R.

1Hint: |f − g| ≤ const · 1lE .
2“Sets of volume zero are small enough that they don’t interfere with integration”

[Sh:p.272].
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6h The area under a graph

6h1 Proposition. Let f : B → [0,∞) be an integrable function on a box
B ⊂ Rn, and

E = {(x, t) : x ∈ B, 0 ≤ t ≤ f(x)} ⊂ Rn+1 .

Then E is Jordan measurable (in Rn+1), and

v(E) =

∫
B

f .

Proof. Let P be a partition of B. Consider sets

E− =
⋃
C∈P

C × [0, inf
C
f ] , E+ =

⋃
C∈P

C × [0, sup
C
f ] .

We have E− ⊂ E ⊂ E+. The set E+ is a finite union of boxes (in Rn+1),
disjoint up to sets of volume zero; by (6g7), E+ is Jordan measurable, and
v(E+) is the sum of the volumes of these boxes; the same holds for E−;
namely,

v(E−) = L(f, P ) , v(E+) = U(f, P ) .

The relation E− ⊂ E ⊂ E+ implies v(E−) ≤ v∗(E) ≤ v∗(E) ≤ v(E+),
thus L(f, P ) ≤ v∗(E) ≤ v∗(E) ≤ U(f, P ), which implies ∗

∫
B
f ≤ v∗(E) ≤

v∗(E) ≤ ∗
∫
B
f . The rest is evident.

6h2 Exercise. For f and B as in 6h1, the graph

Γ = {(x, f(x)) : x ∈ B} ⊂ Rn+1

is of volume zero.
Prove it.1

6h3 Exercise. Prove that
(a) the disk {x : |x| ≤ 1} ⊂ R2 is Jordan measurable;
(b) the ball {x : |x| ≤ 1} ⊂ Rn is Jordan measurable;
(c) for every p > 0 the set Ep = {(x1, . . . , xn) : |x1|p+· · ·+|xn|p ≤ 1} ⊂ Rn

is Jordan measurable;
(d) v(Ep) is a strictly increasing function of p.

6h4 Exercise. For the balls Er = {x : |x| ≤ r} ⊂ Rn prove that
(a) v(Er) = rnv(E1);
(b) v(Er) < e−n(1−r)v(E1) for r < 1.

A wonder: in high dimension the volume of a ball concentrates near the
sphere!

1Hint: maybe, Γ ⊂ E+ \ E−?
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+
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B
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∗
∫
B
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∗∫
B
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