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Lebesgue’s criterion for Riemann integrability is proved. Riemann integral
is extended to semicontinuous functions, and Jordan measure to open sets and
closed sets (not always Jordan measurable).

8a What is the problem

Consider a bounded function f : (0, 1) → R. If f is continuous then it is
integrable (even if it is not uniformly continuous, like sin(1/x)). A step func-
tion is (generally) discontinuous, and still, integrable; its set of discontinuity
points is finite. Non-integrable functions mentioned in 6b29 are “very dis-
continuous”, having intervals of discontinuity points. The function of 6b31
(or 6c5) has a dense set of discontinuity points, and still, is integrable. Can
integrability be decided via the set of discontinuity points? An affirmative
answer was given by Lebesgue, it involves the notion of Lebesgue measure
zero (rather than volume zero).

“This aesthetically pleasing integrability criterion has little practical value”
(Bichteler).1 Well, if you use it when proving simple facts, such as integrabil-
ity of 3

√
f or fg (for integrable f and g), you may find far more elementary

proofs. But here is a harder case. The so-called improper integral will be
applied to unbounded functions f such that the function

mid(−M, f,M) : x 7→


−M when f(x) ≤ −M,

f(x) when −M ≤ f(x) ≤M,

M when M ≤ f(x)

is integrable for all M > 0. The sum of two such functions is also such
function. This fact follows easily from Lebesgue’s criterion. You may discover
another proof, but I doubt it will be simpler!

1From book “Integration — a functional approach” by Klaus Bichteler (1998); see
Exercise 6.16 on p. 27.
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Two techniques of this section are also of independent interest and will
be reused: derivative of a set function; extended integral and measure.

Lebesgue theory extends the Riemann integral to a very wide class of func-
tions, and Jordan measure to a very wide class of sets. This is far beyond
our needs. However, we want to measure (at least) open sets and closed sets
(even if not Jordan measurable). The relevant portion of Lebesgue’s exten-
sion is easy to describe via lower and upper Riemann integral (for functions)
and inner and outer Jordan measure (for sets).

A natural quantitative measure of nonintegrability is the difference

A =
∗∫
(0,1)

f −
∗

∫
(0,1)

f ∈ [0,∞) .

What about a natural quantitative measure of discontinuity of f? At a given
point x0 ∈ (0, 1) it is the difference1

Oscf (x0) = lim sup
x→x0

f(x)− lim inf
x→x0

f(x) ∈ [0,∞) .

But it depends on x0. In order to get a number we integrate the oscillation
function:

B =
∗∫
(0,1)

Oscf .

We would be happy to know that B = 0 =⇒ A = 0, even happier to know
that B = 0 ⇐⇒ A = 0, but here is a surprise:

A = B .

Qualitatively,

(f is integrable) ⇐⇒ (Oscf is negligible) .

And of course, we need a multidimensional theory; (0, 1) is only the simplest
case.

It may seem that the equality A = B is an easy matter, just

B =

∫
Oscf =

∫ (
(lim sup f)− (lim inf f)

)
=

=

∫
lim sup f −

∫
lim inf f =

∗∫
f −

∗

∫
f .

However, Oscf is generally nonintegrable; and upper integral is not linear.
Quite a problem! Does it invalidate the equality A = B? Fortunately, it
does not. Rather, a finer argument is needed.

1The case “x = x0” is included into “x→ x0” in this introductory section for simplicity,
but in next sections it is excluded, according to the standard notation.
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8b Semicontinuous envelopes

Given a locally bounded f : Rn → R, we introduce its upper envelope (called
also upper semicontinuous envelope, or upper semicontinuous majorant) f ∗ :
Rn → R by

(8b1) f ∗(x0) = max
(
f(x0), lim sup

x→x0
f(x)

)
= inf

δ>0
sup

|x−x0|<δ
f(x) .

8b2 Exercise. (a) supB◦ f
∗ = supB◦ f for every box B ⊂ Rn; prove it.

(b) It may happen that supB f
∗ > supB f ; find an example.

By 8b2(a) and 6c4,

(8b3)
∗∫
B

f ∗ =
∗∫
B

f for every box B .

Similarly, the lower envelope f∗, defined by

(8b4) f∗(x0) = min
(
f(x0), lim inf

x→x0
f(x)

)
= sup

δ>0
inf

|x−x0|<δ
f(x) ,

satisfies

(8b5)
∗

∫
B

f∗ =
∗

∫
B

f for every box B .

Also, (−f)∗ = −f∗.

8b6 Exercise. Let f be integrable on B.
(a) Functions f∗, f , f ∗ are equivalent on B; prove it.
(b) However, these functions need not be equal on B◦; find an example.

8b7 Exercise. For every A ⊂ Rn,
(a) (1lA)∗ = 1lA and (1lA)∗ = 1lA◦ ;
(b) if A is bounded, then v∗(A) = v∗(A) and v∗(A) = v∗(A

◦).
Prove it.

An envelope is its own envelope:

(8b8) (f∗)∗ = f∗ ; (f ∗)∗ = f ∗ .

(The latter holds since, similarly to 8b2(a), sup|x−x0|<δ f
∗(x) = sup|x−x0|<δ f(x).)

A function h such that h∗ = h is called upper semicontinuous; and g such
that g∗ = g is called lower semicontinuous. Clearly, h is upper semicontinu-
ous if and only if (−h) is lower semicontinuous.
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8b9 Example. A semicontinuous function need not be integrable. Here is
a counterexample.

We take a sequence of pairwise disjoint closed intervals [s1, t1], [s2, t2], · · · ⊂
(0, 1) such that

∑
k(tk−sk) = a < 1 and the open setG = (s1, t1)∪(s2, t2)∪. . .

is dense in (0, 1).1 A function f = 1lG is lower semicontinuous (by 8b7(a):
f∗ = 1lG◦ = 1lG = f), and f ∗ = 1l[0,1] (by 8b7(a) again: f ∗ = 1lG = 1l[0,1]). We
have ∗

∫
f = a (it cannot be larger, since every box B such that infB f = 1

is contained in some (sk, tk)),
2 but

∗∫
f = 1 (since f ∗ = 1l[0,1]).

8b10 Example. Upper integral is not additive on lower semicontinuous
functions. That is,

∗∫
(f1 + f2) <

∗∫
f1 +

∗∫
f2 for some lower semicontinuous

f1, f2.
We use G = (s1, t1) ∪ (s2, t2) ∪ . . . from 8b9, introduce open sets G1 =

(s1, t1) ∪ (s3, t3) ∪ . . . and G2 = (s2, t2) ∪ (s4, t4) ∪ . . . , then G1 ∪ G2 = G,
G1∩G2 = ∅. We have G1∪G2 = G1 ∪G2 = G = [0, 1], thus3 G1 = [0, 1]\G2

and G2 = [0, 1] \ G1. Lower semicontinuous functions f1 = 1lG1 , f2 = 1lG2

satisfy f1 + f2 = f , ∗
∫
f1 = a1 =

∑
k(t2k−1 − s2k−1), ∗

∫
f2 = a2 =

∑
k(t2k −

s2k), a1 + a2 = a. On the other hand, f ∗1 = 1lG1
= 1l[0,1]\G2 = 1l[0,1] − 1lG2 =

1l[0,1] − f2, therefore
∗∫
f1 =

∗∫
f ∗1 =

∗∫
(1l[0,1] − f2) = 1 − ∗

∫
f2 = 1 − a2

(since U(1l[0,1]− f2, P ) = 1−L(f2, P ) for all partitions P of [0, 1]). Similarly,
∗∫
f2 = 1 − a1. Finally,

∗∫
f1 +

∗∫
f2 = (1 − a2) + (1 − a1) = 2 − a, but

∗∫
(f1 + f2) =

∗∫
f = 1 < 2− a.

Taking (−f1), (−f2) we see that lower integral is not additive on upper
semicontinuous functions.

Interestingly, ∗
∫

(f1 + f2) = ∗

∫
f = a = a1 + a2 = ∗

∫
f1 + ∗

∫
f2 in 8b10.

Maybe, lower integral is additive on lower semicontinuous functions (and,
equivalently, upper integral is additive on upper semicontinuous functions)?
Yes, it is!

8b11 Proposition.
∗∫

(f + g) =
∗∫
f +

∗∫
g for all upper semicontinuous

bounded functions f, g : Rn → R with bounded support.

The proof will be given in the end of Sect. 8c.

8c Differentiating set functions

As was noted in the end of Sect. 6a, in dimension one an (ordinary) function
F̃ : R → R leads to a box function F : [s, t) 7→ F̃ (t) − F̃ (s); clearly, F

1Its complement [0, 1] \G is sometimes called a fat Cantor set.
2See also 8e9, 8e10.
3Between two intervals of G1 there is an interval of G2, and vice versa.
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is additive: F ([r, s)) + F ([s, t)) = F ([r, t)). Moreover, every additive box
function F defined on one-dimensional boxes corresponds to some F̃ (unique
up to adding a constant); namely, F̃ (t) = F ([0, t)) (for t > 0).

If F̃ is differentiable, F̃ ′ = f , then F and f are related by

F ([t− ε, t))
ε

→ f(t) ,
F ([t, t+ ε))

ε
→ f(t) as ε→ 0 + .

Equivalently,

(8c1)
F ([t− ε1, t+ ε2))

ε1 + ε2
→ f(t) as ε1, ε2 → 0 + .

And if f is integrable on [s, t] then1

F ([s, t)) =

∫
[s,t]

f .

In dimension 2 a similar construction exists, but is more cumbersome and
less useful:

F ([s1, t1)× [s2, t2)) = F̃ (t1, t2)− F̃ (t1, s2)− F̃ (s1, t2) + F̃ (s1, s2) ;

F̃ (s, t) = F ([0, s)× [0, t)) for s, t > 0 ;

this time F̃ is unique up to adding ϕ(t1) + ψ(t2). In higher dimensions F̃ is
even less useful; we do not need it. Instead, we generalize (8c1) as follows.

8c2 Definition. A number a is the derivative at x0 ∈ Rn of a box function
F , if

∀ε > 0 ∃δ > 0 ∀B 3 x0
(

max
x∈B
|x− x0| < δ =⇒

∣∣∣F (B)

v(B)
− a
∣∣∣ < ε

)
.

Clearly, such a is unique. If it exists, we say that F is differentiable at x0
and write F ′(x0) = a. Less formally,

F ′(x) = lim
B→x

F (B)

v(B)
.

In general the limit need not exist, and we introduce the lower and upper
derivatives,

∗F
′(x) = lim inf

B→x

F (B)

v(B)
, ∗F ′(x) = lim sup

B→x

F (B)

v(B)
.

1Can you prove it (a) for continuous f , (b) in general? Try 6b28(a) in concert with the
mean value theorem. Anyway, it is the one-dimensional case of (8c10).
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More formally,

(8c3)

∗F
′(x0) = sup

δ>0
inf

B3x0:supx∈B |x−x0|<δ

F (B)

v(B)
,

∗F ′(x0) = inf
δ>0

sup
B3x0:supx∈B |x−x0|<δ

F (B)

v(B)
.

8c4 Exercise. For two box functions F and G,
(a) if F and G are differentiable, then (F +G)′ = F ′ +G′;
(b) if G is differentiable, then ∗(F+G)′ = ∗F

′+G′ and ∗(F+G)′ = ∗F ′+G′;
(c) generally, ∗(F +G)′ ≥ ∗F ′ + ∗G

′ and ∗(F +G)′ ≤ ∗F ′ + ∗G′.
Prove it.

8c5 Remark. The restriction B 3 x0 is not needed when proving 8b11. It
is stipulated only in order to conform to (8c1). Without this restriction, in
the one-dimensional case, ∗F

′, ∗F ′ are the envelopes of F̃ ′ (assuming differ-
entiability of F̃ ), and so, F is differentiable if and only if F̃ is continuously
differentiable. The restriction B 3 x0 ensures that F is differentiable if and
only if F̃ is differentiable (including such cases as (2d2)).

An integrable function f leads to a box function F : B 7→
∫
B
f . Can

we restore f from F by differentiation, f = F ′? Generally, we cannot, since
equivalent functions f1, f2 lead to the same F .

8c6 Exercise. (a) If a locally bounded f : Rn → R is upper semicontinuous
and F : B 7→ ∗∫

B
f then ∗F ′ ≤ f ; prove it. It can happen that ∗F ′ 6= f ; find

an example.
(b) If f is continuous then F : B 7→

∫
B
f is differentiable, and F ′ = f ;

prove it.

Recall that a box function F is called additive if F (B) =
∑

C∈P F (C) for
every box B and every partition P of B. Also, F is subadditive if F (B) ≤∑

C∈P F (C), and superadditive if F (B) ≥
∑

C∈P F (C).

8c7 Lemma. If a superadditive box function F satisfies ∗F
′(x) ≥ 0 for all

x ∈ B0 (B0 being a given box), then F (B0) ≥ 0.

Proof. Assume the contrary: F (B0) < 0. We take a partition P0 of B0 such
that ∀C ∈ P0 diam(C) ≤ 1. Taking into account that

F (B0)

v(B0)
≥ 1

v(B0)

∑
C∈P0

F (C) =
∑
C∈P0

F (C)

v(C)

v(C)

v(B0)
≥
(

min
C∈P0

F (C)

v(C)

) ∑
C∈P0

v(C)

v(B0)︸ ︷︷ ︸
=1



Tel Aviv University, 2014/15 Analysis-III,IV 134

we take B1 ∈ P0 such that

F (B1)

v(B1)
≤ F (B0)

v(B0)
.

Similarly, we take a partition P1 of B1 such that ∀C ∈ P1 diam(C) ≤ 1/2
and find B2 ∈ P1 such that

F (B2)

v(B2)
≤ F (B1)

v(B1)
≤ F (B0)

v(B0)
.

Continuing this way we get a sequence (Bi)i of boxes such that

B0 ⊃ B1 ⊃ B2 . . . , diam(Bi)→ 0 , and ∀i F (Bi)

v(Bi)
≤ F (B0)

v(B0)
.

We take x0 such that
∀i x0 ∈ Bi ,

and get a contradiction:

∗F
′(x0) ≤

F (B0)

v(B0)
< 0

since ∀δ > 0 ∃k infB3x0:maxx∈B |x−x0|<δ
F (B)
v(B)
≤ F (Bi)

v(Bi)
.

By the way, the one-dimensional case of Lemma 8c7 can be used for
proving (2d5), as follows.

8c8 Exercise. Given a path γ : [t0, t1]→ X, differentiable on (t0, t1), in an
n-dimensional normed space X, consider a box function

F ([s, t]) = M(t− s)− ‖γ(t)− γ(s)‖ for t0 < s < t < t1 ,

where M = supt∈(t0,t1) ‖γ
′(t)‖. Prove that F is superadditive and ∗F

′(t) =
M − ‖γ′(t)‖ ≥ 0 for all t ∈ (t0, t1). Applying 8c7 get (2d5).1

8c9 Exercise. (a) If an additive box function F is differentiable on a box B
then

v(B) inf
x∈B

F ′(x) ≤ F (B) ≤ v(B) sup
x∈B

F ′(x) .

(b) For every additive box function F ,

v(B) inf
x∈B

∗F
′(x) ≤ F (B) ≤ v(B) sup

x∈B

∗F ′(x) .

Prove it.2

1Mind the endpoints; F need not be differentiable at t0 and t1.
2Hint: similarly to 8c8, try the box function Mv − F .
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Combining 8c9(a) and 6b28(a) we get

(8c10) F (B) =

∫
B

F ′

whenever F ′ exists and is integrable on B. Here is a more general result.

8c11 Exercise. Prove that

∗

∫
B
∗F
′ ≤ F (B) ≤

∗∫
B

∗F ′

for every box B and additive box function F such that ∗F
′ and ∗F ′ are

bounded on B.1

Proof of Prop. 8b11. By (6d9) it is sufficient to prove that
∗∫

(f+g) ≥ ∗
∫
f+

∗∫
g. We consider two additive box functions, F : B 7→ ∗∫

B
f and G : B 7→

∗∫
B
g. By 8c6(a), ∗F ′ ≤ f and ∗G′ ≤ g. By 8c4(c), ∗(F +G)′ ≤ ∗F ′+ ∗G′. Thus,

∗(F +G)′ ≤ f + g.
On the other hand, for every continuous function h : Rn → R and the

corresponding box function H : B 7→
∫
B
h we have H ′ = h by 8c6(b). If

h ≥ f+g, then H ′ ≥ ∗(F+G)′. By 8c4(b), ∗(F+G−H)′ = ∗(F+G)′−H ′ ≤ 0,
that is, ∗(H − F −G)′ ≥ 0. By 8c7, (H − F −G)(B) ≥ 0, that is,∫

B

h ≥
∗∫
B

f +
∗∫
B

g

for every continuous h ≥ f + g. Taking the infimum over all such h we
get in the right-hand side

∗∫
B

(f + g) by (6f6). It remains to take B large
enough.

8d Oscillation and integrability

8d1 Definition. The oscillation function Oscf : Rn → R of a locally
bounded f : Rn → R is the difference of envelopes,

Oscf = f ∗ − f∗ .

8d2 Proposition.
∗∫
f − ∗

∫
f =

∗∫
Oscf for all bounded f : Rn → R with

bounded support.

1Hint: look again at 6b28(a), and use 8c9(b).
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Proof. By 8b11, (6b24), (8b3) and (8b5),

∗∫
Oscf =

∗∫ (
f ∗ + (−f∗)

)
=

∗∫
f ∗ +

∗∫
(−f∗) =

=
∗∫
f ∗ −

∗

∫
f∗ =

∗∫
f −

∗

∫
f .

8d3 Corollary. A bounded function f : Rn → R with bounded support is
integrable if and only if Oscf is negligible.

8d4 Corollary. For every bounded A ⊂ Rn,
(a) v∗(A)− v∗(A) = v∗(∂A);
(b) A is Jordan measurable if and only if ∂A is of volume zero.

Proof. Osc1lA = (1lA)∗ − (1lA)∗ = 1lA − 1lA◦ = 1l∂A; by 8d2,
∗∫

1lA − ∗

∫
1lA =

∗∫
1l∂A, which means (a); (b) follows.

Let E ⊂ Rn and f : E → R a bounded function. Then Oscf (as well as
f∗, f

∗) is well-defined on E◦.
If in addition E is Jordan measurable, then integrability of f on E is well-

defined (recall the end of Sect. 6g), it is integrability on Rn of the function1

f · 1lE : x 7→

{
f(x) for x ∈ E,
0 otherwise.

By 8d3, this integrability is equivalent to negligibility of Oscf ·1lE . Note that

Oscf ·1lE =


Oscf on E◦,

something bounded on ∂E,

0 outside E.

Taking into account that ∂E is of volume zero by 8d4(b) we see that Oscf ·1lE
is equivalent to Oscf ·1lE◦ . Thus,

(8d5) (f is integrable on E) ⇐⇒ (Oscf is negligible on E◦) .

If the set {x : Oscf (x) 6= 0} is of volume zero, then Oscf is negligible by
6g13, thus f is integrable. However, an integrable function can be discontin-
uous on a dense set; for example, see 6b31 (or 6c5).

1This use of the notation f · 1lE is a convention (abuse of language), of course.
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8d6 Remark. It is tempting to invent an appropriate notion “negligible set”
such that1

(a) f is negligible if and only if {x : f(x) 6= 0} is negligible,
and therefore

(b) f is integrable if and only if {x : Oscf (x) 6= 0} is negligible.

Is this possible? Yes and no. . .
Bad news: it can happen that {x : f(x) 6= 0} = {x : g(x) 6= 0}, f is

negligible, but g is not.
Good news: it cannot happen that {x : Oscf (x) 6= 0} = {x : Oscg(x) 6= 0},

f is integrable, but g is not.

That is, (b) succeeds, but not due to (a). Rather, (b) succeeds in spite of
the fact that (a) fails. A paradox? Here is an explanation: Oscf is not just a
function; it is an upper semicontinuous function. For upper semicontinuous
f, g it cannot happen that {x : f(x) 6= 0} = {x : g(x) 6= 0}, f is negligible,
but g is not.

8e Extending Riemann integral and Jordan measure

As we know, on upper semicontinuous functions, upper integral is additive,
and lower integral is not. Thus, it is reasonable to extend the integral,
defining2 ∫

e
f =

∗∫
f for upper semicontinuous f .

(The small “e” stands for “extended”.) But what about linearity? First, by
(6d6),

∫
e cf = c

∫
e f for c ≥ 0; in order to get it for c < 0 we define∫

e
f =

∗

∫
f for lower semicontinuous f .

Second, what about
∫
e (f + g) when f is upper semicontinuous and g is lower

semicontinuous? Equivalently,
∫
e (f−g) when f, g are upper semicontinuous?

We can define∫
e

(f − g) =
∗∫
f −

∗∫
g for upper semicontinuous f, g

if this is correct; that is, we need

∗∫
f1 −

∗∫
g1 =

∗∫
f2 −

∗∫
g2 whenever f1 − g1 = f2 − g2

1Assuming that f is bounded, with bounded support, of course.
2As before, f : Rn → R is bounded, with bounded support.
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for upper semicontinuous f1, f2, g1, g2. Well, this is a simple trick:

(8e1)

f1−g1 = f2−g2 =⇒ f1+g2 = f2+g1 =⇒
∗∫

(f1+g2) =
∗∫

(f2+g1) =⇒

=⇒
∗∫
f1 +

∗∫
g2 =

∗∫
f2 +

∗∫
g1 =⇒

∗∫
f1−

∗∫
g1 =

∗∫
f2−

∗∫
g2 .

The extended integral is defined and linear (think, why) on the vector
space DBSC (“Differences of Bounded SemiContinuous”) of functions.1 Note
that2

(8e2)
f ≥ 0 =⇒

∫
e
f ≥ 0 ,

f ≥ g =⇒
∫
e
f ≥

∫
e
g

for all f, g ∈ DBSC .

We extend the Jordan measure accordingly (generalizing 6g1):

ve (A) =

∫
e

1lA whenever 1lA ∈ DBSC .

By 8b7(a), 1lA is upper semicontinuous if A is closed, and lower semicon-
tinuous if A is open. Thus,

ve (K) = v∗(K) for compact K ⊂ Rn ,

ve (G) = v∗(G) for open bounded G ⊂ Rn .

Indeed, such sets need not be Jordan measurable. (Recall G of 8b9; v∗(G) =
a < 1, v∗(G) = 1.) Moreover, a planar domain diffeomorphic to a disk need
not be Jordan measurable.3

Also, for A = K ∩G we have 1lA ∈ DBSC, since 1lA = 1lK − 1lK\G; thus,

ve (K ∩G) = v∗(K)− v∗(K \G) for compact K and open G.

(And what about K ∪G?) Note that

A ⊂ B =⇒ ve (B)− ve (A) = ve (B \ A) ≥ 0 ,(8e3)

ve (A ∪B) ≤ ve (A) + ve (B)(8e4)

1Infinite-dimensional vector space, of course. If you want to know more on DBSC, see
article “On differences of semi-continuous functions” by F. Chaatit and H.P. Rosenthal,
arXiv:math/9901134. In fact, ∀f, g ∈ DBSC min(f, g),max(f, g), fg ∈ DBSC; compare
it with 6f8(b) and 6f9(b).

2The former follows from (6d4), the latter from the former (and linearity).
3The Riemann mapping theorem is instrumental. See Sect. 18.8 “Change of variables”

in book: D.J.H. Garling, “A course in mathematical analysis”, vol. 2 (2014).
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whenever 1lA, 1lB ∈ DBSC.
In this course we never need to integrate functions outside DBSC. If

you need to integrate more bizarre functions on Rn, try a more advanced
integration theory. Several theories are available.1 Gauge integration2 is
quite successful in one dimension, but less successful in higher dimensions.3

Lebesgue integration theory is the most important one.4

8e5 Definition. For a bounded set A ⊂ Rn,

m∗(A) = sup
K⊂A

v∗(K) is the inner Lebesgue measure,

m∗(A) = inf
G⊃A

v∗(G) is the outer Lebesgue measure

(here K runs over compact sets, and G over open bounded sets); if these are
equal, then A is Lebesgue measurable, and its Lebesgue measure is

m(A) = m∗(A) = m∗(A) .

In fact, Lebesgue non-measurable sets are extremely exotic. Their exis-
tence can be proved using the choice axiom, but a specific5 example cannot
be found!

We do not dive into the sea of exotic sets; here is what we need.

8e6 Lemma. Every open bounded set is Lebesgue measurable. That is,6

v∗(G) = sup
K⊂G

v∗(K) for every open bounded G ⊂ Rn ,

the supremum being taken over all compact subsets of G.

1See book “Theory of the integral” by Brian Thomson. (An excerpt: “Definition 1.27.
A function f : [a, b] → R is said to be Lebesgue integrable provided that both f and |f |
are Henstock-Kurzweil integrable.”)

2See “An Introduction to The Gauge Integral also known as the generalized Riemann
integral, the Henstock integral, the Kurzweil integral, the Henstock-Kurzweil integral, the
HK-integral, the Denjoy-Perron integral, etc.” by Eric Schechter.

3Different versions of the gauge integral on Rn are invented in order to ensure rotation
invariance, iterated integral (“Fubini”) and integrability of the divergence of every differen-
tiable function. However, no version enjoys all these properties. See “MathOverflow:What
are the obstructions for a Henstock-Kurzweil integral in more than one dimension?”.

4A nice space of bad functions is more useful than a bad space of nice functions; see
“MathStackExchange:Why are gauge integrals not more popular?”. Lebesgue integration
leads to the Hilbert space L2(Rn) and Banach spaces Lp(Rn); gauge integration fails to
do so (but can be used as another entry to Lebesgue’s theory). In addition, Lebesgue
integration works in spaces much more general than Rn.

5I mean, definable without parameters.
6Clearly, m∗(G) = v∗(G).

http://classicalrealanalysis.info/documents/toti-June2012.pdf
http://www.math.vanderbilt.edu/~schectex/ccc/gauge/
http://www.math.vanderbilt.edu/~schectex/ccc/gauge/
http://www.math.vanderbilt.edu/~schectex/ccc/gauge/
http://mathoverflow.net/questions/34077/what-are-the-obstructions-for-a-henstock-kurzweil-integral-in-more-than-one-dime
http://mathoverflow.net/questions/34077/what-are-the-obstructions-for-a-henstock-kurzweil-integral-in-more-than-one-dime
http://math.stackexchange.com/questions/28246/why-are-gauge-integrals-not-more-popular
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Proof. We take a box B such that G ⊂ B◦, then v∗(G) = ∗

∫
Rn 1lG =

∗

∫
B

1lG = supP L(1lG, P ), and L(1lG, P ) =
∑

C∈P vol(C) infC 1lG =∑
C∈P,C⊂G vol(C). By 6g7, L(1lG, P ) = v(KP ) where KP = ∪C∈P,C⊂GC is

a compact subset of G. Thus, v∗(G) = supP v(KP ) ≤ supK⊂G v
∗(K). And

“≥” follows from (8e3).

8e7 Exercise. Every compact set is Lebesgue measurable. That is,

v∗(K) = inf
G⊃K

v∗(G) for every compact K ⊂ Rn ,

the infimum being taken over all open bounded G ⊃ K.
Prove it.1

We see that

(8e8) m∗(A) ≤ m(A) = v∗(A) = v∗(A) for all bounded sets A ⊂ Rn .

Given sets X,X1, X2, . . . we write Xi ↑ X when X1 ⊂ X2 ⊂ . . . and
∪iXi = X. Similarly, we write Xi ↓ X when X1 ⊃ X2 ⊃ . . . and ∩iXi = X.

8e9 Proposition. (Monotone convergence for open sets) For all open bounded
sets G,G1, G2, · · · ⊂ Rn,

Gi ↑ G =⇒ v∗(Gi) ↑ v∗(G) .

Proof. If K ⊂ G is compact, then ∃i K ⊂ Gi, therefore v∗(K) ≤ v∗(Gi) ≤
limi v∗(Gi). By 8e6, supremum over K gives v∗(G) ≤ limi v∗(Gi). And “≥”
is evident.

8e10 Corollary. v∗(G1 ∪ G2 ∪ . . . ) ≤ v∗(G1) + v∗(G2) + . . . for all open
G1, G2, · · · ⊂ Rn whose union is bounded.

Proof. v∗(G1∪· · ·∪Gi) ≤ v∗(G1)+ · · ·+v∗(Gi) by (8e4), and G1∪· · ·∪Gi ↑
G1 ∪G2 ∪ . . . ; use 8e9.

8e11 Exercise. (Monotone convergence for compact sets) For all compact
sets K,K1, K2, · · · ⊂ Rn,

Ki ↓ K =⇒ v∗(Ki) ↓ v∗(K) .

Prove it.

8e12 Exercise. It can happen that Ki ↑ A but v∗(Ki) ↑ b < v∗(A). Find
an example. What about Gi ↓ A?

1Hint: apply 8e6 to B◦ \K.
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8f Lebesgue’s criterion for Riemann integrability

Let f : Rn → R be a bounded function with bounded support. One says that
f is continuous almost everywhere, if the set A of all discontinuity points of
f satisfies m∗(A) = 0; or equivalently, is Lebesgue measurable, of Lebesgue
measure zero. More generally, a property of a point of Rn is said to hold
almost everywhere if it holds outside a set of Lebesgue measure zero.

8f1 Theorem. A bounded function f : Rn → R with bounded support is
integrable if and only if it is continuous almost everywhere.

By (8e8), every (bounded) set of volume zero is of Lebesgue measure zero.

8f2 Lemma. Let A1, A2, · · · ⊂ Rn and A = A1 ∪A2 ∪ . . . be bounded. If all
Ai are of Lebesgue measure zero then A is of Lebesgue measure zero.

Proof. Given ε > 0, we take open sets Gi ⊃ Ai such that v∗(Gi) ≤ ε/2i

and the open set G = G1 ∪ G2 ∪ . . . is bounded; then G ⊃ A and v∗(G) ≤
ε
2

+ ε
4

+ · · · = ε by 8e10.

Therefore m(A) = 0 whenever Ai are of volume zero. In particular,
m(A) = 0 whenever A is countable (even if A is dense in a box, in which
case m(A) < m(A) = v∗(A) = v∗(A)).

8f3 Lemma. Let f : Rn → R be a bounded function with bounded support.
If f is negligible then f(·) = 0 almost everywhere.1

Proof. We consider sets A = {x : f(x) 6= 0} and Ai = {x : |f(x)| ≥ 1
i
};

A = ∪iAi. For each i we have 1lAi
≤ i|f |, thus v∗(Ai) ≤ i

∗∫ |f | = 0, which
implies m(Ai) = 0 and, by 8f2, m(A) = 0.

8f4 Lemma. Let f : Rn → R be a bounded function with bounded support.
If |f | is upper semicontinuous and f(·) = 0 almost everywhere, then f is
negligible.

Proof. By semicontinuity, the sets Ai are closed (think, why), and compact.
Therefore, v∗(Ai) = m(Ai) ≤ m(A) = 0. We have |f | ≤ 1

i
1lA outside a set of

volume zero; therefore
∗∫ |f | ≤ 1

i
v∗(A) for all i.

8f5 Corollary. A bounded function f with bounded support is negligible if
and only if the upper envelope of |f | equals zero almost everywhere.

Proof of Theorem 8f1. By 8d3, f is integrable if and only if Oscf is negligi-
ble. We apply 8f5 to Oscf and note that |Oscf |∗ = (Oscf )

∗ = Oscf , since
Oscf = f ∗ − f∗ is nonnegative and upper semicontinuous.

1The converse fails; try indicator of a dense countable set.
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8f6 Exercise. Let f, g : Rn → R be bounded functions with bounded sup-
port. If mid(−M, f,M) and mid(−M, g,M) are integrable for all M > 0,
then mid(−M, f + g,M) also is.1

Prove it.

8f7 Exercise. Let f, g : Rn → R be bounded functions with bounded sup-
port, X = {(f(x), g(x)) : x ∈ Rn} ⊂ R2, and ϕ : X → R a continuous
function, ϕ(0, 0) = 0. Then the function ϕ(f(·), g(·)) is integrable.2

Prove it.

1For “mid” see Sect. 8a.
2It is easy to find an elementary proof assuming that ϕ is continuous on the closure of

X. However, X need not be closed, and ϕ need not be uniformly continuous.
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