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Change of variables is the most powerful tool for calculating multidimen-
sional integrals. Two kinds of differentiation are instrumental: of mappings
(treated in Sections 2–5) and of set functions (treated in Sect. 8c).

9a What is the problem

The area of a disk {(x, y) : x2 + y2 < 1} ⊂ R2 may be calculated by iterated
integral, ∫ 1

−1

dx

∫ √1−x2

−
√

1−x2

dy =

∫ 1

−1

2
√

1− x2 dx = . . .

or alternatively, in polar coordinates,∫ 1

0

r dr

∫ 2π

0

dϕ =

∫ 1

0

2πr dr = π ;

the latter way is much easier! Note “rdr” rather than “dr” (otherwise we
would get 2π instead of π).

Why the factor r? In analogy to the one-dimensional theory we may
expect something like dxdy

dr dϕ
; is it r? Well, basically, it is r because an in-

finitesimal rectangle [r, r+dr]× [ϕ, ϕ+dϕ] of area dr ·dϕ on the (r, ϕ)-plane
corresponds to an infinitesimal rectangle or area dr · rdϕ on the (x, y)-plane.

dr

rdφ
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9a1 Theorem. Let U, V ⊂ Rn be Jordan measurable open sets, ϕ : U → V
a diffeomorphism, and f : V → R a bounded function such that the function
(f ◦ ϕ)| detDϕ| : U → R is also bounded. Then

(a) f is integrable on V if and only if (f ◦ ϕ)| detDϕ| is integrable on U ;
and

(b) if they are integrable, then∫
V

f =

∫
U

(f ◦ ϕ)| detDϕ| .

9a2 Exercise. Prove that the following is an equivalent reformulation of
Theorem 9a1.1

Let U, V ⊂ Rn be Jordan measurable open sets, ϕ : V → U a dif-
feomorphism, and f : U → R a bounded function such that the function
f | detD(ϕ−1)| : U → R is also bounded. Then

(a) f ◦ ϕ is integrable on V if and only if f | detD(ϕ−1)| is integrable on
U ; and

(b) if they are integrable, then∫
V

f ◦ ϕ =

∫
U

f | detD(ϕ−1)| .

9b Examples

In this section we take for granted Theorem 9a1 (to be proved in Sect. 9h).

9b1 Exercise. Show that 7d4 and 7d5 are special cases of 9a1.

9b2 Exercise (polar coordinates in R2). (a) Prove that∫
x2+y2<R2

f(x, y) dxdy =

∫
0<r<R,0<θ<2π

f(r cos θ, r sin θ) r drdθ

for every integrable function f on the disk x2 + y2 < R2; 2

1Hint:

U

ϕ

��

f◦ϕ

��
V

f
// R

; redraw:

V

ϕ−1

��

f

��
U

f◦ϕ
// R

; relabel:

V

ϕ

��

f◦ϕ

��
U

f
// R

2Do you use a diffeomorphism between (0, R)× (0, 2π) and the disk? (Look closely!)
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(b) it can happen that the function (r, θ) 7→ rf(r cos θ, r sin θ) is inte-
grable on (0, R) × (0, 2π), but f is not integrable on the disk; find a coun-
terexample;

(c) however, (b) cannot happen if f is bounded on the disk; prove it.1

In particular, we have now the “curvilinear Cavalieri principle for con-
centric circles” promised in 7d13.

9b3 Exercise (spherical coordinates in R3). Consider the mapping Ψ : R3 →
R3, Ψ(r, ϕ, θ) = (r cosϕ sin θ, r sinϕ sin θ, r cos θ).

(a) Draw the images of the planes r = const, ϕ = const, θ = const, and
of the lines (ϕ, θ) = const, (r, θ) = const, (r, ϕ) = const.

(b) Show that Ψ is surjective but not injective.
(c) Show that | detDΨ| = r2 sin θ. Find the points (r, ϕ, θ), where the

operator DΨ is invertible.
(d) Let V = (0,∞)× (−π, π)× (0, π). Prove that Ψ|V is injective. Find

U = Ψ(V ).

9b4 Exercise. Compute the integral
∫∫∫

x2+y2+(z−2)2≤1
dxdydz

x2+y2+z2 .

Answer: π
(
2− 3

2
log 3

)
. 2

9b5 Exercise. Compute the integral
∫∫

dxdy
(1+x2+y2)2 over one loop of the lem-

niscate (x2 + y2)2 = x2 − y2. 3

9b6 Exercise. Compute the integral over the four-dimensional unit ball:∫∫∫∫
x2+y2+u2+v2≤1

ex
2+y2−u2−v2

dxdydudv. 4

9b7 Exercise. Compute the integral
∫∫∫
|xyz| dxdydz over the ellipsoid

{x2/a2 + y2/b2 + z2/c2 ≤ 1}.
Answer: a2b2c2

6
. 5

1Do not forget: Theorem 9a1 is taken for granted.
2Hint: 1 < r < 3; cos θ > r2+3

4r .
3Hints: use polar coordinates; −π4 < ϕ < π

4 ; 0 < r <
√

cos 2ϕ; 1 + cos 2ϕ = 2 cos2 ϕ;∫
dϕ

cos2 ϕ = tanϕ.
4Hint: The integral equals

∫∫
x2+y2≤1

ex
2+y2

(∫∫
u2+v2≤1−(x2+y2)

e−(u2+v2) dudv
)

dxdy.

Now use the polar coordinates.
5Hint: 6d17 can help.
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The centroid1 of a Jordan measurable set E ⊂ Rn of non-zero volume is
the point CE ∈ Rn such that for every linear (or affine) f : Rn → R the mean
of f on E (recall (6g18)) is equal to f(CE). That is,

CE =
1

v(E)

(∫
E

x1 dx, . . . ,

∫
E

xn dx

)
,

which is often abbreviated to CE = 1
v(E)

∫
E
x dx.

9b8 Exercise. Find the centroids of the following bodies in R3:
(a) The cone {(x, y, z) : h

√
x2 + y2 < z < h} for a given h > 0.

(b) The tetrahedron bounded by the three coordinate planes and the
plane x

a
+ y

b
+ z

c
= 1.

(c) The hemispherical shell {a2 ≤ x2 + y2 + z2 ≤ b2, z ≥ 0}.
(d) The octant of the ellipsoid {x2/a2 + y2/b2 + z2/c2 ≤ 1, x, y, z ≥ 0}.

The solid torus in R3 with minor radius r and major radius R (for 0 <
r < R <∞) is the set

Ω̃ = {(x, y, z) :
(√

x2 + y2 −R
)

2 + z2 ≤ r2} ⊂ R3

generated by rotating the disk

Ω = {(x, z) : (x−R)2 + z2 ≤ r2} ⊂ R2

on the (x, z) plane (with the center (R, 0) and radius r) about the z axis.

Interestingly, the volume 2π2Rr2 of Ω̃ is equal to the area πr2 of Ω multiplied
by the distance 2πR traveled by the center of Ω. (Thus, it is also equal to
the volume of the cylinder {(x, y, z) : (x, z) ∈ Ω, y ∈ [0, 2πR].) Moreover,
this is a special case of a general property of all solids of revolution.

1In other words, the barycenter of (the uniform distribution on) E.
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9b9 Proposition (the second Pappus’s centroid theorem). 1 2 Let Ω ⊂
(0,∞)×R ⊂ R2 be a Jordan measurable set and Ω̃ = {(x, y, z) :

(√
x2 + y2, z

)
∈

Ω} ⊂ R3. Then Ω̃ is Jordan measurable, and

v3(Ω̃) = v2(Ω) · 2πxCΩ
;

here CΩ = (xCΩ
, zCΩ

) is the centroid of Ω.

9b10 Exercise. Prove Prop. 9b9.3

9c Rotation invariance

9c1 Theorem. Let T : Rn → Rn be a linear isometry,4 and f : Rn → R a
bounded function with bounded support. Then

(a)
∗

∫
Rn

f ◦ T =
∗

∫
Rn

f ,
∗∫
Rn

f ◦ T =
∗∫
Rn

f ;

(b) f ◦ T is integrable if and only if f is integrable, and in this case∫
Rn

f ◦ T =

∫
Rn

f .

9c2 Corollary. (a) v∗
(
T (E)

)
= v∗(E) and v∗

(
T (E)

)
= v∗(E) for all bounded

E ⊂ Rn;
(b) T (E) is Jordan measurable if and only if E is, and then v

(
T (E)

)
=

v(E).

In order to prove Th. 9c1 we need v
(
T (B)

)
= v(B) for every box B ⊂ Rn.

But first we need Jordan measurability of T (B). There are several ways to
prove it. Here is one of them (not the most elementary).5

9c3 Lemma. For every norm ‖ · ‖ on Rn, the set {x : ‖x‖ = 1} is of volume
zero, and the sets {x : ‖x‖ < 1}, {x : ‖x‖ ≤ 1} are Jordan measurable.

1Pappus of Alexandria (≈ 0290–0350) was one of the last great Greek mathematicians
of Antiquity.

2The first Pappus’s centroid theorem, about the surface area, has to wait for Analysis
4.

3Hint: use cylindrical coordinates: Ψ(r, ϕ, z) = (r cosϕ, r sinϕ, z).
4That is, a linear bijection satisfying ∀x |Tx| = |x|. Note that T−1 is also a linear

isometry.
5Do you see a more elementary way?
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Proof. We denote E = {x : ‖x‖ ≤ 1}. It follows easily from 1e7 that
E◦ = {x : ‖x‖ < 1}, E = E, and ∂E = {x : ‖x‖ = 1} = ∂(E◦). By
(8e3), v∗

(
(1 − ε)E

)
≤ v∗(E

◦) for all ε ∈ (0, 1). By 6g12, v∗
(
(1 − ε)E

)
=

(1 − ε)nv∗(E). By 8b7(b), v∗(E
◦) = v∗(E). We get (1 − ε)nv∗(E) ≤ v∗(E)

for all ε ∈ (0, 1), therefore v∗(E) ≤ v∗(E), that is, E is Jordan measurable.
By 8d4(b), ∂B = ∂(B◦) is of volume zero, and E◦ is Jordan measurable.

9c4 Exercise. (a) For every box B ⊂ Rn there exist x0 ∈ Rn and a norm
‖ · ‖ on Rn such that B◦ = {x : ‖x− x0‖ < 1} and B = {x : ‖x− x0‖ ≤ 1}.

(b) For every box B ⊂ Rn and every invertible linear T : Rn → Rn, the
set T (B) is Jordan measurable.

Prove it.

We return to a linear isometry T . 1

9c5 Lemma. v
(
T (B)

)
= v(B) for every box B ⊂ Rn.

Proof. WLOG, the box is centered: B = {x : ‖x‖ ≤ 1} where ‖x‖ =

2 max
( |x1|
c1
, . . . , |xn|

cn

)
; v(B) = c1 . . . cn. For arbitrary R ∈ (0,∞) we introduce

the set JR ⊂ Zn of all (i1, . . . , in) such that the shifted box B + ic intersects
the ball RD = {x : |x| ≤ R}; here ic stands for (i1c1, . . . , incn). We have
RD ⊂ ∪i∈JR(B + ic), therefore

v(RD) ≤ #(JR)v(B) .

Also, T (RD) ⊂ T
(
∪i∈JR(B+ ic)

)
; taking into account that T is isometric we

have RD ⊂ ∪i∈JR(T (B) + T (ic)), therefore

v(RD) ≤ #(JR)v
(
T (B)

)
.

On the other hand, taking r ∈ (0,∞) such that B ⊂ rD, we have ∪i∈JR(B+
ic) ⊂ (R+ 2r)D (think, why); and the interiors B◦+ ic are pairwise disjoint;
therefore

#(JR)v(B) ≤ v
(
(R + 2r)D

)
.

Applying T as before we get

#(JR)v
(
T (B)

)
≤ v
(
(R + 2r)D

)
.

1See also 7d14.



Tel Aviv University, 2014/15 Analysis-III,IV 149

It follows that
Rn

(R + 2r)n
≤
v
(
T (B)

)
v(B)

≤ (R + 2r)n

Rn

for all R (while r is constant); it remains to take R→∞.

Proof of Th. 9c1. Item (b) for the indicator f = 1lB of a box B follows from
9c5, since f ◦ T = 1lT−1(B) (and T−1 also is a linear isometry). By linearity,
Item (b) holds for all step functions f .

In general, given f and ε > 0, we take a step function h such that h ≥ f
and

∫
h ≤ ∗

∫
f + ε, note that h ◦ T ≥ f ◦ T and get

∗∫
f ◦ T ≤

∗∫
h ◦ T =

∫
h ◦ T =

∫
h ≤

∗∫
f + ε

for all ε > 0; that is,
∗∫
f ◦ T ≤ ∗

∫
f .

Also,
∗∫
f =

∗∫
(f ◦T ) ◦T−1 ≤ ∗

∫
f ◦T ; thus,

∗∫
f ◦T =

∗∫
f . Similarly (or

taking (−f)), ∗
∫
f ◦ T = ∗

∫
f , which completes the proof of Item (a). Item

(b) follows immediately.

Given an n-dimensional Euclidean vector space E, we choose a linear
isometry E → Rn and transfer the Riemann integral (and the Jordan mea-
sure) from Rn to E. By Theorem 9c1 the result does not depend on the
choice of the linear isometry E → Rn. By translation invariance, the same
holds for Euclidean affine spaces.

Riemann integral and Jordan measure are well-defined on every n-dimen-
sional Euclidean affine space, and preserved by affine isometries between
these spaces.

9c6 Exercise. Find the volume cut off from the unit ball by the plane
lx+my + nz = p.

9c7 Exercise. Reformulate the result of 9b8(a) as a geometric theorem
about the centroid of an arbitrary right circular cone in a classical Euclidean
space.

9d Linear transformation

9d1 Theorem. Let T : Rn → Rn be an invertible linear operator. Then the
image T (E) of an arbitrary E ⊂ Rn is Jordan measurable if and only if E is
Jordan measurable, and in this case

v
(
T (E)

)
= | detT |v(E) .



Tel Aviv University, 2014/15 Analysis-III,IV 150

Also, for every bounded function f : Rn → R with bounded support,

| detT |
∗

∫
f ◦ T =

∗

∫
f and | detT |

∗∫
f ◦ T =

∗∫
f .

Thus, f ◦ T is integrable if and only if f is integrable, and in this case

| detT |
∫
f ◦ T =

∫
f .

Proof. The Singular Value Decomposition 3i1 gives an orthonormal basis
(a1, . . . , an) in Rn such that vectors T (a1), . . . , T (an) are orthogonal. In-
vertibility of T ensures that the numbers sk = |T (ak)| do not vanish. Tak-
ing bk = (1/sk)T (ak) we get an orthonormal basis (b1, . . . , bn) such that
T (a1) = s1b1, . . . , T (an) = snbn.

We have s1 . . . sn = | detT |, since the singular values sk are square roots of
the eigenvalues of T ∗T (thus, s1 . . . sn =

√
det(T ∗T ) =

√
(detT )2 = | detT |).

Similarly to the proof of 3c4 we downgrade the two copies of Rn into a
pair of Euclidean vector spaces, choose new bases and upgrade back to two
copies of Rn. In other words, we treat T : Rn → Rn as T : X → Y where
X, Y are Euclidean vector spaces, and upgrade X, Y to Cartesian spaces via
the bases (a1, . . . , an), (b1, . . . , bn). The (matrix of the) operator becomes
diagonal: T (x1, . . . , xn) = (s1x1, . . . , snxn). It remains to apply 6d17 (and
6g12).

If | · |1, | · |2 are two Euclidean norms on an n-dimensional vector space,

then the ratio of norms |·|1|·|2 varies between min(s1, . . . , sn) and max(s1, . . . , sn)

(here s1, . . . , sn are the singular values), depending on the direction of a

vector; but the ratio of volumes v1(·)
v2(·) is s1 . . . sn, invariably.

On an n-dimensional vector or affine space the volume is ill-defined, but
Jordan measurability is well-defined, and the ratio v(E1)

v(E2)
of volumes is

well-defined. That is, the volume is well-defined up to a coefficient.

9e Differentiating set functions (again)

Recall Sect. 8c: the derivative F ′ of a box function F is basically

F ′(x0) = lim
B→x0

F (B)

v(B)

(more generally, we use lim inf and lim sup for ∗F
′ and ∗F ′); the idea of

B → x0 was formalized as

B 3 x0 and sup
x∈B
|x− x0| < δ
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(and ultimately δ → 0+). Equivalently,

(9e1) F ′(x0) = a if and only if
F (Bi)

v(Bi)
→ a whenever Bi → x0 ;

here “Bi → x0” means ∀i Bi 3 x0 and supx∈Bi
|x−x0| → 0 (as i→∞). More

generally, ∗F ′(x0) is the supremum (in fact, maximum) of limi
F (Bi)
v(Bi)

over all

sequences (Bi)i such that Bi → x0 and F (Bi)
v(Bi)

converges.

As noted in 8c5, the restriction B 3 x0, unnecessary in Sect. 8,1 is stipu-
lated in order to conform to the one-dimensional case, and enlarges the class
of differentiable box functions. Here (in Sect. 9) we introduce one more re-
striction (with no one-dimensional counterpart), enlarging further the class
of differentiable box functions.

First, we define the aspect ratio α(B) of a box B, B = [s1, t1] × · · · ×
[sn, tn] ⊂ Rn, by

α(B) =
max(t1 − s1, . . . , tn − sn)

min(t1 − s1, . . . , tn − sn)
.

Clearly, α(B) = 1 if and only if B is a cube.
Second, we redefine the relation Bi → x0 as follows:

(9e2) ∀i Bi 3 x0 ; sup
x∈Bi

|x− x0| → 0 ; sup
i
α(Bi) <∞ .

Third, we redefine accordingly the relation F ′(x0) = a (still (9e1) but with
the new interpretation of “Bi → x0”). Similarly, we redefine ∗F

′(x0) and
∗F ′(x0) as (respectively) the infimum and supremum2 of limi

F (Bi)
v(Bi)

over all

sequences (Bi)i such that Bi → x0 (in the new sense) and F (Bi)
v(Bi)

converges.

Still, 8c4 holds; (F +G)′ = F ′ +G′ etc.
Lemma 8c7 holds, again. The only change needed in the proof is, when

taking a partition Pi of a box Bi, to require additionally that ∀C ∈ Pi α(C) ≤
α(Bi), which is easy to satisfy; and then supi α(Bi) ≤ α(B0) < ∞.3 Still,
8c9, (8c10) and 8c11 hold; F (B) =

∫
B
F ′, etc.

Why bother about the aspect ratio? The ultimate answer will be given
in Sect. 9h, but here is a partial answer. Recall 9c4: B◦ = {x : ‖x−x0‖ < 1}
and B = {x : ‖x − x0‖ ≤ 1} for some norm ‖ · ‖. As every norm, it is
equivalent to the Euclidean norm, c| · | ≤ ‖ · ‖ ≤ C| · |, but these c, C depend
on B; if B is small, then C must be large.

1And still unnecessary here in Sect. 9.
2Not necessarily maximum.
3It is easy to get even more: α(Bi) → 1; we could include such requirement into the

definition of “Bi → x0”.
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9e3 Lemma. For every box B ⊂ Rn there exist x0 ∈ Rn, c ∈ (0,∞) and a
norm ‖ · ‖ on Rn such that B◦ = {x : ‖x−x0‖ < c}, B = {x : ‖x−x0‖ ≤ c},
and

1

α(B)
√
n
| · | ≤ ‖ · ‖ ≤ | · | .

Proof. We have B = [s1, t1]×· · ·×[sn, tn] ⊂ Rn. As noted in the proof of 9c5,

B− x0 =
{
x : 2 max

( |x1|
c1
, . . . , |xn|

cn

)
≤ 1
}

where c1 = t1− s1, . . . , cn = tn− sn;
note that

α(B) =
max(c1, . . . , cn)

min(c1, . . . , cn)
.

We take c = 1
2

min(c1, . . . , cn), C = max(c1, . . . , cn)
√
n, and ‖x‖ =

2cmax
( |x1|
c1
, . . . , |xn|

cn

)
, then ‖x‖ ≤ c ⇐⇒ 2 max

( |x1|
c1
, . . . , |xn|

cn

)
≤ 1 ⇐⇒

x+ x0 ∈ B, thus B = {x : ‖x− x0‖ ≤ c}; similarly, B◦ = {x : ‖x− x0‖ < c}.
On one hand, ∀k ck ≥ 2c, therefore ‖x‖ ≤ 2cmax

( |x1|
2c
, . . . , |xn|

2c

)
=

max(|x1|, . . . , |xn|) ≤ |x|. On the other hand, ∀k ck ≤ 2cα(B), therefore

‖x‖ ≥ 2cmax
( |x1|

2cα(B)
, . . . , |xn|

2cα(B)

)
= 1

α(B)
max(|x1|, . . . , |xn|) ≥ 1

α(B)
√
n
|x|.

9f Set function induced by mapping

Recall (7d9): vm+n(E) =
∫
Rm vn(Ex) dx for a Jordan set E ⊂ Rm+n and its

sections Ex = {y : (x, y) ∈ E} ⊂ Rn for x ∈ Rm. Denoting vn(Ex) by J(x)
and introducing the projection mapping ϕ : E → Rm by ϕ(x, y) = x we
have vm+n

(
ϕ−1(B)

)
=
∫
B
J for all boxes B ⊂ Rm. According to 7d13 we

are interested in more general, nonlinear mappings ϕ. This leads ultimately
to the curvilinear iterated integral treated in Analysis 4. Here are some
preliminaries, to be used in the proof of Theorem 9a1.

Consider a mapping ϕ : Rm → Rn such that the inverse image ϕ−1(B) of
every box B is a bounded set. (An example: ϕ : R2 → R, ϕ(x, y) = x2 + y2.)
It leads to a pair of box functions F∗ ≤ F ∗ (in dimension n),

(9f1) F∗(B) = v∗(ϕ
−1(B◦)) , F ∗(B) = v∗(ϕ−1(B)) ,

generally not additive but rather superadditive and subadditive: for every
partition P of a box B,

F∗(B) ≥
∑
C∈P

F∗(C) , F ∗(B) ≤
∑
C∈P

F ∗(C) ,

which follows from (6g5), (6g6) and the fact that ϕ−1(C◦1) ∩ ϕ−1(C◦2) =
ϕ−1(C◦1 ∩ C◦2) = ∅ when C◦1 ∩ C◦2 = ∅.
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If F∗(B) = F ∗(B) then ϕ−1(B) is Jordan measurable, and ϕ−1(∂B) is
of volume zero; if this happens for all B then the box function F (B) =
v(ϕ−1(B)) is additive. A useful sufficient condition is given below in terms
of functions J∗ = ∗(F∗)

′, J∗ = ∗(F ∗)′; that is,

(9f2) J∗(x) = inf
(Bi)i

lim
i

v∗(ϕ
−1(B◦i ))

v(Bi)
, J∗(x) = sup

(Bi)i

lim
i

v∗(ϕ−1(Bi))

v(Bi)

where (Bi)i runs over all sequences of boxes such that Bi → x0 (see (9e2))
and limi(. . . ) exists.

9f3 Proposition. If J∗, J
∗ are locally integrable and locally equivalent then

F∗(B) = F ∗(B) =

∫
B

J∗ =

∫
B

J∗

for every box B.

In this case1

(9f4) v
(
ϕ−1(B)

)
=

∫
B

J

where J is any function equivalent to J∗, J
∗.

9f5 Exercise. Prove existence of J and calculate it for ϕ : R2 → R defined
by (a) ϕ(x, y) = x2 + y2; (b) ϕ(x, y) =

√
x2 + y2; (c) ϕ(x, y) = |x| + |y|,

taking for granted that the area of a disk is πr2.

9f6 Exercise. Prove existence of J and calculate it for ϕ : R3 → R2 defined
by ϕ(x, y, z) =

(√
x2 + y2, z

)
, taking for granted Prop. 9b9.

9f7 Exercise. For every partition P of a box B,

min
C∈P

F∗(C)

v(C)
≤ F∗(B)

v(B)
≤ F ∗(B)

v(B)
≤ max

C∈P

F ∗(C)

v(C)
.

Prove it.2

We generalize 8c9, 8c11.

1Can this happen when m < n? If you are intrigued, try the inverse to the mapping of
6c5.

2Hint: recall the proof of 8c7.
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9f8 Exercise.

v(B) inf
x∈B

J∗(x) ≤ F∗(B) ≤ F ∗(B) ≤ v(B) sup
x∈B

J∗(x) .

Prove it.1

9f9 Exercise.

∗

∫
B

J∗ ≤ F∗(B) ≤ F ∗(B) ≤
∗∫
B

J∗ .

Prove it.2 3

Prop. 9f3 follows immediately.

9f10 Remark. Similar statements hold for a mapping defined on a subset
of Rm (rather than the whole Rm). If ϕ : A→ Rn for a given A ⊂ Rm then
ϕ−1(B) ⊂ A for every B, but nothing changes in (9f1), (9f2) and Prop. 9f3. In
particular, if ϕ(A) is bounded, then A must be Jordan measurable; otherwise
J∗, J

∗ cannot be integrable and equivalent.

9f11 Example (mind the boundary). Points of Rn \ϕ(A) are irrelevant, but
points of ϕ(A) \ ϕ(A) cannot be ignored, even if they are a set of volume
zero. It can happen that v∗(A) >

∗∫
ϕ(A)

J∗.

Recall 8b9: G = (s1, t1) ∪ (s2, t2) ∪ . . . is dense in (0, 1),
∑

k(tk − sk) =
a < 1; v∗(G) = a, v∗(G) = 1. We take uk =

∑∞
i=k(ti − si), then u1 = a,

uk ↓ 0, and uk − uk+1 = tk − sk. We define ϕ : G→ (0, a) by

ϕ(x) = uk+1 + x− sk for x ∈ (sk, tk) .

For every box B such that B ⊂ (0, a) the set ϕ−1(B) is Jordan mea-
surable, and v

(
ϕ−1(B)

)
= v(B) (think, why). Thus, J∗ = J∗ = 1 on

(0, a). Nevertheless, ϕ−1
(
(0, a)

)
= G fails to be Jordan measurable, and

v∗
(
ϕ−1((0, a))

)
= 1 > a = v

(
(0, a)

)
. Note that J∗(0) = ∞, even though

0 /∈ ϕ(G).

9f12 Remark. If J∗, J
∗ are integrable and equivalent on a given closed box

B (and not necessarily on every box) then v(ϕ−1(C)) =
∫
C
J for every box

C ⊂ B.

1Hint: similarly to the proof of 8c7; use 9f7.
2Similar to 8c11.
3Curiously, the left-hand and the right-hand sides differ four times: ∗

∫
,

∗∫
; lim inf,

lim sup; v∗, v∗; B◦
i , Bi.
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9f13 Exercise. Calculate J for the projection mapping ϕ(x, y) = x
(a) from the disk A = {(x, y) : x2 + y2 ≤ 1} ⊂ R2 to R;
(b) from the annulus A = {(x, y) : 1 ≤ x2 + y2 ≤ 4} ⊂ R2 to R.
Is J (locally) integrable?

9f14 Exercise. Calculate J for the mapping ϕ(x) = sinx from the interval
[0, 10π] ⊂ R to R. Is J (locally) integrable?

9g Change of variable in general

9g1 Proposition. If ϕ : Rm → Rn is such that1 J∗, J
∗ are locally integrable

and locally equivalent then for every integrable f : Rn → R the function
f ◦ ϕ : Rm → R is integrable and∫

Rm

f ◦ ϕ =

∫
Rn

fJ .

Proof. First, the claim holds when f = 1lB is the indicator of a box, since∫
Rn

fJ =

∫
B

J
(9f4)
= v(ϕ−1(B)) =

∫
Rm

1lϕ−1(B) =

∫
Rm

f ◦ ϕ .

Second, by linearity in f the claim holds whenever f is a step function
(on some box, and 0 outside).

Third, given f integrable on a box B (and 0 outside), we consider arbi-
trary step functions g, h on B such that g ≤ f ≤ h. We have g ◦ϕ ≤ f ◦ϕ ≤
h ◦ ϕ and

∫
Rm g ◦ ϕ =

∫
B
gJ ,

∫
Rm h ◦ ϕ =

∫
B
hJ , thus,∫

B

gJ ≤
∗

∫
Rm

f ◦ ϕ ≤
∗∫
Rm

f ◦ ϕ ≤
∫
B

hJ ;∫
B

gJ ≤
∫
B

fJ ≤
∫
B

hJ .

We take M such that J(·) ≤M on B and get∫
B

hJ −
∫
B

gJ =

∫
B

(h− g)J ≤M

∫
B

(h− g) ;

thus, integrability of f implies integrability of f ◦ ϕ and the needed equality
for the integrals.

1We still assume that the inverse image of a box is bounded.
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9g2 Corollary. If ϕ : Rm → Rn is such that J∗, J
∗ are locally integrable

and equivalent then:
(a) for every Jordan measurable set E ⊂ Rn the set ϕ−1(E) ⊂ Rm is

Jordan measurable;
(b) for every integrable f : E → R the function f ◦ ϕ is integrable on

ϕ−1(E), and ∫
ϕ−1(E)

f ◦ ϕ =

∫
E

fJ .

Proof. (a) apply 9g1 to f = 1lE; (b) apply 9g1 to f1lE.

9g3 Remark. If ϕ : A→ Rn is such that J∗, J
∗ are integrable and equivalent

on a given closed box B (and not necessarily on every box) then for every
integrable f : B → R the function f◦ϕ is integrable on the Jordan measurable
set ϕ−1(B), and ∫

ϕ−1(B)

f ◦ ϕ =

∫
B

fJ .

Also, 9g2 holds for E ⊂ B.

9g4 Exercise. (a) Prove that
∫
x2+y2≤1

f
(√

x2 + y2
)

dxdy = 2π
∫

[0,1]
f(r)r dr

for every integrable f : [0, 1]→ R;
(b) calculate

∫
x2+y2≤1

e−(x2+y2)/2 dxdy. (Could you do it by iterated inte-

grals?)

9h Change of variable for a diffeomorphism

9h1 Proposition. Let U, V ⊂ Rn be open sets and ϕ : V → U a diffeomor-
phism, then1 2

J∗(x) = J∗(x) = | det(Dψ)x|

for all x ∈ U ; here ψ = ϕ−1 : U → V .

In the next lemma,3 given a norm ‖ · ‖ on Rn, we denote

B◦ = {x : ‖x‖ < 1} , B = {x : ‖x‖ ≤ 1} ,
rB◦ + x0 = {x : ‖x− x0‖ < r} , rB + x0 = {x : ‖x− x0‖ ≤ r} ;

these are Jordan measurable by 9c3.

1For J∗, J
∗ see (9f2).

2detDψ is called the Jacobian of ψ and often denoted by Jψ.
3We may restrict ourselves to norms such that B is a box, but this does not simplify

the proof of the lemma.
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9h2 Lemma. Let ‖ · ‖ be a norm on Rn, A ⊂ Rn, f : A → Rn a mapping,
ε ∈ (0, 1), and

(1− ε)‖x1 − x2‖ ≤ ‖f(x1)− f(x2)‖ ≤ (1 + ε)‖x1 − x2‖

for all x1, x2 ∈ A. Then

v∗
(
f(rB◦ + x)

)
≥ (1− ε)nv(rB◦ + x) ,

v∗
(
f(rB + x)

)
≤ (1 + ε)nv(rB + x)

for all x and r such that rB + x ⊂ A and (1− ε)rB◦ + f(x) ⊂ f(A).

Proof. The second inequality follows from the inclusion

f(rB + x) ⊂ (1 + ε)rB + f(x) ;

proof of this inclusion: for arbitrary x1 ∈ rB + x, y1 = f(x1) is defined, and
belongs to (1 + ε)rB + f(x) since ‖y1 − f(x)‖ ≤ (1 + ε)‖x1 − x‖ ≤ (1 + ε)r.

The first inequality follows from the inclusion

f(rB◦ + x) ⊃ (1− ε)rB◦ + f(x) ;

proof of this inclusion: for arbitrary y1 ∈ (1−ε)rB◦+f(x) there exists x1 ∈ A
such that y1 = f(x1); and ‖x1−x‖ ≤ 1

1−ε‖f(x1)− f(x)‖ = 1
1−ε‖y1− f(x)‖ <

1
1−ε(1− ε)r = r, thus x1 ∈ rB◦ + x and y1 = f(x1) ∈ f(rB◦ + x).

Proof of Prop. 9h1. Let x0 ∈ U . Denote T = (Dψ)x0 . By Theorem 9d1,
v(T (E)) = | detT |v(E) for every Jordan measurable E ⊂ Rn. Note that
ϕ−1(E) = ψ(E). It is sufficient to prove that

v∗(ψ(B◦i ))

v(T (Bi))
→ 1 ,

v∗(ψ(Bi))

v(T (Bi))
→ 1 whenever Bi → x0 .

Similarly to the proof of 3c4 we downgrade the two copies of Rn into a pair
of affine spaces, and then upgrade them back to Rn getting x0 = 0, ψ(x0) = 0,
and T = id. (In contrast to the proof of 9d1, we do not need Euclidean metric
in these affine spaces, since we work with the ratio of volumes of two sets
ψ(Bi), T (Bi) in the same space.)

Similarly to the proof of Prop. 3c3 (and 4c7), for every ε > 0 there exists
a neighborhood Uε of 0 such that

|(y1 − y2)− (x1 − x2)| ≤ ε|x1 − x2|
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whenever x1, x2 ∈ Uε and y1 = ψ(x1), y2 = ψ(x2).
The set Vε = ψ(Uε) is a neighborhood of 0 (since ψ is open, recall 3b6).

Given Bi → x0, we take M such that ∀i α(Bi) ≤ M/
√
n; using Lemma

9e3 we get points xi → 0, numbers ci → 0+ and norms ‖ · ‖i such that
Bi = {x : ‖x− xi‖i ≤ ci} = ciBi + xi and

1

M
| · | ≤ ‖ · ‖i ≤ | · | .

For all x1, x2 ∈ Uε, denoting y1 = ψ(x1) and y2 = ψ(x2), we have

‖(y1− y2)− (x1−x2)‖i ≤ |(y1− y2)− (x1−x2)| ≤ ε|x1−x2| ≤Mε‖x1−x2‖ ,

therefore (assuming ε < 1/M),

(1−Mε)‖x1 − x2‖i ≤ ‖y1 − y2‖i ≤ (1 +Mε)‖x1 − x2‖i .

Claim: For all i large enough, ciBi + xi ⊂ Uε and ciB
◦
i + yi ⊂ Vε, where

yi = f(xi). Proof of the claim. First, all x such that ‖x − xi‖i ≤ ci satisfy
|x| ≤ |x−xi|+ |xi| ≤M‖x−xi‖i + |xi| ≤Mci + |xi| → 0 as i→∞. Second,
all y such that ‖y− yi‖i ≤ ci satisfy |y| ≤ |y− yi|+ |yi| ≤M‖y− yi‖i + |yi| <
Mci + |yi| → 0 as i→∞.

Applying Lemma 9h2 to ‖ · ‖ = ‖ · ‖i, A = Uε, f = ψ, Mε, x = xi and
r = ci we get, for all i large enough,

v∗
(
ψ(B◦i )

)
≥ (1−Mε)nv(Bi) ,

v∗
(
ψ(Bi)

)
≤ (1 +Mε)nv(Bi) ,

that is,

(1−Mε)n ≤ v∗(ψ(B◦i ))

v(T (Bi))
≤ v∗(ψ(Bi))

v(T (Bi))
≤ (1 +Mε)n .

According to 9f11 we should examine J∗ on the boundary of U . But this
is hard. A diffeomorphism V → U need not extend to a homeomorphism
V → U . Here are two simple counterexamples:1

(a) V = {x ∈ R2 : 0 < |x| < 1}, U = {x ∈ R2 : 1 < |x| < 2},
ϕ(x) = x+ x

|x| ;

(b) V = U = {x ∈ R2 : |x| < 1}, ϕ(r cos θ, r sin θ) =
(
r cos(θ +

1
1−r ), r sin(θ + 1

1−r )
)
.

Fortunately, we have another way: approximation from inside (since, in
contrast to 9f11, we assume that U, V are Jordan measurable).

1Far not the worst case.
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Proof of Theorem 9a1. We prove the equivalent formulation given by 9a2:
ϕ : V → U a diffeomorphism, f : U → R bounded on U , and f | detDψ|
bounded on U , where ψ = ϕ−1 : U → V . We have to prove that

∫
V
f ◦ ϕ =∫

U
f | detDψ|, provided that one integrand is integrable.
By 9h1, J∗ and J∗ are integrable and equivalent (moreover, continuous

and equal) on every box B such that B ⊂ U . By 9g3, ψ(B) ⊂ V is Jordan
measurable, and ∫

ψ(B)

f ◦ ϕ =

∫
B

fJ

whenever f is integrable on B. In particular, taking f = 1lE, we get
v
(
ψ(E)

)
=
∫
E
J for all Jordan measurable E ⊂ B. Thus,

if E ⊂ B is of volume zero, then ψ(E) is also of volume zero.

Similarly to the proof of 8e6 we take a box B ⊂ Rn such that U ⊂ B◦, and
for arbitrary partition P of B we consider

KP =
⋃

C∈P,C⊂U

C .

Taking into account that the boundaries ∂C do not matter we get
∫
ψ(KP )

f ◦ ϕ =∫
KP

fJ whenever f is integrable on KP . And if E ⊂ KP is of volume zero,

then ψ(E) is of volume zero.
We take a sequence of partitions P1, P2, . . . of B such that each Pi+1 is a

refinement of Pi, and

∀C ∈ Pi diam(C) ≤ εi , εi → 0 .

Claim: the corresponding sets Ki = KPi
satisfy K◦i ↑ U . Proof of the claim:

clearly, Ki ↑. Given x ∈ U , we take i such that εi < dist(x,Rn \ U), and
C ∈ Pi such that x ∈ C, then C ⊂ U (since diam(C) ≤ εi), thus x ∈ C ⊂ Ki;
and moreover, x ∈ K◦i , since dist(y,Rn \ U) > εi for all y near x.

If f has a compact support inside U and fJ is integrable, then f is
integrable (since the continuous function 1/J is bounded on the support of
f), therefore f ◦ ϕ is integrable1 and

∫
V
f ◦ ϕ =

∫
U
fJ (since the support of

f is contained in some K◦i ).
The same holds for the inverse diffeomorphism; if an integrable g has a

compact support inside V , then g ◦ ψ is integrable. Taking g = f ◦ ϕ we see
that integrability of f ◦ ϕ implies integrability of f (and fJ). Thus,

(f ◦ ϕ is integrable ) ⇐⇒ (fJ is integrable ) ,

and in this case

∫
V

f ◦ ϕ =

∫
U

fJ

1Alternatively you may prove the integrability via 8f1.
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whenever f has a compact support inside U . We have to get rid of this
assumption.

The relation K◦i ↑ U implies ψ(K◦i ) ↑ V . By 8e9, v∗(K
◦
i ) ↑ v∗(U) and

v∗
(
ψ(K◦i )

)
↑ v∗(V ). Taking into account Jordan measurability of these sets

we get
v(U \K◦i )→ 0 , v(V \ ψ(K◦i ))→ 0 as i→∞ .

Using boundedness of f (and therefore, f ◦ ϕ) and fJ , we get integral con-
vergence (recall Sect. 6e):

(f ◦ ϕ) · 1lψ(K◦
i ) → f ◦ ϕ , fJ · 1lK◦

i
→ fJ

as i→∞. It remains to use 6e3(b).
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