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This appendix is not a part of the course. Read it if you like to understand
various kinds of spaces mentioned in Sect. 1 (vector, affine, topological, met-
ric, metrizable, normed, Euclidean vector, Euclidean affine, Cartesian, clas-
sical Euclidean) as special cases of a general notion “mathematical structure”
that embraces also groups, rings and other algebraic structures, as well as
partially ordered sets, graphs etc.

A1 A simple example of structure: natural numbers2

Natural numbers may be defined as a set N = {0, 1, 2, . . . } endowed with a
map S : N → N (so-called successor function) and a special element 0 ∈ N
satisfying appropriate conditions (so-called Peano axioms). Then, by defini-
tion, 1 = S(0), 2 = S(1) = S(S(0)), and so on.

The theory of sets provides a well-known implementation of natural num-
bers:3

0 = ∅ , 1 = {0} = {∅} , 2 = {0, 1} = {∅, {∅}} , . . . ; S(n) = n ∪ {n} .
1Probably, the general theory of structures may be called “abstract nonsense” similarly

to this: ‘. . . category theory is the study of the general form of mathematical theories,
without regard to their content. As a result, a proof that relies on category theoretic
ideas often seems slightly out of context to those who are not used to such abstraction
. . . Such proofs are sometimes dubbed “abstract nonsense” . . . A reader expecting a long,
difficult proof might be surprised—or even delighted—by this bit of general nonsense.’
Wikipedia:Abstract nonsense.

2For detailed explanations about natural numbers see Chapters 9, 10 in a book: “The
anatomy of mathematics” (second edition, 1974) by R.B. Kershner, L.R. Wilcox. Also,
pages 30–33 in a book “Logical foundations of mathematics and computational complexity.
A gentle introduction” (2013) by P. Pudlák.

3By finite ordinals.

http://en.wikipedia.org/wiki/Abstract_nonsense
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Another, less well-known implementation:

0 = ∅ , 1 = {0} = {∅} , 2 = {1} = {{∅}} , . . . ; S(n) = {n} .

These two implementations (N1, 01, S1), (N2, 02, S2) are isomorphic; a map
ϕ : N1 → N2 defined recursively by

(A1a) ϕ(01) = 02 , ∀n ∈ N1 ϕ(S1(n)) = S2(ϕ(n))

is an isomorphism (to be defined soon). The same holds for two arbitrary
implementations. Note that, say, ϕ(51) = 52.

Addition is introduced recursively:

(A1b) ∀n ∈ N n+ 0 = n ; ∀m,n ∈ N m+ S(n) = S(m+ n) .

Doing so in (N1, 01, S1), (N2, 02, S2) we get +1,+2 and observe that ϕ is also
an isomorphism of semigroups (N1,+1), (N2,+2). That is,

∀m,n ∈ N ϕ(m+ n) = ϕ(m) + ϕ(n) .

A2 Structures in general1

Mathematics [...] cannot be explained completely by a single concept
such as the mathematical structure. Nevertheless, Bourbaki’s struc-
turalist approach is the best that we have. 2

Evident as the notion of mathematical structure may seem these days,
it was at least not made explicit until the middle of the 20th century.
Then it was the influence of the Bourbaki-project and then later the
development of category theory which made the notion explicit. . . 3

Given an arbitrary set X, one may produce many other sets, such as the
Cartesian product X ×X, the set of all subsets of X denoted by P(X), and
even such monster as (for instance)

P
(
P(X ×X)×X × P(P(X))

)
×X .

1Following the textbook by P. Pudlák (see Chapter 1), a monograph “Elements of math-
ematics: Theory of sets”(1968) by N. Bourbaki (English translation) (see Chapter IV, and
§8 in “Summary of results”), and an article “Sentences of type theory: the only sentences
preserved under isomorphisms” by M.V. Marshall, R. Chuaqui (1991), The Journal of
Symbolic Logic 56:3, 932–948 (see §2).

2Pudlák, page 3.
3nLab:Structure#related entries.

http://ncatlab.org/nlab/show/structure#related_entries
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The latter may be obtained substituting by X the indeterminate, denoted
“�”, in the formula

F = “P
(
P(�×�)×�× P(P(�))

)
×� ” .

This formula is an element of a formal language L in the alphabet of 5
characters “�”, “×”, “P”, “(”, “)”; we define L as the least set of words
satisfying

“�” ∈ L ;

∀F,G ∈ L F “×”G ∈ L ;

∀F ∈ L “P(”F “)” ∈ L .

From now on, formulas of L will be called types (for conforming with the
terminology of the general theory of structures). We define F (X) for a type
F and a set X recursively:

F (X) =


X if F = “�” ;

G(X)×H(X) if F = G “×”H;

P(G(X)) if F = “P(”G “)” .

A structure of type F on X is, by definition, an element of F (X).

Thus,

∗ every element of X is a structure on X;

∗ every pair of structures on X is a structure on X;

∗ every set of structures on X of the same type is a structure on X;

and nothing else is a structure on X.

A2a Example. If (N, 0, S) is an implementation of natural numbers then
(0, S) is a structure on N of type1 �×P(�×�), since a function is a subset
of the Cartesian product. Introducing addition we get on N a structure
(0, S,+) of type �×P(�×�)×P(�×�×�). Introducing also order “≤”
by m ≤ n ⇐⇒ ∃k m+ k = n we get another structure (0, S,+,≤) of type
�× P(�×�)× P(�×�×�)× P(�×�).

Algebraic structures do not need P(P(�)), but non-algebraic structures
do. Most important, a topology on a set X is usually defined as a set τ
of subsets of X (called “open sets”) satisfying appropriate conditions (see
Sect. 1c). Thus, τ ⊂ P(X), that is, τ ∈ P(P(X)) is a structure of type
P(P(�)).

1From now on we do not bother to put types into quotes.
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In full generality, types like P(P(P(�))) (and more complicated) are
allowed. But in practice they are used rarely (maybe never).

Some structures need a so-called auxiliary base set E in addition to a
principal base set X. Most important, the structure of a vector space on X
stipulates not only addition X × X → X but also multiplication by scalar
R ×X → X. One adds a new character, “E”, to the alphabet; a new line,
“E” ∈ L, to the definition of the language L; defines F (X,E) for arbitrary
sets X,E; and uses F (X,R) (or another field, as needed, instead of R).

Some structures need two principal base sets. For example, graphs (and
multigraphs) are defined in terms of vertices and edges. Vertices are a prin-
cipal base set. One approach (“edges without own identity”) treats edges as
(ordered or unordered) pairs of vertices. The other approach (“edges with
own identity”) treats edges as the second principal base set.

In full generality, any finite number of principal base sets and any finite
number of auxiliary base sets are allowed. But in practice, more than two
base sets are used rarely (maybe never).

A3 Transport of structures; isomorphism1

Given two sets X1, X2 and a bijection ϕ : X1 → X2, we define the canonical
extension

F (ϕ) : F (X1)→ F (X2)

for every type F as follows.
For F = � we have F (X1) = X1, F (X2) = X2, and take F (ϕ) = ϕ, that

is, F (ϕ)(x) = ϕ(x) for x ∈ X1.
For F = �×� we have F (X1) = X1 ×X1, F (X2) = X2 ×X2, and take

F (ϕ)(x, y) =
(
ϕ(x), ϕ(y)

)
for x, y ∈ X1.

For F = P(�) we have F (X1) = P(X1), F (X2) = P(X2), and take
F (ϕ)(A) = {ϕ(x) : x ∈ A} (the image) for A ⊂ X1.

Further, we continue the process recursively.
If F = G×H, that is, a structure of type F is a pair of structures (of types

G,H), then we have F (X1) = G(X1) × H(X1), F (X2) = G(X2) × H(X2),
and take F (ϕ)(σ, τ) =

(
G(ϕ)(σ), H(ϕ)(τ)

)
for σ ∈ G(X1), τ ∈ H(X1).

Finally, if F = P(G), that is, a structure of type F is a set of structures
of type G, then we have F (X1) = P(G(X1)), F (X2) = P(G(X2)), and take
F (ϕ)(A) = {G(ϕ)(σ) : σ ∈ A} (the image) for A ⊂ G(X1).

1For a lightweight introduction to isomorphism see Chapter 16 in “The anatomy of
mathematics”.
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A3a Definition. Let F be a type, X1, X2 sets, σ1 a structure of type F on
X1, and σ2 a structure of type F on X2. A bijection ϕ : X1 → X2 is an
isomorphism between (X1, σ1) and (X2, σ2) if F (ϕ)(σ1) = σ2.

A3b Exercise. Prove that (A1a) treated as a condition on ϕ is necessary
and sufficient for ϕ to be an isomorphism.

A3c Exercise. Define a partially ordered set as a set endowed with a struc-
ture of the type � × �, and prove that ϕ is an isomorphism between two
partially ordered sets if and only if

∀x, y
(
x ≤ y ⇐⇒ ϕ(x) ≤ ϕ(y)

)
.

A3d Exercise. Define a group as a set endowed with a structure, and prove
that the two notions of isomorphism agree (one defined in group theory, the
other defined here).

As we know, some structures need an auxiliary base set E. Transport of
such structures leaves intact elements of E (by definition). For example, an
isomorphism ϕ : X1 → X2 of vector spaces X1, X2

1 satisfies ∀x ∈ X1 ∀λ ∈
R ϕ(λx) = λϕ(x), not ϕ(λx) = ϕ(λ)ϕ(x), nor ϕ(λx) = ψ(λ)ϕ(x).

A long list of special cases of the general notion of isomorphism is available
on Wikipedia.2

A3e Exercise. 3 For three sets X1, X2, X3 and two bijections ϕ : X1 → X2,
ψ : X2 → X3 prove that F (ψ ◦ ϕ) = F (ψ) ◦ F (ϕ) for every type F .

Also, F (ϕ−1) =
(
F (ϕ)

)−1, and F (id) = id (for X1 = X2).
In the special case of X1 = X2 (= X) and σ1 = σ2 (= σ) isomorphisms

are called automorphisms (or symmetries) of (X, σ). It follows from A3e that
for each σ the automorphisms of (X, σ) are a subgroup of the group of all
bijections X → X.

A4 Transportable properties

A type gives only preliminary information on a structure. Main information
is given by so-called axioms (of structure).

1Are you disturbed by this formulation? This is “abuse of language”, see Sect. 1b
(p. 9).

2Wikipedia:Equivalent definitions of mathematical structures#Transport of structures;
isomorphism

3If you are acquainted with categories and functors, observe that F is a functor from
the category Set* of sets and bijections to itself.

https://en.wikipedia.org/wiki/Equivalent_definitions_of_mathematical_structures#Transport_of_structures.3B_isomorphism
https://en.wikipedia.org/wiki/Equivalent_definitions_of_mathematical_structures#Transport_of_structures.3B_isomorphism
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A4a Example. Peano axioms for natural numbers:

∀n ∈ N S(n) 6= 0 ;

∀m,n ∈ N
(
S(m) = S(n) =⇒ m = n

)
;

∀K ∈ P(N)
(

( 0 ∈ K ∧ ∀n (n ∈ K =⇒ S(n) ∈ K) ) =⇒ K = N
)
.

The third axiom, of induction, prevents N from containing elements beyond
0, S(0), S(S(0)), . . .

Given (N1, 01, S1), N2 and a bijection ϕ : N1 → N2, we consider (N2, 02, S2)
where (02, S2) = F (ϕ)(01, S1), F = � × P(� × �), and observe that Peano
axioms are transportable in the following sense:

if (N1, 01, S1) satisfies the axioms then (N2, 02, S2) satisfies the axioms.

Here is a proof that the first Peano axiom is transportable. Given n2 ∈ N2, we
consider n1 = ϕ−1(n2) ∈ N1. By A3b, ϕ(S1(n1)) = S2(n2) and ϕ(01) = 02.
We know that S1(n1) 6= 01. It follows that ϕ(S1(n1)) 6= ϕ(01), that is,
S2(n2) 6= 02.

A4b Exercise. Prove transportability of the other two Peano axioms.

Here is an example of a non-transportable property of (0, S):

S(S(0)) = {{∅}} .

Another example:
0 ∈ S(S(0)) .

Clearly, these are not transportable because they involve objects ({{∅}}) or
relations (∈) beyond the given structure. This is sometimes called “evil”.1

Such “evil” never appears in mathematical practice, since a mathemati-
cian always treats elements of a principal base set as points with no internal
structure. In the absence of “evil”, transportability is not an issue; it always
holds, and is easy to prove. If you proved it few times, you can prove it
always.2

1“For a category theorist, making a distinction between one-element sets is evil. Instead
of looking inside an object to see how its made, we should only care about how it interacts
with the world around it.” (Mike Stay, “Cartesian categories and the problem of evil”)
“Floating around the web (and maybe the nLab) is the idea of half-jokingly referring to
a breaking of equivalence invariance as evil. This is probably meant as a pedagogical way
of amplifying that it is to be avoided.” (nLab:principle of equivalence#terminology)

2A model-theoretic criterion of transportability is available, see Marshall and Chuaqui.

http://reperiendi.wordpress.com/2007/09/19/the-problem-of-evil-and-cartesian-categories/
http://ncatlab.org/nlab/show/principle+of+equivalence#terminology
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More formally, given a property T of structures of a type F , we introduce
a set

T (X) ⊂ F (X)

of all structures that have the property T . The property T is called trans-
portable, if

σ1 ∈ T (X1) ⇐⇒ σ2 ∈ T (X2)

whenever X1, X2 are sets, ϕ : X1 → X2 is a bijection, σ1 ∈ F (X1), σ2 ∈
F (X2), and F (ϕ) : σ1 7→ σ2.

A4c Exercise. A semigroup is, by definition, a set X endowed with a binary
operation (x, y) 7→ xy that is associative: ∀x, y, z ∈ X (xy)z = x(yz). Prove
that associativity is transportable.

A4d Exercise. Axioms for topology on X:1

∅ and X are open;

intersection of two (or finitely many) open sets is open;

union of open sets (no matter how many) is open.

Prove transportability of these axioms.

A4e Exercise. A topological space2 is called compact, if every open covering
contains a finite subcovering. Prove transportability of compactness.

A5 Species of structures

Given a transportable property T of structures of a type F , two sets X1, X2

and a bijection ϕ : X1 → X2, we introduce the restricted transport map
T (ϕ) = F (ϕ)|T (X1) and note that3

T (ϕ) : T (X1)→ T (X2) bijectively.

Such T is called a species of structures (of the type F ).

A5a Example. Peano axioms lead to a species of the type �× P(�×�);
let us call it the Peano species.4 In this case T (X) 6= ∅ if and only if X is
countably infinite.

A5b Example. Semigroups are a species of the type P(�×�×�).

A5c Corollary. Let ϕ : X1 → X2 be a bijection, σ1 ∈ T (X1) and σ2 ∈
T (X2). According to A3a, ϕ is an isomorphism between (X1, σ1) and (X2, σ2)
if and only if T (ϕ)(σ1) = σ2.

1See Sect. 1c.
2See Sect. 1c.
3A functor, again.
4Not a standard terminology.
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A6 Relations between species of structures

Taking into account that every pair of structures on X is a structure on X we
may use a transportable property of the pair as an axiom of this combined
structure.

A6a Example. Let (N, 0, S) be a set endowed with a Peano structure,1 and
(N,+) a semigroup. Then (N, 0, S,+) is a set endowed with both structures,
and relations (A1b) (evidently transportable!) may be treated as axioms of
this combined species.

Generally, if F1, F2 are two types then F = F1 × F2 is also a type. Given
a species T1 of structures of the type F1 and a species T2 of structures of the
type F2, we get a species T1 × T2 of structures of the type F ,

(T1 × T2)(X) = T1(X)× T2(X) .

Additional axioms may lead to a smaller species T of structures of the type
F ,

T (X) ⊂ T1(X)× T2(X) ,

and T (X) may be thought of as a binary relation. Every relation T between
structures may be treated as a property of the combined structure, and we
wonder, is it transportable? If it is, then T is also a species.

A6b Exercise. Which of the relations listed below are transportable?
(a) a = b for a, b ∈ X; (b) a = b for a ∈ X, b ∈ P(X);
(c) a = b for a, b ∈ P(X); (d) a ∈ b for a, b ∈ X;
(e) a ∈ b for a ∈ X, b ∈ P(X); (f) a ∈ b for a, b ∈ P(X);
(g) a ⊂ b for a, b ∈ X; (h) a ⊂ b for a ∈ X, b ∈ P(X);
(i) a ⊂ b for a, b ∈ P(X); (j) a ∪ b = c for a, b, c ∈ X;
(k) a ∪ b = c for a, b, c ∈ P(X); (l) ∪z∈az = b for a ∈ P(P(X)), b ∈ P(X).

A transportable binary relation T (X) ⊂ T1(X) × T2(X) may appear to
be a function from T1(X) to T2(X); this happens if and only if

∀σ1 ∈ T1(X) ∃ ! σ2 ∈ T2(X) (σ1, σ2) ∈ T (X) .

In this case we write
T (X) : T1(X)→ T2(X) .

If this is the case for all X, we write

T : T1 → T2

1That is, a structure of the Peano species.
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and say that T is a procedure of deduction of a structure of the species T2
from a structure of the species T1.

It may happen that the converse holds as well:

∀σ2 ∈ T2(X) ∃ ! σ1 ∈ T1(X) (σ1, σ2) ∈ T (X)

for all X. Such T is an equivalence between T1 and T2. Informally it means
that T1 and T2 describe the same structure in different forms.

If T is not an equivalence, still, it may happen that the mapping T (X) :
T1(X) → T2(X) is injective (that is, one-to-one) for all X. In this case we
say that T remembers structure and forgets properties.1 Similarly, it may
happen that T (X) is surjective (that is, onto) for all X. In this case we say
that T remembers properties and forgets structure. Informally it means that
every σ2 ∈ T2(X) may be upgraded to σ1 ∈ T1(X), but not uniquely; and
σ1 is downgraded to σ2 by T . Of course, T may forget both structure and
properties; on the other hand, an equivalence remembers everything.

In particular, A6a provides a procedure of deduction of a semigroup struc-
ture from a Peano structure.

A6c Exercise. Denoting by T the procedure given by A6a prove that the
mapping T (X) : T1(X)→ T2(X) is one-to-one.2

A6d Exercise. Invent a procedure of deduction of a group structure from
a vector space structure.

A6e Exercise. 3 For arbitrary procedure of deduction T : T1 → T2, sets
X1, X2 and bijection ϕ : X1 → X2 the diagram

T1(X1)
T1(ϕ) //

T (X1)

��

T1(X2)

T (X2)

��
T2(X1)

T2(ϕ) // T2(X2)

is commutative, that is, T2(ϕ) ◦ T (X1) = T (X2) ◦ T1(ϕ).
Prove it.4

1In the spirit of nLab:Stuff, structure, property.
2Hint: it is easy to characterize the number 0 ∈ N in terms of the addition on N, and

a bit harder to characterize the number 1 ∈ N.
3If you are acquainted with categories and functors, observe that T is a natural trans-

formation from the functor T1 to the functor T2.
4Hint: recall the definition of F (ϕ) for F = F1 × F2.

http://ncatlab.org/nlab/show/stuff,+structure,+property
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A7 General isomorphism theorems1

Every isomorphism between sets endowed with Peano structures is also an
isomorphism between the corresponding semigroups. Every isomorphism
between vector spaces is also an isomorphism between the corresponding
groups. These facts are special cases of the following general fact.

A7a Theorem. (The first general isomorphism theorem)2

Let T : T1 → T2 be a procedure of deduction, X1, X2 sets, σ1 ∈ T1(X1),
σ2 ∈ T1(X2), and ϕ : X1 → X2 a bijection. If ϕ is an isomorphism between
(X1, σ1) and (X2, σ2) then ϕ is an isomorphism between

(
X1, T (X1)(σ1)

)
and(

X2, T (X2)(σ2)
)
.

Proof. By A5c, T1(ϕ)(σ1) = σ2; we have to prove that T2(ϕ)
(
T (X1)(σ1)

)
=

T (X2)(σ2), that is, T2(ϕ) ◦ T (X1)(σ1) = T (X2) ◦ T1(ϕ)(σ1). This equality
follows from A6e:

σ1
� T1(ϕ) //

_

T (X1)
��

σ2_

T (X2)
��

T (X1)(σ1)
� T2(ϕ) // T (X2)(σ2)

Every isomorphism between vector spaces sends a basis into a basis, a
subspace into a subspace, etc. These facts are special cases of the following
general fact.

A7b Theorem. (The second general isomorphism theorem)3

Let T : T2 → T1 be a procedure of deduction, X1, X2 sets, σ1 ∈ T1(X1),
σ2 ∈ T1(X2), and ϕ : X1 → X2 a bijection. If ϕ is an isomorphism be-
tween (X1, σ1) and (X2, σ2), τ1 ∈ T2(X1) satisfies T (X1)(τ1) = σ1, and
τ2 = T2(ϕ)(τ1) then T (τ2) = σ2.

A7c Exercise. Prove the theorem above.4

A7d Example. Consider the species T1 of vector spaces (over R), the species
T2 of vector spaces endowed with a (“chosen”, “preferred”) basis, and the

1Probably, general isomorphism theorems may be called “profound triviality” similarly
to this: “The Baire category is a profound triviality which condenses the folk wisdom of a
generation of ingenious mathematicians into a single statement.” (T.W. Körner, ”Linear
analysis” Sect.6, p.13.)

2Not a standard terminology.
3Not a standard terminology.
4Draw a diagram.
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canonical deduction procedure1 T : T2 → T1. Let ϕ be an isomorphism
between vector spaces X1, X2. By Theorem A7b, if (e1, . . . , en) is a basis of
X1 then (ϕ(e1), . . . , ϕ(en)) is a basis of X2.

Index

automorphism, A-5
axiom

of structure, A-5
Peano, A-6

base set
auxiliary, A-4
principal, A-4

equivalence between species, A-9
evil, A-6

forgets structure or properties, A-9

group of automorphisms, A-5

isomorphism, A-5

isomorphism theorem, A-10

procedure of deduction, A-9

remembers structure or properties, A-9

semigroup, A-7
species

of structures, A-7
Peano, A-7

structure, A-3

F (ϕ), A-4
T : T1 → T2, A-8
T (X), A-7
T (ϕ), A-7

1The so-called forgetful functor.
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