Solutions to selected exercises

1b14 Exercise. In an affine space, an affine combination does not depend on the choice of the origin.

Prove it. ${ }^{1}$
Solution. First, the relevant part of the solution of 1 b13 (according to the two hints).

We upgrade the affine space to a vector space (which is possible by Def. 1b12): x 过 $y=x+\lambda(y-x)$ for all x, y and λ. In particular, $a\lfloor 2 b=$ $a+2(b-a)=2 b-a$ and $a\left\lfloor\frac{1}{2} b=a+\frac{1}{2}(b-a)=\frac{1}{2}(a+b)\right.$ for all a, b. Thus, $\left(O\left\lfloor_{2} x\right)\left\lfloor\frac{1}{2}\right\rfloor\left(O\lfloor y)=\frac{1}{2}((2 x-O)+(2 y-O))=x+y-O\right.\right.$. Similarly, $O \backslash x=O+\lambda(x-O)$.

Now, the solution of 1 b 14 .
We can upgrade the affine space to a vector space, $x \backslash \lambda y=x+\lambda(y-x)$, with some origin 0 . By 1 b 13 , given O, we can also upgrade the same affine space to another vector space, $x \Delta \lambda y=x+_{o} \lambda \cdot o(y-x)$, with operations $+_{O} \cdot \circ$ and the origin O. We also know (see the solution to 1 b 13) that $\lambda \cdot o x-O=\lambda(x-O)$ and $x+o y-O=(x-O)+(y-O)$. By induction, $x_{1}+o \cdots+o x_{k}-O=\left(x_{1}-O\right)+\cdots+\left(x_{k}-O\right)$. Thus,

$$
\begin{aligned}
& \lambda_{1} \cdot o x_{1}+o \cdots+o \lambda_{k} \cdot o x_{k}-O= \\
& \quad=\left(\left(\lambda_{1} \cdot o x_{1}\right)-O\right)+\cdots+\left(\left(\lambda_{k} \cdot o x_{k}\right)-O\right)= \\
& =\lambda_{1}\left(x_{1}-O\right)+\cdots+\lambda_{k}\left(x_{k}-O\right)=\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}-\left(\lambda_{1}+\cdots+\lambda_{k}\right) O,
\end{aligned}
$$

therefore

$$
\lambda_{1} \cdot o x_{1}+o \cdots+o \lambda_{k} \cdot o x_{k}=\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}-\left(\lambda_{1}+\cdots+\lambda_{k}-1\right) O .
$$

For an affine combination $\lambda_{1}+\cdots+\lambda_{k}-1=0$, and we get

$$
\lambda_{1} \cdot o x_{1}+o \cdots+o \lambda_{k} \cdot o x_{k}=\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k} .
$$

[^0]
[^0]: ${ }^{1}$ Hint: use the hint to 1 b 13 ; calculating a linear combination relative to O we get $O+\lambda_{1}\left(x_{1}-O\right)+\cdots+\lambda_{k}\left(x_{k}-O\right)$.

