

We may apply notions and results of Euclidean planimetry/stereometry in every 2 -dimensional/3-dimensional subspace of an n-dimensional Euclidean affine space. Topological notions are well-defined on every finite-dimensional vector or affine space. All norms are equivalent on an arbitrary finite-dimensional vector space.

2b6 Proposition (Linearity of derivative). Let S be a finite-dimensional affine space, V a finite-dimensional vector space, $f, g: S \rightarrow V, a, b \in \mathbb{R}$, and $x_{0} \in S$. If f, g are differentiable at x_{0} then also $a f+b g$ is, and

$$
(D(a f+b g))_{x_{0}}=a(D f)_{x_{0}}+b(D g)_{x_{0}}
$$

2b8 Proposition (Product rule). Let S be a finite-dimensional affine space, $f, g: S \rightarrow$ \mathbb{R}, and $x_{0} \in S$. If f, g are differentiable at x_{0} then also $f g$ is, and

$$
(D(f g))_{x_{0}}=f\left(x_{0}\right)(D g)_{x_{0}}+g\left(x_{0}\right)(D f)_{x_{0}} .
$$

2b11 Proposition (Chain rule). Let S_{1}, S_{2}, S_{3} be finite-dimensional affine spaces, f : $S_{1} \rightarrow S_{2}, g: S_{2} \rightarrow S_{3}$, and $x_{0} \in S_{1}$. If f is differentiable at x_{0} and g is differentiable at $f\left(x_{0}\right)$ then $g \circ f$ is differentiable at x_{0}, and

	$(D(g \circ f))_{x_{0}}=(D g)_{f\left(x_{0}\right)} \circ(D f)_{x_{0}}$.				
$(2 \mathrm{~d} 5)$	$\frac{\left\\|\gamma\left(t_{1}\right)-\gamma\left(t_{0}\right)\right\\|}{t_{1}-t_{0}} \leq \sup _{t \in\left(t_{0}, t_{1}\right)}\left\\|\gamma^{\prime}(t)\right\\|$				

2f2 Lemma. Let a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable at x_{0}, and f_{1}, \ldots, f_{m} : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ be the coordinate functions of f (that is, $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$. Then the following two conditions are equivalent:
(a) vectors $\nabla f_{1}\left(x_{0}\right), \ldots, \nabla f_{m}\left(x_{0}\right)$ are linearly independent;
(b) the linear operator $(D f)_{x_{0}}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.

2g1 Proposition. If $f \in C^{k}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right)$ and $g \in C^{k}\left(\mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}\right)$ then $g \circ f \in C^{k}\left(\mathbb{R}^{n} \rightarrow\right.$ \mathbb{R}^{ℓ}).

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+D_{h} f\left(x_{0}\right)+\frac{1}{2!} D_{h} D_{h} f\left(x_{0}\right)+\cdots+\frac{1}{k!} D_{h}^{k} f\left(x_{0}\right)+o\left(|h|^{k}\right) .
$$

3c2 Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$. If f is continuously differentiable near x and the linear operator $(D f)_{x}$ is a homeomorphism, then f is a homeomorphism near x.

3f1 Theorem (Lagrange multipliers). Assume that $x_{0} \in \mathbb{R}^{n}, 1 \leq m \leq n-1$, functions $f, g_{1}, \ldots, g_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are continuously differentiable near x_{0}, $g_{1}\left(x_{0}\right)=\cdots=g_{m}\left(x_{0}\right)=0$, and vectors $\nabla g_{1}\left(x_{0}\right), \ldots, \nabla g_{m}\left(x_{0}\right)$ are linearly independent. If x_{0} is a local constrained extremum of f subject to $g_{1}(\cdot)=\cdots=g_{m}(\cdot)=0$ then there exist $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ such that

$$
\nabla f\left(x_{0}\right)=\lambda_{1} \nabla g_{1}\left(x_{0}\right)+\cdots+\lambda_{m} \nabla g_{m}\left(x_{0}\right) .
$$

The system of $m+n$ equations proposed in Sect. 3f is only one way of finding local constrained extrema. Not necessarily the simplest way.
No need to find ∇f when $f(\cdot)=\varphi(g(\cdot))$; just find ∇g and note that ∇f is collinear to ∇g.
If Lagrange method does not solve a problem to the end, it may still give a useful information. Combine it with other methods as needed.

3i1 Proposition (Singular value decomposition). Every linear operator from one finitedimensional Euclidean vector space to another sends some orthonormal basis of the first space into an orthogonal system in the second space.

$$
\left.\frac{\partial}{\partial c_{k}}\right|_{c=0} f(x(c))=\lambda_{k}(0) .
$$

It means that $\lambda_{k}=\lambda_{k}(0)$ is the sensitivity of the critical value to the level c_{k} of the constraint $g_{k}(x)=c_{k}$.

4c2 Theorem (Inverse function). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$. If f is continuously differentiable near x and the linear operator $(D f)_{x}$ is a diffeomorphism, then f is a diffeomorphism near x.

$$
(D g)_{y}=\left((D f)_{x}\right)^{-1} \quad \text { for } g=\left(\left.f\right|_{U}\right)^{-1}, y=f(x)
$$

4c7 Proposition. Assume that $U, V \subset \mathbb{R}^{n}$ are open, $f: U \rightarrow V$ is a homeomorphism, continuously differentiable, and the operator $(D f)_{x}$ is invertible for all $x \in U$. Then the inverse mapping $f^{-1}: V \rightarrow U$ is continuously differentiable.

4c11 Exercise. (a) Let $f: U \rightarrow V$ be as in Prop. 4 c 7 and in addition $f \in C^{2}(U)$. Then $f^{-1} \in C^{2}(V)$
(b) The same holds for $C^{k}(\ldots)$ where $k=3,4, \ldots$

4d1 Proposition. Assume that $x_{0} \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is differentiable near $x_{0}, D f$ is continuous at x_{0}, and the operator $T=(D f)_{x_{0}}$ is invertible. Then for every y near $y_{0}=f\left(x_{0}\right)$ the iterative process

$$
x_{n+1}=x_{n}+T^{-1}\left(y-f\left(x_{n}\right)\right) \quad \text { for } n=0,1,2, \ldots
$$

is well-defined and converges to a solution x of the equation $f(x)=y$. In addition, $\left|x-x_{0}\right|=O\left(\left|y-y_{0}\right|\right)$.

5c1 Theorem (Implicit function). Assume that $r, c \in\{1,2,3, \ldots\}, n=r+c, x_{0} \in \mathbb{R}^{r}$, $y_{0} \in \mathbb{R}^{c}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{c}$ is continuously differentiable near $\left(x_{0}, y_{0}\right), g\left(x_{0}, y_{0}\right)=0$, and the operator $B=\left.\frac{\partial g}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}$ is invertible. Then there exist open neighborhoods U of x_{0} and V of y_{0} such that
(a) for every $x \in U$ there exists one and only one $y \in V$ satisfying $g(x, y)=0$;
(b) a function $\varphi: U \rightarrow V$ defined by $g(x, \varphi(x))=0$ is continuously differentiable, and $(D \varphi)_{x_{0}}=-B^{-1} A$ where $A=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}$.
(6b16)

$$
\int_{B}^{*} f=\sum_{C \in P} \int_{C}^{*} f
$$

which means that the upper integral is an additive box function.

$$
\begin{align*}
\int(f+g) & \leq \int^{*} f+\int_{*}^{*} g \tag{6~d9}\\
\int(f+g) & \geq{ }_{*}^{*} f f+\int_{*} \int g \tag{6~d10}
\end{align*}
$$

$(6 \mathrm{~d} 11) \quad$ if f, g are integrable then $f+g$ is, and $\quad \int(f+g)=\int f+\int g$.

$$
\rho([f],[g])=\|[f]-[g]\|=\int_{B}^{*}|f-g|
$$

this is the integral metric, and the corresponding convergence is the integral convergence.
6e3 Exercise. (a) A function equivalent to an integrable function is integrable;
(b) equivalence classes of integrable functions are a closed set in the normed space of equivalence classes, and the functional $[f] \mapsto \int_{B} f$ on this set is continuous.

6f5 Proposition. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bounded function with bounded support, and $\varepsilon>0$. Then there exist continuous $g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with bounded support such that

$$
g(\cdot) \leq f(\cdot) \leq h(\cdot), \quad \int_{\mathbb{R}^{n}}(h-g) \leq \varepsilon+\int_{\mathbb{R}^{n}}^{*} f-\int_{*} f
$$

And, of course,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} g \geq-\varepsilon+\int_{*} f, \quad \int_{\mathbb{R}^{n}} h \leq \varepsilon+\int_{\mathbb{R}^{n}} f \tag{6f6}
\end{equation*}
$$

6f7 Corollary. Continuous functions are dense among integrable functions (in the integral metric)

If f and g are integrable then $\min (f, g), \max (f, g)$ and $f g$ are integrable.

6g1 Definition. Let $E \subset \mathbb{R}^{n}$ be a bounded set.

$$
v_{*}(E)=\int_{*} \mathbb{1}_{E}, \quad v^{*}(E)=\int_{\mathbb{R}^{n}}^{*} \mathbb{1}_{E}
$$

If they are equal (that is, if $\mathbb{1}_{E}$ is integrable) then E is Jordan measurable, and its Jordan measure is

$$
\text { if } E_{1}, E_{2} \text { are Jordan measurable then } E_{1} \uplus E_{2} \text { is, and }
$$

$$
v\left(E_{1} \uplus E_{2}\right)=v\left(E_{1}\right)+v\left(E_{2}\right)
$$

We may ignore values of integrands (as far as they are bounded) on sets of volume zero We may ignore sets of volume zero when dealing with Jordan measure.

$$
\begin{align*}
\int_{E} f & =\int_{\mathbb{R}^{n}} f \cdot \mathbb{1}_{E} \tag{6~g16}\\
\int_{E_{1} \uplus E_{2}} f & =\int_{E_{1}} f+\int_{E_{2}} f . \tag{6~g17}
\end{align*}
$$

(6g18) $\quad \int_{E} f=\int_{E} a \quad$ where $\quad a=\frac{1}{v(E)} \int_{E} f \quad$ is the mean (value) of f on E.
6h1 Proposition. Let $f: B \rightarrow[0, \infty)$ be an integrable function on a box $B \subset \mathbb{R}^{n}$, and

$$
E=\{(x, t): x \in B, 0 \leq t \leq f(x)\} \subset \mathbb{R}^{n+1}
$$

Then E is Jordan measurable (in \mathbb{R}^{n+1}), and

$$
v(E)=\int_{B} f
$$

(7b1) $\quad|f(x)-f(y)| \leq L|x-y| \quad$ for all $x, y . \quad$ (Lipschitz condition)
7b4 Proposition. Let two boxes $B_{1} \subset \mathbb{R}^{m}, B_{2} \subset \mathbb{R}^{n}$ be given, and a Lipschitz function f on a box $B=B_{1} \times B_{2} \subset \mathbb{R}^{m+n}$. Then
(a) for every $x \in B_{1}$ the function f_{x} is Lipschitz continuous on B_{2};
(b) the function $x \mapsto \int_{B_{2}} f_{x}$ is Lipschitz continuous on B_{1};

$$
\begin{equation*}
\int_{B} f=\int_{B_{1}}\left(x \mapsto \int_{B_{2}} f_{x}\right) \tag{c}
\end{equation*}
$$

7 b 6 Exercise. Prove that

$$
\begin{aligned}
\int_{B_{1} \times B_{2}} f\left(x_{1}, \ldots,\right. & \left.x_{m}\right) g\left(y_{1}, \ldots, y_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{m} \mathrm{~d} y_{1} \ldots \mathrm{~d} y_{n}= \\
& =\left(\int_{B_{1}} f\left(x_{1}, \ldots, x_{m}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{m}\right)\left(\int_{B_{2}} g\left(y_{1}, \ldots, y_{n}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{n}\right)
\end{aligned}
$$

for Lipschitz functions $f: B_{1} \rightarrow \mathbb{R}, g: B_{2} \rightarrow \mathbb{R}$.

[^0]7d1 Theorem. Let two boxes $B_{1} \subset \mathbb{R}^{m}, B_{2} \subset \mathbb{R}^{n}$ be given, and an integrable function f on the box $B=B_{1} \times B_{2} \subset \mathbb{R}^{m+n}$. Then the iterated integrals

$$
\begin{array}{ll}
\int_{B_{1}} \mathrm{~d} x \int_{B_{2}} \mathrm{~d} y f(x, y), & \int_{B_{1}} \mathrm{~d} x \int_{B_{2}}^{*} \mathrm{~d} y f(x, y), \\
\int_{B_{2}} \mathrm{~d} y \int_{B_{1}} \mathrm{~d} x f(x, y), & \int_{B_{2}} \mathrm{~d} y \int_{B_{1}}^{*} \mathrm{~d} x f(x, y)
\end{array}
$$

are well-defined and equal to

$$
\iint_{B} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

7d3 Exercise. Generalize 7b6 to integrable functions
(a) assuming integrability of the function $(x, y) \mapsto f(x) g(y)$,
(b) deducing integrability of the function $(x, y) \mapsto f(x) g(y)$ from integrability of f and g (via sandwich).

7 d 6 Exercise. If $E_{1} \subset \mathbb{R}^{m}$ and $E_{2} \subset \mathbb{R}^{n}$ are Jordan measurable sets then the set $E=E_{1} \times E_{2} \subset \mathbb{R}^{m+n}$ is Jordan measurable.

7d8 Corollary. Let $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$ be integrable on every box, and $E \subset \mathbb{R}^{m+n}$ a Jordan measurable set; then

$$
\int_{E} f=\int_{\mathbb{R}^{m}}\left(x \mapsto \int_{E_{x}} f_{x}\right)
$$

where $E_{x}=\{y:(x, y) \in E\} \subset \mathbb{R}^{n}$ for $x \in \mathbb{R}^{m}$.

$$
\begin{equation*}
v_{m+n}(E)=\int_{\mathbb{R}^{m}} v_{n}\left(E_{x}\right) \mathrm{d} x \tag{7d9}
\end{equation*}
$$

7d10 Corollary (Cavalieri). If Jordan measurable sets $E, F \subset \mathbb{R}^{3}$ satisfy $v_{2}\left(E_{x}\right)=$ $v_{2}\left(F_{x}\right)$ for all x then $v_{3}(E)=v_{3}(F)$.
7d28 Exercise. Every $f \in C^{0}\left(\mathbb{R}^{n}\right)$ with bounded support is the limit of some uniformly convergent sequence of functions of $C^{1}\left(\mathbb{R}^{n}\right)$.

7e1 Theorem. Let $B \subset \mathbb{R}^{n}$ be a box, and $f, g: B \times[0,1] \rightarrow \mathbb{R}$ Lipschitz functions such that $f_{x}^{\prime}(t)=g_{x}(t)$ for all $x \in B, t \in(0,1)$. Then $F^{\prime}(t)=G(t)$ for all $t \in(0,1)$, where $F(t)=\int_{B} f(x, t) \mathrm{d} x$ and $G(t)=\int_{B} g(x, t) \mathrm{d} x$.

7e3 Exercise. (b) every $f \in C^{0}\left(\mathbb{R}^{n}\right)$ with bounded support is the limit of some uniformly convergent sequence of functions of $C^{2}\left(\mathbb{R}^{n}\right)$;
(c) the same as (b), but replace $C^{2}\left(\mathbb{R}^{n}\right)$ with $C^{k}\left(\mathbb{R}^{n}\right), k=1,2,3, \ldots$

8b11 Proposition. ${ }^{*} \int(f+g)={ }^{*} \int f+{ }^{*} \int g$ for all upper semicontinuous bounded functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with bounded support.

8 c 7 Lemma. If a superadditive box function F satisfies ${ }_{*} F^{\prime}(x) \geq 0$ for all $x \in \bar{B}_{0}\left(B_{0}\right.$ being a given box), then $F\left(\bar{B}_{0}\right) \geq 0$.

$$
\begin{equation*}
F(B)=\int_{B} F^{\prime} \quad \text { whenever } F^{\prime} \text { exists and is integrable on } B \tag{8c10}
\end{equation*}
$$

8c11 Exercise.

$$
\int_{B}{ }^{*} F^{\prime} \leq F(B) \leq \int_{B}^{*}{ }^{*} F^{\prime}
$$

for every box B and additive box function F such that ${ }_{*} F^{\prime}$ and ${ }^{*} F^{\prime}$ are bounded on B. 8d2 Proposition. ${ }^{*} f f-_{*} \int f={ }^{*} \mathrm{Osc}_{f}$ for all bounded $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with bounded support.
8d3 Corollary. A bounded function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with bounded support is integrable if and only if Osc_{f} is negligible.
8d4 Corollary. For every bounded $A \subset \mathbb{R}^{n}$,
(a) $v^{*}(A)-v_{*}(A)=v^{*}(\partial A)$;
(b) A is Jordan measurable if and only if ∂A is of volume zero.

(8d5)

$$
(f \text { is integrable on a Jordan set } E) \Longleftrightarrow\left(\operatorname{Osc}_{f} \text { is negligible on } E^{\circ}\right)
$$

Extended integral: $\int^{\mathrm{e}}(f-g)=\int^{*} f-\int^{*} g$ for upper semicontinuous f, g.

$$
\begin{gathered}
\odot v(K)=v^{*}(K) \text { for compact } K \subset \mathbb{R}^{n}, \\
\bullet v(G)=v_{*}(G) \text { for open bounded } G \subset \mathbb{R}^{n} .
\end{gathered}
$$

8e5 Definition. For a bounded set $A \subset \mathbb{R}^{n}$,

$$
m_{*}(A)=\sup _{K \subset A} v^{*}(K), \quad m^{*}(A)=\inf _{G \supset A} v_{*}(G)
$$

(here K runs over compact sets, and G over open bounded sets); if these are equal, then A is Lebesgue measurable, and its Lebesgue measure is

$$
m(A)=m_{*}(A)=m^{*}(A)
$$

8e6 Lemma. Every open bounded set is Lebesgue measurable. That is,

$$
v_{*}(G)=\sup _{K \subset G} v^{*}(K) \quad \text { for every open bounded } G \subset \mathbb{R}^{n}
$$

the supremum being taken over all compact subsets of G.
8e7 Exercise. Every compact set is Lebesgue measurable. That is,

$$
v^{*}(K)=\inf _{G \supset K} v_{*}(G) \text { for every compact } K \subset \mathbb{R}^{n},
$$

the infimum being taken over all open bounded $G \supset K$.
8e9 Proposition. (Monotone convergence for open sets) For all open bounded sets $G, G_{1}, G_{2}, \cdots \subset \mathbb{R}^{n}$,

$$
G_{i} \uparrow G \quad \Longrightarrow \quad v_{*}\left(G_{i}\right) \uparrow v_{*}(G) .
$$

8e10 Corollary. $v_{*}\left(G_{1} \cup G_{2} \cup \ldots\right) \leq v_{*}\left(G_{1}\right)+v_{*}\left(G_{2}\right)+\ldots$ for all open $G_{1}, G_{2}, \cdots \subset \mathbb{R}^{n}$ whose union is bounded.
8e11 Exercise. (Monotone convergence for compact sets) For all compact sets $K, K_{1}, K_{2}, \cdots \subset \mathbb{R}^{n}$,

$$
K_{i} \downarrow K \quad \Longrightarrow \quad v^{*}\left(K_{i}\right) \downarrow v^{*}(K)
$$

8f1 Theorem (Lebesgue's criterion). A bounded function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with bounded support is integrable if and only if it is continuous almost everywhere.

[^0]: Existence of an iterated integral does not ensure existence of the two-dimensional integral.

