
9a1 Theorem. Let U, V ⊂ Rn be Jordan measurable open sets, ϕ : U → V a diffeomor-
phism, and f : V → R a bounded function such that the function (f◦ϕ)|detDϕ| : U → R
is also bounded. Then

(a) f is integrable on V if and only if (f ◦ ϕ)|detDϕ| is integrable on U ; and

(b) if they are integrable, then

∫
V

f =

∫
U

(f ◦ ϕ)|detDϕ|.

9b9 Proposition (the second Pappus’s centroid theorem). Let Ω ⊂ (0,∞) × R ⊂ R2

be a Jordan measurable set and Ω̃ = {(x, y, z) :
(√

x2 + y2, z
)
∈ Ω} ⊂ R3. Then Ω̃ is

Jordan measurable and v3(Ω̃) = v2(Ω) · 2πxCΩ
(CΩ = (xCΩ

, zCΩ
) is the centroid of Ω).

9c1 Theorem. Let T : Rn → Rn be a linear isometry, and f : Rn → R a bounded
function with bounded support. Then (a) ∗

∫
Rn f ◦ T = ∗

∫
Rn f ,

∗∫
Rn f ◦ T =

∗∫
Rn f ;

(b) f ◦ T is integrable if and only if f is integrable, and in this case∫
Rn

f ◦ T =

∫
Rn

f .

9c2 Corollary. (a) v∗
(
T (E)

)
= v∗(E) and v∗

(
T (E)

)
= v∗(E) for all bounded E ⊂ Rn;

(b) T (E) is Jordan measurable if and only if E is, and then v
(
T (E)

)
= v(E).

Riemann integral and Jordan measure are well-defined on every n-dimensional Eu-
clidean affine space, and preserved by affine isometries between these spaces.

9c3 Lemma. For every norm ‖ · ‖ on Rn, the set {x : ‖x‖ = 1} is of volume zero, and
the sets {x : ‖x‖ < 1}, {x : ‖x‖ ≤ 1} are Jordan measurable.

9d1 Theorem. Let T : Rn → Rn be an invertible linear operator. Then the image T (E)
of an arbitrary E ⊂ Rn is Jordan measurable if and only if E is Jordan measurable, and
in this case

v
(
T (E)

)
= |detT |v(E) .

Also, for every bounded function f : Rn → R with bounded support, |detT | ∗
∫
f ◦ T =

∗
∫
f and |detT |∗

∫
f ◦T =

∗∫
f . Thus, f ◦T is integrable if and only if f is integrable,

and in this case
|detT |

∫
f ◦ T =

∫
f .

On an n-dimensional vector or affine space the volume is ill-defined, but Jordan

measurability is well-defined, and the ratio v(E1)
v(E2) of volumes is well-defined. That is,

the volume is well-defined up to a coefficient.

(9f1) F∗(B) = v∗(ϕ
−1(B◦)) , F ∗(B) = v∗(ϕ−1(B))

(9f2) J∗(x) = inf
(Bi)i

lim
i

v∗(ϕ
−1(B◦i ))

v(Bi)
, J∗(x) = sup

(Bi)i

lim
i

v∗(ϕ−1(Bi))

v(Bi)

9f3 Proposition. If J∗, J
∗ are locally integrable and equivalent then F∗(B) = F ∗(B) =∫

B
J∗ =

∫
B
J∗ for every box B.

In this case (9f4) v
(
ϕ−1(B)

)
=
∫
B
J where J is any function equivalent to J∗, J

∗.

9g1 Proposition. If ϕ : Rm → Rn is such that J∗, J
∗ are locally integrable and equiv-

alent then for every integrable f : Rn → R the function f ◦ ϕ : Rm → R is integrable
and

∫
Rm f ◦ ϕ =

∫
Rn fJ .

9h1 Proposition. Let U, V ⊂ Rn be open sets and ϕ : V → U a diffeomorphism, then
J∗(x) = J∗(x) = |det(Dψ)x|

for all x ∈ U ; here ψ = ϕ−1 : U → V .

(10b1)

∫
G

f = sup

{∫
Rn

g

∣∣∣∣ g : Rn → R integrable,

0 ≤ g ≤ f on G, g = 0 on Rn \G
}
∈ [0,∞] .

(10b4) (Poisson)

+∞∫
−∞

e−x
2

dx =
√
π .

10b9 Proposition (exhaustion). For open sets G,G1, G2, · · · ⊂ Rn,

Gk ↑ G =⇒
∫
Gk

f ↑
∫
G

f ∈ [0,∞]

for all f : G→ [0,∞) continuous almost everywhere.

10b10 Proposition.
∫
G

(f1 + f2) =
∫
G
f1 +

∫
G
f2 ∈ [0,∞] for all f1, f2 ≥ 0 on G,

continuous almost everywhere.

(10d1) Γ(t) =

∫ ∞
0

xt−1e−x dx for t > 0 ; (10d2) Γ(t+ 1) = tΓ(t) ;

(10d3) Γ(n+ 1) = n! for n = 0, 1, 2, . . . (10d5) Γ
(1

2

)
=
√
π .

(10d7) The volume of the n-dimensional unit ball: Vn =
πn/2

n
2 Γ(n2 )

.

(10d8)

∫ π/2

0

cosα−1 θ sinβ−1 θ dθ =
1

2

Γ(α2 )Γ(β2 )

Γ(α+β
2 )

for α, β ∈ (0,∞) .

(10d9)

∫ π/2

0

sinα−1 θ dθ =

∫ π/2

0

cosα−1 θ dθ =

√
π

2
·

Γ
(
α
2

)
Γ
(
α+1

2

) .
(10d10)

∫ 1

0

xα−1(1− x)β−1 dx = B(α, β) for α, β ∈ (0,∞) ,

(10d11) B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
for α, β ∈ (0,∞) .

Γ(k)(t) =

∫ ∞
0

xt−1e−x(lnx)k dx for k = 1, 2, . . .

(10e4)

∫
G

f =

∫
G

f+−
∫
G

f− whenever f : G→ R is continuous almost everywhere and

such that
∫
G
|f | <∞ (improperly integrable).

10e5 Exercise. Linearity:
∫
G
cf = c

∫
G
f for c ∈ R, and

∫
G

(f1 + f2) =
∫
G
f1 +

∫
G
f2.



10e7 Corollary. Let G1 ⊂ G2 ⊂ Rn be two open sets, and f : G2 → R improperly
integrable. If f = 0 almost everywhere on G2 \G1, then

∫
G2
f =

∫
G1
f .

10e8 Proposition (Exhaustion). Let open sets G1 ⊂ G2 ⊂ · · · ⊂ G ⊂ Rn be such that
∪kGk contains almost all points of G. Then∫

Gk

f →
∫
G

f as k →∞

for all f improperly integrable on G.

10e9 Proposition. Let G ⊂ Rn be an open set, and f an improperly integrable function
on G. Then there exist Jordan measurable open sets G1 ⊂ G2 ⊂ . . . such that Gk ⊂ G,
∪kGk contains almost all points of G, and f is defined and bounded on every Gk.

We consider the vector space of all square integrable equivalence classes, with the inner
product 〈[f ], [g]〉 =

∫
fg and the corresponding norm ‖[f ]‖2 = ‖f‖2 =

(∫
f2
)

1/2.
The triangle inequality: ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.
The Cauchy-Schwarz inequality: −‖f‖2‖g‖2 ≤ 〈f, g〉 ≤ ‖f‖2‖g‖2.

10f1 Theorem. Let U, V ⊂ Rn be open sets, ϕ : U → V a diffeomorphism, and
f : V → R. Then

(a) f is improperly integrable on V if and only if (f ◦ ϕ)|detDϕ| is improperly inte-
grable on U ; and

(b) in this case ∫
V

f =

∫
U

(f ◦ ϕ)|detDϕ| .

(10g1)

∫
· · ·
∫

x1,...xn>0,
x1+···+xn<1

xp1−1
1 . . . xpn−1

n dx1 . . . dxn =
Γ(p1) . . .Γ(pn)

Γ(p1 + · · ·+ pn + 1)

for all p1, . . . pn > 0.

The volume of the unit ball in the metric lp: v
(
Bp(1)

)
=

2nΓn
(

1
p

)
pnΓ

(
n
p + 1

) .
(10g3)

∫
· · ·
∫

x1+···+xn<1
x1,...,xn>0

ϕ(x1 + · · ·+ xn) dx1 . . . dxn =
1

(n− 1)!

∫ 1

0

ϕ(s)sn−1 ds .

11e10 Definition. A differential form of order k and of class Cm on Rn is a function
ω : Rn × (Rn)k → R of class Cm such that for every x ∈ Rn the function ω(x, ·, . . . , ·) is
an antisymmetric multililear k-form on Rn.

(11e12)

∫
Γ

ω =

∫
B

ω
(
Γ(u), (D1Γ)u, . . . , (DkΓ)u

)
du .

Antisymmetric multililear k-forms on Rn are a vector space of dimension
(
n
k

)
.

12b4 Proposition. The following three conditions on a set M ⊂ RN and a point
x0 ∈M are equivalent:

(a) there exists an n-chart of M around x0;
(b) there exists an n-cochart of M around x0;
(c) there exists a local diffeomorphism h : RN → RN near x0 such that

(u, v) ∈M ⇐⇒ h(u, v) ∈ Rn × {0N−n}
for all (u, v) ∈ Rn × RN−n near x0.

12b8 Definition. A nonempty set M ⊂ RN is an n-dimensional manifold (or n-mani-
fold) if for every x0 ∈M there exists an n-chart of M around x0.

12b9 Exercise. Let M1 be an n1-manifold in RN1 , and M2 an n2-manifold in RN2 ;
then M1 ×M2 is an (n1 + n2)-manifold in RN1+N2 .

12b10 Definition. Let M ⊂ RN be an n-manifold; a function f : M → R is contin-
uously differentiable if for every chart (G,ψ) of M the function f ◦ ψ is continuously
differentiable on G.

12b19 Exercise. Let (G,ψ) be a chart around x0 = ψ(u0) and (U,ϕ) a co-chart around
x0. The following three conditions on a vector h ∈ RN are equivalent:

(a) h is a tangent vector (at x0);
(b) h belongs to the image of the linear operator (Dψ)u0 : Rn → RN ;
(c) h belongs to the kernel of the linear operator (Dϕ)x0 : RN → RN−n.

12c1 Definition. A differential form of order k (or k-form) on an n-manifold M ⊂ RN
is a continuous function ω on the set {(x, h1, . . . , hk) : x ∈ M, h1, . . . , hk ∈ TxM} such
that for every x ∈ M the function ω(x, ·, . . . , ·) is an antisymmetric multililear k-form
on TxM .

(12c2)

∫
(G,ψ)

ω =

∫
G

ω
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
du .

12c3 Proposition. Let (G1, ψ1), (G2, ψ2) be two charts of an oriented manifold (M,O).
If ψ1(G1) = ψ2(G2) then ∫

(G1,ψ1)

ω =

∫
(G2,ψ2)

ω

for every n-form ω on M ; that is, either these two integrals converge and are equal, or
both integrals diverge.

12c6 Definition. An n-form µ on an oriented n-manifold (M,O) in RN is the volume
form, if for every x ∈ M the antisymmetric multililear n-form µ(x, ·, . . . , ·) on TxM is
normalized and corresponds to the orientation Ox.

Jψ(u) =
√

det
(
〈(Diψ)u, (Djψ)u〉

)
i,j the (generalized) Jacobian

(12c16)

∫
U

f =

∫
G

f(ψ(u))Jψ(u) du .

Here U = ψ(G) for an n-chart (G,ψ) of (M,O).

12c19 Lemma. Jψ =
√

1 + |∇f |2.

13a3 Lemma. Let M ⊂ RN be an n-manifold and K ⊂M a compact set. Then there
exist single-chart continuous functions ρ1, . . . , ρi : M → [0, 1] such that ρ1 + · · ·+ ρi = 1
on K.

(13a7)

∫
M

f =

∫
(G,ψ)

fµ(G,ψ) =

∫
G

(f ◦ ψ)Jψ .



product v(M1 ×M2) = v(M1)v(M2) .(13a13)

scaling v(sM) = snv(M) .(13a14)
motion v(T (M)) = v(M) ;

∫
T (M)

f ◦ T−1 =
∫
M
f .(13a15)

cylinder v(M) = (b− a)|h|v(M1) .(13a16)

cone v(M) = c
n+1 (bn+1 − an+1)v(M1) .(13a17)

revolution v(M) = 2π
∫
M1
|y| .(13a18)

(13b3)

∫
Rn

∇f = 0 if f ∈ C1(Rn) has a bounded support.

(13b6) nx =
1√

1 + |∇g|2
(
−(D1g), . . . ,−(Dng), 1

)
.

(13b7) ∇sng f(x) =
(
f(x+ 0nx)− f(x− 0nx)

)
nx .

13b9 Theorem. Let M ⊂ Rn+1 be an n-manifold, K ⊂ M a compact subset, and
f : Rn+1 \K → R a function such that

(a) f is continuously differentiable (on Rn+1 \K);
(b) f |Rn+1\M is continuous up to M ;

(c) f has a bounded support, and ∇f is bounded (on Rn+1 \K).
Then ∫

Rn+1\K
∇f +

∫
M

∇sng f = 0 .

13b11 Lemma. Let (U1, . . . , U`) be an open covering of a compact set K ⊂ RN . Then
there exist functions ρ1, . . . , ρi ∈ C1(RN ) such that ρ1 + · · ·+ ρi = 1 on K and each ρj
has a compact support within some Um.

(13b13)

∫
RN\K

u∇v = −
∫
RN\K

v∇u−
∫
M

∇sng(uv) .

(13b14)

∫
RN

u∇v = −
∫
RN

v∇u for u, v ∈ C1(RN ), uv compactly supported.

(13b15)

∫
G

∇f =

∫
M

fn .

13c1 Theorem. Let G ⊂ Rn+1 be an open set, ϕ ∈ C1(G), ∀x ∈ G ∇ϕ(x) 6= 0, and
f ∈ C(G) compactly supported. Then for every c ∈ ϕ(G) the set Mc = {x ∈ G :
ϕ(x) = c} is an n-manifold in Rn+1, the function c 7→

∫
Mc

f on ϕ(G) is continuous and

compactly supported, and ∫
ϕ(G)

dc

∫
Mc

f =

∫
G

f |∇ϕ| .

(13c8)

∫ ∞
0

dr

∫
|·|=r

f =

∫
|·|>0

f ; (13c9) sphere: v(S1) =
2πN/2

Γ(N/2)
.

(14a4) divF = tr(DF ) = D1F1 + · · ·+DnFn = (∇F1)1 + · · ·+ (∇Fn)n .

(14a5)

∫
Rn

divF = 0 if F ∈ C1(Rn → Rn) has a bounded support.

(14b1) divsng F (x) = 〈F (x+ 0nx)− F (x− 0nx),nx〉 .

(14b2) divsng F =

N∑
k=1

(
∇sng Fk)k .

14b3 Theorem. Let M ⊂ Rn+1 be an n-manifold, K ⊂ M a compact subset, and
F : Rn+1 \K → Rn+1 a mapping such that

(a) F is continuously differentiable (on Rn+1 \K);
(b) F |Rn+1\M is continuous up to M ;

(c) F has a bounded support, and DF is bounded (on Rn+1 \K).
Then ∫

Rn+1\K
divF +

∫
M

divsng f = 0 .

(14c2)

∫
G

divF =

∫
∂G

〈F,n〉 . (flux of F through ∂G)

14c3 Theorem (Divergence theorem). Let G ⊂ Rn+1 be a bounded regular open set,
∂G an n-manifold, F : G→ Rn+1 continuous, F |G ∈ C1(G→ Rn+1), with DF bounded
on G.

Then the integral of divF over G is equal to the (outward) flux of F through ∂G.

14c5 Exercise. div(fF ) = f divF + 〈∇f, F 〉 whenever f ∈ C1(G) and F ∈ C1(G →
RN ).

(14c6)

∫
G

〈∇f, F 〉 =

∫
∂G

f〈F,n〉 −
∫
G

f divF .

(14d1) ∆f = div∇f ; f is harmonic, if ∆f = 0.

(14d2)

∫
G

∆f =

∫
∂G

〈∇f,n〉 =

∫
∂G

Dnf , first Green formula

(14d3)

∫
G

(u∆v + 〈∇u,∇v〉) =

∫
∂G

〈u∇v,n〉 =

∫
∂G

uDnv , second Green formula

(14d4)

∫
G

(u∆v − v∆u) =

∫
∂G

(uDnv − vDnu) , third Green formula

14e1 Lemma. ∫
RN

∆f(x)

|x|N−2
dx = −(N − 2)

2πN/2

Γ(N/2)
f(0)

for every N > 2 and f ∈ C2(RN ) with a compact support.

14e2 Remark. For N = 2 the situation is similar:∫
R2

∆f(x) log |x|dx = 2πf(0)

for every compactly supported f ∈ C2(R2).



14e3 Remark. Let G ⊂ RN be a bounded regular open set, ∂G an n-manifold, f ∈
C2(G) with bounded second derivatives, and 0 ∈ G. Then∫

G

∆f(x)

|x|N−2
dx = −(N − 2)

2πN/2

Γ(N/2)
f(0)−

−
∫
∂G

(
x 7→ f(x)Dn

1

|x|N−2

)
+

∫
∂G

(
x 7→ (Dnf(x))

1

|x|N−2

)
.

The case N = 2 is similar to 14e2, of course.

14e4 Proposition (Mean value property). For every harmonic function on a ball, with
bounded second derivatives, its value at the center of the ball is equal to its mean value
on the boundary of the ball.

14e7 Exercise (Maximum principle for harmonic functions).
Let u be a harmonic function on a connected open set G ⊂ RN . If supx∈G u(x) = u(x0)
for some x0 ∈ G then u is constant.

(14e8) ∆f(x) = 2N lim
ε→0

1

ε2

((
mean of f on {y : |y − x| = ε}

)
− f(x)

)
.

14e10 Exercise. (a) For every f integrable (properly) on {x : |x| < R},∫
|·|<R f∫
|·|<R 1

=

∫ R

0

∫
|·|=r f∫
|·|=r 1

drN

RN
.

(b) For every bounded harmonic function on a ball, its value at the center of the ball is
equal to its mean value on the ball.

14e11 Proposition. (Liouville’s theorem for harmonic functions)
Every harmonic function RN → [0,∞) is constant.

(15a1,2) C = c1Γ1 + · · ·+ cpΓp ,

∫
C

ω = c1

∫
Γ1

ω + · · ·+ cp

∫
Γp

ω .

(15a3) C1 ∼ C2 means

∫
C1

ω =

∫
C2

ω for all k-forms ω (of class C0) .∫
∂γ

ω = ω(γ(t1))− ω(γ(t0)) for a 0-form ω .

(15b2) (dω)(x, h) = (Dω)x(h) = (Dhω)x .

15b3 Proposition. (Stokes’ theorem for k = 1)
Let C be a 1-chain in Rn, and ω a 0-form of class C1 on Rn. Then∫

C

dω =

∫
∂C

ω .

∂Γ = Γ|AB + Γ|BC + Γ|CD + Γ|DA ; ∂(∂Γ) ∼ 0 for a singular 2-box Γ .

15c2 Definition. The exterior derivative of a 1-form ω of class C1 is the 2-form dω
defined by

(dω)(·, h, k) = Dhω(·, k)−Dkω(·, h) .

15c3 Theorem. (Stokes’ theorem for k = 2)
Let C be a 2-chain in Rn, and ω a 1-form of class C1 on Rn. Then∫

C

dω =

∫
∂C

ω .

15c4 Exercise. For a 1-form ω = f(x, y) dx+ g(x, y) dy we have dω = (D1g−D2f)µ2,
where µ2 is the volume form on R2.

(15d1) ω(x, h1, . . . , hn) = 〈F (x), h1 × · · · × hn〉 . ω|M = 〈F,n〉µ(M,O) .

(15d2) Flux of (vector field) F through (oriented hypersurface) (M,O) is

∫
M

〈F,n〉 .

(15d3)

∫
(M,O)

ω =

∫
M

〈F,n〉

15d4 Exercise. For a 1-form ω = f(x, y) dx + g(x, y) dy on R2 (or an open subset of
R2) the corresponding vector field is F = (F1, F2) = (g,−f), and dω = (divF )µ2.

(15e1)

∫
∂B

f =

N∑
i=1

∑
xi=0,1

∫
· · ·
∫

(0,1)n

f(x1, . . . , xN )
∏
j:j 6=i

dxj ,

(15e2)

∫
∂B

〈F,n〉 =

N∑
i=1

∑
xi=0,1

(2xi − 1)

∫
· · ·
∫

(0,1)n

Fi(x1, . . . , xN )
∏
j:j 6=i

dxj .

15e3 Proposition. Let F ∈ C1
(
(0, 1)N → RN

)
, with DF bounded. Then the integral

of divF over (0, 1)N is equal to the (outward) flux of F through the boundary.

∆i,a(u1, . . . , un) = (u1, . . . , ui−1, a, ui, . . . , un) for u ∈ (0, 1)n

(15e4) ∂B =

N∑
i=1

∑
a=0,1

(−1)i−1(2a− 1)∆i,a .

(15e5)

∫
∂B

ω =

∫
∂B

〈F,n〉

(15e6) ∂Γ =

N∑
i=1

∑
a=0,1

(−1)i−1(2a− 1)Γ ◦∆i,a .

15f1 Definition. The exterior derivative of a (k − 1)-form ω of class C1 is the k-form
dω defined by

(dω)(·, h1, . . . , hk) =

k∑
i=1

(−1)i−1Dhi
ω(·, h1, . . . , hi−1, hi+1, . . . , hk) .

15f2 Theorem. (Stokes’ theorem)
Let C be a k-chain in RN , and ω a (k − 1)-form of class C1 on RN . Then∫

C

dω =

∫
∂C

ω .


