9al Theorem. Let U,V C R™ be Jordan measurable open sets, ¢ : U — V a diffeomor-
phism, and f : V — R a bounded function such that the function (fop)|det Dp|: U — R

is also bounded. Then
(a) f is integrable on V' if and only if (f o )| det Dy| is integrable on U; and

/Vf=/U(fow)|detDs0\~

(b) if they are integrable, then

9gl1 Proposition. If ¢ : R"™ — R™ is such that J,, J* are locally integrable and equiv-
alent then for every integrable f : R — R the function f o ¢ : R™ — R is integrable

and [p. fo@ = [on fJ.

9h1 Proposition. Let U,V C R"™ be open sets and ¢ : V — U a diffeomorphism, then
Ji(x) = J*(z) = | det(Dv),|

forallz € U; here p = o=t : U — V.

9b9 Proposition (the second Pappus’s centroid theorem). Let Q C (0,00) x R C R?
be a Jordan measurable set and Q = {(z,y, 2) : (\/:c2 +y2,z) € Q} C R3. Then Q is
Jordan measurable and v3(Q) = v2(Q) - 27z, (Cao = (Tcy, 2c,) is the centroid of ).

9cl Theorem. Let T : R® — R™ be a linear isometry, and f : R™ — R a bounded
function with bounded support. Then (a) _ [p. foT = |, [en [, Jan foT = Jon f3
(b) foT is integrable if and only if f is integrable, and in this case

foT= f.
R’VL R’Vl

9c2 Corollary. (a) v, (T(E)) = v.(E) and v*(T(E)) = v*(E) for all bounded E C R";
(b) T(E) is Jordan measurable if and only if E is, and then v(T(E)) = v(E).

Riemann integral and Jordan measure are well-defined on every n-dimensional Eu-
clidean affine space, and preserved by affine isometries between these spaces.

9¢3 Lemma. For every norm || - || on R", the set {z
the sets {z : ||z]| < 1}, {x:

9d1 Theorem. Let T : R™ — R” be an invertible linear operator. Then the image T'(E)
of an arbitrary £ C R™ is Jordan measurable if and only if F is Jordan measurable, and
in this case

v(T(E)) = |det T|v(E).
Also, for every bounded function f : R™ — R with bounded support, | det T)| *ff oT =
JJf and [detT|[foT ="[f.Thus, foT is integrable if and only if f is integrable,

and in this case
|detT|/foT:/f.

On an n-dimensional vector or affine space the volume is ill-defined, but Jordan
measurability is well-defined, and the ratio ZEE;
the volume is well-defined up to a coefficient.

(9f1) F.(B) = v(¢7'(B%)),

. ||zl = 1} is of volume zero, and
lz]] <1} are Jordan measurable.

of volumes is well-defined. That is,

F*(B) =v* (¢~ !(B))
v~ (BY)) v (9~ (Bi))
v(B;) ’ v(B;)

9f3 Proposition. If J,, J* are locally integrable and equivalent then F(B)
JgJs =[5 J* for every box B.

In this case (94) v(¢~!(B))

(9£2) Ji(z) = inf lim

Jnf T J*(x) = sup lim
i)i v

(Bi)i *

= fB J where J is any function equivalent to J,, J*.

(10b1) /f—sup{/ ’g R™ — R integrable,
® 0<g< fonG, g—OonR"\G}e[O,oo}.
+o00

/e*zzdx:ﬁ.

—0o0

(10b4) (Poisson)

10b9 Proposition (exhaustion). For open sets G, G1,Ga, -+ C R"
Gte — [ 11 [ e
Gy e

for all f: G — [0,00) continuous almost everywhere.

fgfl + foz

3

10b10 Proposition. [,(f1 + f2)
continuous almost everywhere.

[0,00] for all f1,f2 > 0 on G,

(10d1) I(t) = / ' le ™ dx fort > 0; (10d2) Lt+1)=tI'(t);
0
(10d3) T(n+1)=n! forn=012..  (10d5) F(%) =7
n/2
(10d7) The volume of the n-dimensional unit ball: V,, = 5T (E)
2°\2
/2 1T(3)0(3)
(10d8) / cos® 1 hsin®1de = = 2a 52 for a, 8 € (0,00) .
0 2 T(*57)
/2 /2 (e
(10d9) / sin® 19 dh = / cos® 10df = VT giz .
0 0 2 r(5)
1
(10d10) / 271 —2)?~lde = B(a, B) for a, 8 € (0,00),
0
['(a)T(5)
10d11 B(a, ) = =——~= for a,5 € (0,00).
(10d11) @0 = Tagg ©rede0)
() = e le ™ (Inz)fde for k=1,2,...

(10e4) /Gf

such that [ |f| < co (improperly integrable).
10e5 Exercise. Linearity: [ cf =c [, f for c € R, and [,(f1 + fo

= / I / f~ whenever f: G — R is continuous almost everywhere and
G G

)= Jo i+ [ fo



10e7 Corollary. Let G; C G2 C R™ be two open sets, and f : G2 — R improperly
integrable. If f = 0 almost everywhere on Go \ G, then [, f= [, f

10e8 Proposition (Exhaustion). Let open sets G; C G3 C --- C G C R™ be such that
Ur G contains almost all points of G. Then

/G f—>/Gf as k — oo

for all f improperly integrable on G.

10e9 Proposition. Let G C R™ be an open set, and f an improperly integrable function
on GG. Then there exist Jordan measurable open sets G; C G5 C ... such that G C G,
Ux Gy contains almost all points of G, and f is defined and bounded on every Gj.

We consider the vector space of all square integrable equivalence classes, with the inner
product ([f],[g]) = [ fg and the corresponding norm ||[f][l2 = || fll2 = (f f2)1/2.

The triangle inequality: ||f + gl|l2 < ||fll2 + |lg]l2-

The Cauchy-Schwarz inequality: —||fll2[lgllz < (f, 9) < || fll2llgll2-
10f1 Theorem. Let U,V C R™ be open sets, ¢ : U — V a diffeomorphism, and

f:V = R. Then
(a) f is improperly integrable on V if and only if (f o )| det D¢y| is improperly inte-

grable on U; and
/ £= [ (topldetDyl.
v U

(b) in this case

- L(p1) ... I(pn)
10g1 bl Pl ey L da, =
(10g1) / /xl Ty, 1 Ty Tor+ -+ pntl)
T1,...25,>0,
T1t Atz <1
for all py,...pn > 0.
or all p1,...p onpn(1)
The volume of the unit ball in the metric l,: v(By(1)) = ————2"—~.
p”F(% + 1)
1 1
(10g3) / / (x1+ -+ zp)dey ... day, (n— i / o(s)s"tds.

1+ +T, <1
L1y, n >0

11e10 Definition. A differential form of order k and of class C™ on R" is a function
w: R™ x (R™")* — R of class C™ such that for every € R” the function w(z,-,...,-) is
an antisymmetric multililear k-form on R™.

[ o= [ ...

Antisymmetric multililear k-forms on R™ are a vector space of dimension (Z)

(11el12) -, (DT),,) du.

12b4 Proposition. The following three conditions on a set M C R and a point
xo € M are equivalent:
(a) there exists an n-chart of M around zo;
(b) there exists an n-cochart of M around wx;
(c) there exists a local diffeomorphism h : RY — RN near xq such that
(u,v) e M <= h(u,v) € R" x {On_pn}
for all (u,v) € R® x RN=" near x.

12b8 Definition. A nonempty set M C RY is an n-dimensional manifold (or n-mani-
fold) if for every x¢ € M there exists an n-chart of M around .

12b9 Exercise. Let M; be an nj-manifold in RY, and M, an ng-manifold in RV2;
then M; x My is an (n + ng)-manifold in RN1+Nz,

12b10 Definition. Let M C RY be an n-manifold; a function f : M — R is contin-
uously differentiable if for every chart (G,v) of M the function f o is continuously
differentiable on G.

12b19 Exercise. Let (G,1) be a chart around zy = 9(ug) and (U, ¢) a co-chart around
xo. The following three conditions on a vector h € R are equivalent:
(a) h is a tangent vector (at xg);
(b) h belongs to the image of the linear operator (D),
(c) h belongs to the kernel of the linear operator (D).,

:R”—HRN;
‘RY 5 RN,

12cl Definition. A differential form of order k (or k-form) on an n-manifold M C RY
is a continuous function w on the set {(z, hy,...,hg) : @ € M, hy,..., hy € T, M} such

that for every x € M the function w(z,-,...,-) is an antisymmetric multililear k-form
on T, M.

(12¢2) s (Dpab)y) du

[ w= [ w0,
(G.¥) G
12¢3 Proposition. Let (G1,1), (G2,12) be two charts of an oriented manifold (M, O).

If ’l/)l(Gl) = wZ(GZ) then
/ /
(G1,¢1) (G27w2)

for every n-form w on M; that is, either these two integrals converge and are equal, or
both integrals diverge.

12¢6 Definition. An n-form g on an oriented n-manifold (M, Q) in R¥ is the volume
form, if for every x € M the antisymmetric multililear n-form p(z,-,...,-) on T, M is
normalized and corresponds to the orientation O,.

\/ det

11/} 'UJ

/f J e

Here U = ¢(G) for an n-chart (G, ) of (M, O)

12¢19 Lemma. J, = /1 + [V f]2.

13a3 Lemma. Let M C RY be an n-manifold and K C M a compact set. Then there
exist single-chart continuous functions p1,...,p; : M — [0,1] such that p; +---+p; =1

on K.
/Mf - /@,w) Fi = /G (f o)y

Dj)u))i,; the (generalized) Jacobian

(12¢16) (u) du.

(13a7)



(13a13) product v(My x My) = v(My)v(Ms)
(13a14) scaling v(sM) = s"v(M).
(13al5) motion v(T(M)) =v(M); fT(M foT ' =[,f
(13a16) cylinder v(M) = (b—a)|hlv(M).
(13a17) cone o(M) = 5 (0" — a" (M) .
(13al8) revolution (M) =2m [, |yl
(13b3) Vf=0 if feC"R"™) has a bounded support.

R‘IL

1

(13b7) vsng f(x) = (f(fﬂ + Onr) - f($ - On1))nm .

13b9 Theorem. Let M C R"™*! be an n-manifold, K C M a compact subset, and
f: R”H \ K — R a function such that

(a) f is continuously differentiable (on R**!\ K);

(b) f|Rn+1\M is continuous up to M;

(c) f has a bounded support, and V f is bounded (on R"*!\ K).
Then

[ i+ [ Was=o.
Rr+H1\ K M

13b11 Lemma. Let (Uy,...,U;) be an open covering of a compact set K C RY. Then
there exist functions p1,...,p; € C*(RY) such that p; + -+ p; = 1 on K and each p;
has a compact support within some U,,.

/ uVou = —/ vVu — / Veng (uv) .
RN\K RN\K M

(13b14) / uVov = 7/ vVu for u,v € C*(RY), wv compactly supported.
RN RN

/GVfZ/an'

(13b13)

(13b15)

(14a5) divF =0 if 7 € C*(R™ — R™) has a bounded support.
be
(14b1) diveng F(z) = (F(z 4+ 0ng) — F(z — Ony),n,) .
N
(14h2) diveng F = > (Ving Fi )i -
k=1

14b3 Theorem. Let M C R"*! be an n-manifold, K C M a compact subset, and
F:R*"\ K — R""! a mapping such that

(a) F is continuously differentiable (on R"™1\ K);

(b) Flgn+1\77 is continuous up to M;

(c) F has a bounded support, and DF is bounded (on R"*!1\ K).
Then

/ diVF+/ divgng f = 0.
Rn+1\ K M

13cl Theorem. Let G C R"*! be an open set, p € C1(G), Vo € G Vp(x) # 0, and
f € C(G) compactly supported. Then for every ¢ € ¢(G) the set M, = {z € G :
¢(x) = c} is an n-manifold in R"*1, the function ¢ — ch f on ¢(G) is continuous and

compactly supported, and
[ e = [ 519l
»(G) M. G

(13c8) /Ood f f (13c9) h (S1) 2n >

¢ r = ; C sphere: v = —.
o Ju=" Jiso VT T(N/2)

(14a4) divF = te(DF) = D1 Fy + -+ DnFp = (VE)1 + -+ (VEu)n

(14c2) (flux of F through 0G)

/ div F :/ (F,n).
G oG
14c3 Theorem (Divergence theorem). Let G C R™*! be a bounded regular open set,

G an n-manifold, F : G — R"*! continuous, F|g € C1(G — R"1), with DF bounded

on G.
Then the integral of div F' over G is equal to the (outward) flux of F through 9G.

14c5 Exercise. div(fF) = fdivF + (Vf, F) whenever f € C}(G) and F € CY(G —

RM).
(14c6) / (Vf,F / f{F,n) /fleF
(14d1) Af=divVf; fis harmonic, if Af =0.
(14d2) / Af = / (Vf,n) = Dy f, first Green formula
a Gle Gle,
(14d3) / (uAv + (Vu, Vu)) = / (uVv,ny = / uDnv, second Green formula
a oG oG
(14d4) / (uAv — vAu) = / (uDyv — vDyu), third Green formula
G oG

14el Lemma. 0 N/2

I'(N/2)
for every N > 2 and f € C?(R") with a compact support.

| 28—~ -2 2 s
R

N |3§‘|N_2

14e2 Remark. For N = 2 the situation is similar:
/ Af(x)log|z|dx = 2w f(0)
RQ

for every compactly supported f € C?(R?).



14e3 Remark. Let G C R¥ be a bounded regular open set, G an n-manifold, f €
C?(G) with bounded second derivatives, and 0 € G. Then

Af(x) 2 V/2
o [ rvy !0~

- /GG (a: — f(x)Dnm%) +/6G (x = (an(x))‘xl%) :

The case N = 2 is similar to of course.

dz =

—(N-2)

14e4 Proposition (Mean value property). For every harmonic function on a ball, with
bounded second derivatives, its value at the center of the ball is equal to its mean value
on the boundary of the ball.

14e7 Exercise (Mazimum principle for harmonic functions).
Let u be a harmonic function on a connected open set G C RY. If sup, ¢ u(x) = u(zo)
for some xy € G then v is constant.

(14¢8) Af(z) = 2Ngiir(1)€i2<(mean of fon{y:|y—a|=¢})— f(a:)) .
14e10 Exercise. (a) For every f integrable (properly) on {z : |z| < R},
Ji<nd [ Juze oar
Jert o Jy 1 RV

(b) For every bounded harmonic function on a ball, its value at the center of the ball is
equal to its mean value on the ball.

14ell Proposition. (Liouville’s theorem for harmonic functions)
Every harmonic function RY — [0, 00) is constant.

(15al1,2) C=cal1+ - +clyp, /wzq/ w+~-~+cp/ w.
c r r,
(15a3) Cy ~ Cy means / w= / w for all k-forms w (of class C?).
C1 Co
/ w=w(y(t1)) —w(y(ty)) for a 0-form w.
Oy
(15b2) (dw)(z,h) = (Dw)y(h) = (Dpw)y -

15b3 Proposition. (Stokes’ theorem for k =1)
Let C be a 1-chain in R, and w a 0-form of class C'' on R™. Then

/dw:/ w
C ocC

ol = F|AB + F|BC + F‘CD + F|DA; 8(8F) ~ 0 fora singular 2-box I'.

15c2 Definition. The ezterior derivative of a 1-form w of class C! is the 2-form dw
defined by
(dw) (-, h, k) = Dpw(-, k) — Dyw(-, h).

15c¢3 Theorem. (Stokes’ theorem for k = 2)
Let C be a 2-chain in R", and w a 1-form of class C' on R™. Then

/dw:/ w
C oC

15c4 Exercise. For a 1-form w = f(z,y) dx + g(x,y) dy we have dw = (D1g — D f)ua,
where fi5 is the volume form on R2.

(15d1) w(x,hyy ... hy) = (F(x),hy X -
(15d2) Flux of (vector field) F through (oriented hypersurface) (M, Q) is / (F,n).
M

/(M,O) v /M<F, ™)

15d4 Exercise. For a 1-form w = f(z,y)dx + g(x,y) dy on R? (or an open subset of
R?) the corresponding vector field is F' = (Fy, Fy) = (g, —f), and dw = (div F) s

th> w|1u:

<Fa n>M(M,O) .

(15d3)

(15el) f(z1,...,zN) dz;,
| s Zg{;l/(ol/ o) T o
N
(15e2) /aBFn :Z 23:1—1/ /F (1,...,ZN) dej.

i=12,=0,1 (0,1)" Y ED)
15e3 Proposition. Let F' € C’l(((), Hy — RN), with DF bounded. Then the integral

of div F over (0,1)" is equal to the (outward) flux of F' through the boundary.

A a(ury .o ty) = (U, oo Uim1, Gy UGy - oy uy)  for w e (0,1)7
(15e4) E:}: 1) (2a—1)Ai,
i=1 a=0,1
(15eb) / w:/ (F,n
oB aB
N
(15e6) or=>" ) 20— )T o Ay .

i=1 a=0 1

15f1 Definition. The exterior derivative of a (k — 1)-form w of class C?! is the k-form
dw defined by
k
(dw)(-, hi,..., hk) e Z(—l)iithiw(', hi,... hi—1,hig1,..., hk) .
i=1
15f2 Theorem. (Stokes’ theorem)
Let C be a k-chain in RY, and w a (k — 1)-form of class C' on R. Then

fusf




