9a1 Theorem. Let $U, V \subset \mathbb{R}^n$ be Jordan measurable open sets, $\varphi : U \to V$ a diffeomorphism, and $f: V \to \mathbb{R}$ a bounded function such that the function $(f \circ \varphi) |\det D\varphi| : U \to \mathbb{R}$ is also bounded. Then

(a) f is integrable on V if and only if $(f \circ \varphi) |\det D\varphi|$ is integrable on U; and (b) if they are integrable, then $\int_{V} f = \int_{U} (f \circ \varphi) |\det D\varphi|$.

9b9 Proposition (the second Pappus's centroid theorem). Let $\Omega \subset (0, \infty) \times \mathbb{R} \subset \mathbb{R}^2$ be a Jordan measurable set and $\tilde{\Omega} = \{(x, y, z) : (\sqrt{x^2 + y^2}, z) \in \Omega\} \subset \mathbb{R}^3$. Then $\tilde{\Omega}$ is Jordan measurable and $v_3(\tilde{\Omega}) = v_2(\Omega) \cdot 2\pi x_{C_{\Omega}}$ ($C_{\Omega} = (x_{C_{\Omega}}, z_{C_{\Omega}})$) is the centroid of Ω).

9c1 Theorem. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear isometry, and $f : \mathbb{R}^n \to \mathbb{R}$ a bounded function with bounded support. Then (a) ${}_* \int_{\mathbb{R}^n} f \circ T = {}_* \int_{\mathbb{R}^n} f, {}^* \int_{\mathbb{R}^n} f \circ T = {}^* \int_{\mathbb{R}^n} f;$ (b) $f \circ T$ is integrable if and only if f is integrable, and in this case

$$\int_{\mathbb{R}^n} f \circ T = \int_{\mathbb{R}^n} f.$$

9c2 Corollary. (a) v_{*}(T(E)) = v_{*}(E) and v^{*}(T(E)) = v^{*}(E) for all bounded E ⊂ ℝⁿ;
(b) T(E) is Jordan measurable if and only if E is, and then v(T(E)) = v(E).

Riemann integral and Jordan measure are well-defined on every n-dimensional Euclidean affine space, and preserved by affine isometries between these spaces.

9c3 Lemma. For every norm $\|\cdot\|$ on \mathbb{R}^n , the set $\{x : \|x\| = 1\}$ is of volume zero, and the sets $\{x : \|x\| < 1\}, \{x : \|x\| \le 1\}$ are Jordan measurable.

9d1 Theorem. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear operator. Then the image T(E) (10d3 of an arbitrary $E \subset \mathbb{R}^n$ is Jordan measurable if and only if E is Jordan measurable, and in this case u(T(E)) = |d| t |T| u(E)

$$v(T(E)) = |\det T|v(E).$$
(10d7)

Also, for every bounded function $f : \mathbb{R}^n \to \mathbb{R}$ with bounded support, $|\det T| * \int f \circ T =$ * $\int f$ and $|\det T|^* \int f \circ T = * \int f$. Thus, $f \circ T$ is integrable if and only if f is integrable, (10d8) and in this case

$$|\det T| \int f \circ T = \int f.$$
(10d9)

On an *n*-dimensional vector or affine space the volume is ill-defined, but Jordan measurability is well-defined, and the ratio $\frac{v(E_1)}{v(E_2)}$ of volumes is well-defined. That is, the volume is well-defined up to a coefficient.

(9f1)
$$F_*(B) = v_*(\varphi^{-1}(B^\circ)), \quad F^*(B) = v^*(\varphi^{-1}(\overline{B}))$$
 (10d1)

(9f2)
$$J_*(x) = \inf_{(B_i)_i} \lim_i \frac{v_*(\varphi^{-1}(B_i^\circ))}{v(B_i)}, \quad J^*(x) = \sup_{(B_i)_i} \lim_i \frac{v^*(\varphi^{-1}(\overline{B}_i))}{v(B_i)}$$

9f3 Proposition. If J_*, J^* are locally integrable and equivalent then $F_*(B) = F^*(B) = \int_B J_* = \int_B J^*$ for every box B.

In this case (9f4)
$$v(\varphi^{-1}(B)) = \int_B J$$
 where J is any function equivalent to J_*, J^* .

9g1 Proposition. If $\varphi : \mathbb{R}^m \to \mathbb{R}^n$ is such that J_*, J^* are locally integrable and equivalent then for every integrable $f : \mathbb{R}^n \to \mathbb{R}$ the function $f \circ \varphi : \mathbb{R}^m \to \mathbb{R}$ is integrable and $\int_{\mathbb{R}^m} f \circ \varphi = \int_{\mathbb{R}^n} f J$.

9h1 Proposition. Let $U, V \subset \mathbb{R}^n$ be open sets and $\varphi : V \to U$ a diffeomorphism, then $J_*(x) = J^*(x) = |\det(D\psi)_x|$

for all $x \in U$; here $\psi = \varphi^{-1} : U \to V$.

(10b1)
$$\int_{G} f = \sup \left\{ \int_{\mathbb{R}^{n}} g \left| g : \mathbb{R}^{n} \to \mathbb{R} \text{ integrable,} \right. \\ 0 \le g \le f \text{ on } G, g = 0 \text{ on } \mathbb{R}^{n} \setminus G \right\} \in [0, \infty].$$
(10b4) (Poisson)
$$\int_{-\infty}^{+\infty} e^{-x^{2}} dx = \sqrt{\pi}.$$

10b9 Proposition (exhaustion). For open sets $G, G_1, G_2, \dots \subset \mathbb{R}^n$,

$$G_k \uparrow G \implies \int_{G_k} f \uparrow \int_G f \in [0,\infty]$$

for all $f: G \to [0, \infty)$ continuous almost everywhere.

10b10 Proposition. $\int_G (f_1 + f_2) = \int_G f_1 + \int_G f_2 \in [0, \infty]$ for all $f_1, f_2 \ge 0$ on G, continuous almost everywhere.

$$\begin{aligned} (10d1) \qquad \Gamma(t) &= \int_{0}^{\infty} x^{t-1} e^{-x} \, dx \quad \text{for } t > 0 \,; \qquad (10d2) \qquad \Gamma(t+1) = t\Gamma(t) \,; \\ (10d3) \qquad \Gamma(n+1) = n! \quad \text{for } n = 0, 1, 2, \dots \qquad (10d5) \qquad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \,. \\ (10d7) \qquad \text{The volume of the n-dimensional unit ball:} \quad V_n &= \frac{\pi^{n/2}}{\frac{n}{2}\Gamma\left(\frac{n}{2}\right)} \,. \\ (10d8) \qquad \int_{0}^{\pi/2} \cos^{\alpha-1}\theta \sin^{\beta-1}\theta \, d\theta = \frac{1}{2}\frac{\Gamma\left(\frac{\alpha}{2}\right)\Gamma\left(\frac{\beta}{2}\right)}{\Gamma\left(\frac{\alpha+\beta}{2}\right)} \quad \text{for } \alpha, \beta \in (0,\infty) \,. \\ (10d9) \qquad \int_{0}^{\pi/2} \sin^{\alpha-1}\theta \, d\theta = \int_{0}^{\pi/2} \cos^{\alpha-1}\theta \, d\theta = \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{\alpha+1}{2}\right)} \,. \\ (10d10) \qquad \int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} \, dx = B(\alpha,\beta) \quad \text{for } \alpha,\beta \in (0,\infty) \,. \\ (10d11) \qquad B(\alpha,\beta) &= \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \quad \text{for } \alpha,\beta \in (0,\infty) \,. \\ \Gamma^{(k)}(t) &= \int_{0}^{\infty} x^{t-1}e^{-x}(\ln x)^k \, dx \quad \text{for } k = 1, 2, \dots \end{aligned}$$

(10e4) $\int_G f = \int_G f^+ - \int_G f^-$ whenever $f: G \to \mathbb{R}$ is continuous almost everywhere and such that $\int_G |f| < \infty$ (*improperly integrable*).

10e5 Exercise. Linearity: $\int_G cf = c \int_G f$ for $c \in \mathbb{R}$, and $\int_G (f_1 + f_2) = \int_G f_1 + \int_G f_2$.

10e7 Corollary. Let $G_1 \subset G_2 \subset \mathbb{R}^n$ be two open sets, and $f: G_2 \to \mathbb{R}$ improperly 12b8 Definition. A nonempty set $M \subset \mathbb{R}^N$ is an *n*-dimensional manifold (or *n*-maniintegrable. If f = 0 almost everywhere on $G_2 \setminus G_1$, then $\int_{G_2} f = \int_{G_1} f$.

10e8 Proposition (Exhaustion). Let open sets $G_1 \subset G_2 \subset \cdots \subset G \subset \mathbb{R}^n$ be such that $\cup_k G_k$ contains almost all points of G. Then

$$\int_{G_k} f \to \int_G f \quad \text{as } k \to \infty$$

for all f improperly integrable on G.

10e9 Proposition. Let $G \subset \mathbb{R}^n$ be an open set, and f an improperly integrable function on G. Then there exist Jordan measurable open sets $G_1 \subset G_2 \subset \ldots$ such that $G_k \subset G$, $\cup_k G_k$ contains almost all points of G, and f is defined and bounded on every G_k .

We consider the vector space of all square integrable equivalence classes, with the inner product $\langle [f], [g] \rangle = \int fg$ and the corresponding norm $\|[f]\|_2 = \|f\|_2 = (\int f^2)^{1/2}$.

The triangle inequality: $||f + g||_2 \le ||f||_2 + ||g||_2$.

The Cauchy-Schwarz inequality: $-\|f\|_2 \|g\|_2 \leq \langle f, g \rangle \leq \|f\|_2 \|g\|_2$.

10f1 Theorem. Let $U, V \subset \mathbb{R}^n$ be open sets, $\varphi : U \to V$ a diffeomorphism, and $f: V \to \mathbb{R}$. Then

(a) f is improperly integrable on V if and only if $(f \circ \varphi) |\det D\varphi|$ is improperly integrable on U; and

(b) in this case

$$\int_{V} f = \int_{U} (f \circ \varphi) |\det D\varphi| \,.$$

(10g1)
$$\int \cdots \int x_1^{p_1-1} \dots x_n^{p_n-1} dx_1 \dots dx_n = \frac{\Gamma(p_1) \dots \Gamma(p_n)}{\Gamma(p_1 + \dots + p_n + 1)}$$

for all $p_1, ..., p_n > 0$.

The volume of the unit ball in the metric l_p : $v(B_p(1)) = \frac{2^n \Gamma^n(\frac{1}{p})}{n^n \Gamma(\frac{n}{p}+1)}$.

(10g3)
$$\int \cdots \int_{\substack{x_1 + \dots + x_n < 1 \\ x_1, \dots, x_n > 0}} \varphi(x_1 + \dots + x_n) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n = \frac{1}{(n-1)!} \int_0^1 \varphi(s) s^{n-1} \, \mathrm{d}s \, .$$

11e10 Definition. A differential form of order k and of class C^m on \mathbb{R}^n is a function $\omega: \mathbb{R}^n \times (\mathbb{R}^n)^k \to \mathbb{R}$ of class C^m such that for every $x \in \mathbb{R}^n$ the function $\omega(x, \dots, \cdot)$ is an antisymmetric multililear k-form on \mathbb{R}^n .

(11e12)
$$\int_{\Gamma} \omega = \int_{B} \omega \left(\Gamma(u), (D_1 \Gamma)_u, \dots, (D_k \Gamma)_u \right) du.$$

Antisymmetric multililear k-forms on \mathbb{R}^n are a vector space of dimension $\binom{n}{k}$. **12b4 Proposition.** The following three conditions on a set $M \subset \mathbb{R}^N$ and a point $x_0 \in M$ are equivalent:

- (a) there exists an *n*-chart of M around x_0 ;
- (b) there exists an *n*-cochart of M around x_0 ;
- (c) there exists a local diffeomorphism $h : \mathbb{R}^N \to \mathbb{R}^N$ near x_0 such that $(u, v) \in M \iff h(u, v) \in \mathbb{R}^n \times \{0_N\}$

$$(u,v) \in M \iff n(u,v) \in \mathbb{R} \times \{0_{N-n}\}$$

for all $(u, v) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$ near x_0 .

fold) if for every $x_0 \in M$ there exists an *n*-chart of M around x_0 .

12b9 Exercise. Let M_1 be an n_1 -manifold in \mathbb{R}^{N_1} , and M_2 an n_2 -manifold in \mathbb{R}^{N_2} ; then $M_1 \times M_2$ is an $(n_1 + n_2)$ -manifold in $\mathbb{R}^{N_1+N_2}$.

12b10 Definition. Let $M \subset \mathbb{R}^N$ be an *n*-manifold; a function $f: M \to \mathbb{R}$ is continuously differentiable if for every chart (G, ψ) of M the function $f \circ \psi$ is continuously differentiable on G.

12b19 Exercise. Let (G, ψ) be a chart around $x_0 = \psi(u_0)$ and (U, φ) a co-chart around x_0 . The following three conditions on a vector $h \in \mathbb{R}^N$ are equivalent:

(a) h is a tangent vector (at x_0);

(b) h belongs to the image of the linear operator $(D\psi)_{u_0} : \mathbb{R}^n \to \mathbb{R}^N$;

(c) h belongs to the kernel of the linear operator $(D\varphi)_{x_0}: \mathbb{R}^N \to \mathbb{R}^{N-n}$.

12c1 Definition. A differential form of order k (or k-form) on an n-manifold $M \subset \mathbb{R}^N$ is a continuous function ω on the set $\{(x, h_1, \ldots, h_k) : x \in M, h_1, \ldots, h_k \in T_x M\}$ such that for every $x \in M$ the function $\omega(x, \dots, \cdot)$ is an antisymmetric multillear k-form on $T_r M$.

(12c2)
$$\int_{(G,\psi)} \omega = \int_G \omega \big(\psi(u), (D_1 \psi)_u, \dots, (D_n \psi)_u \big) \, \mathrm{d}u \, .$$

12c3 Proposition. Let $(G_1, \psi_1), (G_2, \psi_2)$ be two charts of an oriented manifold (M, \mathcal{O}) . If $\psi_1(G_1) = \psi_2(G_2)$ then

$$\int_{(G_1,\psi_1)} \omega = \int_{(G_2,\psi_2)} \omega$$

for every *n*-form ω on M; that is, either these two integrals converge and are equal, or both integrals diverge.

12c6 Definition. An *n*-form μ on an oriented *n*-manifold (M, \mathcal{O}) in \mathbb{R}^N is the volume form, if for every $x \in M$ the antisymmetric multililear *n*-form $\mu(x, \dots, \cdot)$ on $T_{\tau}M$ is normalized and corresponds to the orientation \mathcal{O}_{x} .

$$J_{\psi}(u) = \sqrt{\det(\langle (D_i\psi)_u, (D_j\psi)_u \rangle)_{i,j}} \quad \text{the (generalized) Jacobian}$$

 $\int_{U} f = \int_{C} f(\psi(u)) J_{\psi}(u) \, \mathrm{d}u \, .$

(12c16)

Here $U = \psi(G)$ for an *n*-chart (G, ψ) of (M, \mathcal{O}) .

12c19 Lemma. $J_{\psi} = \sqrt{1 + |\nabla f|^2}$.

13a3 Lemma. Let $M \subset \mathbb{R}^N$ be an *n*-manifold and $K \subset M$ a compact set. Then there exist single-chart continuous functions $\rho_1, \ldots, \rho_i: M \to [0,1]$ such that $\rho_1 + \cdots + \rho_i = 1$ on K.

(13a7)
$$\int_M f = \int_{(G,\psi)} f\mu_{(G,\psi)} = \int_G (f \circ \psi) J_{\psi} \,.$$

$$\begin{array}{ll} (13a13) & \text{product} & v(M_1 \times M_2) = v(M_1)v(M_2) \,. \\ (13a14) & \text{scaling} & v(sM) = s^n v(M) \,. \\ (13a15) & \text{motion} & v(T(M)) = v(M) \,; \quad \int_{T(M)} f \circ T^{-1} = \int_M f \,. \\ (13a16) & \text{cylinder} & v(M) = (b-a)|h|v(M_1) \,. \\ (13a17) & \text{cone} & v(M) = \frac{c}{n+1}(b^{n+1} - a^{n+1})v(M_1) \,. \\ (13a18) & \text{revolution} & v(M) = 2\pi \int_{M_1} |y| \,. \\ \hline (13b3) & \int_{\mathbb{R}^n} \nabla f = 0 \quad \text{if } f \in C^1(\mathbb{R}^n) \text{ has a bounded support.} \\ (13b6) & \mathbf{n}_x = \frac{1}{\sqrt{1+|\nabla g|^2}} \left(-(D_1g), \dots, -(D_ng), 1 \right) \,. \end{array}$$

(13b7)
$$\nabla_{\operatorname{sng}} f(x) = \left(f(x+0\mathbf{n}_x) - f(x-0\mathbf{n}_x) \right) \mathbf{n}_x.$$

13b9 Theorem. Let $M \subset \mathbb{R}^{n+1}$ be an *n*-manifold, $K \subset M$ a compact subset, and $f : \mathbb{R}^{n+1} \setminus K \to \mathbb{R}$ a function such that

- (a) f is continuously differentiable (on $\mathbb{R}^{n+1} \setminus K$);
- (b) $f|_{\mathbb{R}^{n+1}\setminus\overline{M}}$ is continuous up to M;
- (c) f has a bounded support, and ∇f is bounded (on $\mathbb{R}^{n+1} \setminus K$). Then $\int \nabla f + \int \nabla_{r=0} f = 0$

$$\int_{\mathbb{R}^{n+1}\setminus K} \nabla f + \int_M \nabla_{\operatorname{sng}} f = 0.$$

13b11 Lemma. Let (U_1, \ldots, U_ℓ) be an open covering of a compact set $K \subset \mathbb{R}^N$. Then there exist functions $\rho_1, \ldots, \rho_i \in C^1(\mathbb{R}^N)$ such that $\rho_1 + \cdots + \rho_i = 1$ on K and each ρ_j has a compact support within some U_m .

(13b13)
$$\int_{\mathbb{R}^N \setminus K} u \nabla v = -\int_{\mathbb{R}^N \setminus K} v \nabla u - \int_M \nabla_{\mathrm{sng}}(uv) \,.$$

(13b14)
$$\int_{\mathbb{R}^N} u\nabla v = -\int_{\mathbb{R}^N} v\nabla u \quad \text{for } u, v \in C^1(\mathbb{R}^N), \ uv \text{ compactly supported.}$$

(13b15)
$$\int_{G} \nabla f = \int_{M} f \mathbf{n} \,.$$

13c1 Theorem. Let $G \subset \mathbb{R}^{n+1}$ be an open set, $\varphi \in C^1(G)$, $\forall x \in G \ \nabla \varphi(x) \neq 0$, and $f \in C(G)$ compactly supported. Then for every $c \in \varphi(G)$ the set $M_c = \{x \in G : \varphi(x) = c\}$ is an *n*-manifold in \mathbb{R}^{n+1} , the function $c \mapsto \int_{M_c} f$ on $\varphi(G)$ is continuous and compactly supported, and

$$\int_{\varphi(G)} \mathrm{d}c \int_{M_c} f = \int_G f |\nabla \varphi| \,.$$

(13c8)
$$\int_{0}^{\infty} dr \int_{|\cdot|=r}^{\infty} f = \int_{|\cdot|>0} f; \quad (13c9) \quad \text{sphere:} \quad v(S_{1}) = \frac{2\pi^{N/2}}{\Gamma(N/2)}.$$

(14a4)
$$\operatorname{div} F = \operatorname{tr}(DF) = D_{1}F_{1} + \dots + D_{n}F_{n} = (\nabla F_{1})_{1} + \dots + (\nabla F_{n})_{n}.$$

(14a5)
$$\int_{\mathbb{R}^n} \operatorname{div} F = 0 \quad \text{if } F \in C^1(\mathbb{R}^n \to \mathbb{R}^n) \text{ has a bounded support.}$$

(14b1)
$$\operatorname{div}_{\operatorname{sng}} F(x) = \langle F(x+0\mathbf{n}_x) - F(x-0\mathbf{n}_x), \mathbf{n}_x \rangle.$$

(14b2)
$$\operatorname{div}_{\operatorname{sng}} F = \sum_{k=1}^{N} (\nabla_{\operatorname{sng}} F_k)_k.$$

14b3 Theorem. Let $M \subset \mathbb{R}^{n+1}$ be an *n*-manifold, $K \subset M$ a compact subset, and $F : \mathbb{R}^{n+1} \setminus K \to \mathbb{R}^{n+1}$ a mapping such that

(a) F is continuously differentiable (on $\mathbb{R}^{n+1} \setminus K$);

(b) $F|_{\mathbb{R}^{n+1}\setminus\overline{M}}$ is continuous up to M;

(c) F has a bounded support, and DF is bounded (on $\mathbb{R}^{n+1} \setminus K$). Then

$$\int_{\mathbb{R}^{n+1}\setminus K} \operatorname{div} F + \int_M \operatorname{div}_{\operatorname{sng}} f = 0.$$

14c2)
$$\int_{G} \operatorname{div} F = \int_{\partial G} \langle F, \mathbf{n} \rangle . \quad (\text{flux of } F \text{ through } \partial G)$$

14c3 Theorem (*Divergence theorem*). Let $G \subset \mathbb{R}^{n+1}$ be a bounded regular open set, ∂G an *n*-manifold, $F : \overline{G} \to \mathbb{R}^{n+1}$ continuous, $F|_G \in C^1(G \to \mathbb{R}^{n+1})$, with *DF* bounded on \overline{G} .

Then the integral of div F over G is equal to the (outward) flux of F through ∂G .

14c5 Exercise. div $(fF) = f \operatorname{div} F + \langle \nabla f, F \rangle$ whenever $f \in C^1(G)$ and $F \in C^1(G \to \mathbb{R}^N)$.

$$\frac{(14c6)}{(14d1)} \qquad \qquad \int_{G} \langle \nabla f, F \rangle = \int_{\partial G} f \langle F, \mathbf{n} \rangle - \int_{G} f \operatorname{div} F.$$

(14d1)
$$\Delta f = \operatorname{div} \nabla f$$
; f is narmonic, if $\Delta f = 0$.

(14d2)
$$\int_{G} \Delta f = \int_{\partial G} \langle \nabla f, \mathbf{n} \rangle = \int_{\partial G} D_{\mathbf{n}} f, \quad \text{first Green formula}$$

(14d3)
$$\int_{G} (u\Delta v + \langle \nabla u, \nabla v \rangle) = \int_{\partial G} \langle u\nabla v, \mathbf{n} \rangle = \int_{\partial G} uD_{\mathbf{n}} v, \quad \text{second Green formula}$$

(14d4)
$$\int_{G} (u\Delta v - v\Delta u) = \int_{\partial G} (uD_{\mathbf{n}}v - vD_{\mathbf{n}}u), \quad \text{third Green formula}$$

14e1 Lemma.

for every N >

$$\int_{\mathbb{R}^N} \frac{\Delta f(x)}{|x|^{N-2}} \, \mathrm{d}x = -(N-2) \frac{2\pi^{N/2}}{\Gamma(N/2)} f(0)$$
2 and $f \in C^2(\mathbb{R}^N)$ with a compact support.

14e2 Remark. For N = 2 the situation is similar:

$$\int_{\mathbb{R}^2} \Delta f(x) \log |x| \, \mathrm{d}x = 2\pi f(0)$$

for every compactly supported $f \in C^2(\mathbb{R}^2)$.

14e3 Remark. Let $G \subset \mathbb{R}^N$ be a bounded regular open set, ∂G an *n*-manifold, $f \in 15c3$ Theorem. (Stokes' theorem for k = 2) $C^2(G)$ with bounded second derivatives, and $0 \in G$. Then Let C be a 2-chain in \mathbb{R}^n , and ω a 1-form of class C^1 on \mathbb{R}^n . Then

$$\begin{split} \int_{G} \frac{\Delta f(x)}{|x|^{N-2}} \, \mathrm{d}x &= -(N-2) \frac{2\pi^{N/2}}{\Gamma(N/2)} f(0) - \\ &\quad - \int_{\partial G} \left(x \mapsto f(x) D_{\mathbf{n}} \frac{1}{|x|^{N-2}} \right) + \int_{\partial G} \left(x \mapsto (D_{\mathbf{n}} f(x)) \frac{1}{|x|^{N-2}} \right). \end{split}$$

The case N = 2 is similar to 14e2, of course.

14e4 Proposition (Mean value property). For every harmonic function on a ball, with bounded second derivatives, its value at the center of the ball is equal to its mean value on the boundary of the ball.

14e7 Exercise (Maximum principle for harmonic functions).

Let u be a harmonic function on a connected open set $G \subset \mathbb{R}^N$. If $\sup_{x \in G} u(x) = u(x_0)$ for some $x_0 \in G$ then u is constant.

(14e8)
$$\Delta f(x) = 2N \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} \left(\left(\text{mean of } f \text{ on } \{y : |y - x| = \varepsilon \} \right) - f(x) \right).$$

14e10 Exercise. (a) For every f integrable (properly) on $\{x : |x| < R\}$,

$$\frac{\int_{|\cdot| < R} f}{\int_{|\cdot| < R} 1} = \int_0^R \frac{\int_{|\cdot| = r} f}{\int_{|\cdot| = r} 1} \frac{\mathrm{d}r^N}{R^N}.$$

(b) For every bounded harmonic function on a ball, its value at the center of the ball is equal to its mean value on the ball.

14e11 Proposition. (Liouville's theorem for harmonic functions)

Every harmonic function $\mathbb{R}^N \to [0, \infty)$ is constant.

$$(15a1,2) \qquad C = c_1 \Gamma_1 + \dots + c_p \Gamma_p, \quad \int_C \omega = c_1 \int_{\Gamma_1} \omega + \dots + c_p \int_{\Gamma_p} \omega. \qquad (15e4)$$

$$(15a3) \qquad C_1 \sim C_2 \quad \text{means} \quad \int_{C_1} \omega = \int_{C_2} \omega \quad \text{for all } k \text{-forms } \omega \text{ (of class } C^0). \qquad (15e5)$$

$$(15e6)$$

(15b2)
$$\int_{\partial \gamma} \omega = \omega(\gamma(t_1)) - \omega(\gamma(t_0)) \quad \text{for a 0-form } \omega.$$
$$(d\omega)(x,h) = (D\omega)_x(h) = (D_h\omega)_x.$$

15b3 Proposition. (*Stokes' theorem for* k = 1)

Let C be a 1-chain in \mathbb{R}^n , and ω a 0-form of class C^1 on \mathbb{R}^n . Then

$$\int_C d\omega = \int_{\partial C} \omega \,.$$

 $\partial \Gamma = \Gamma|_{AB} + \Gamma|_{BC} + \Gamma|_{CD} + \Gamma|_{DA}; \quad \partial(\partial \Gamma) \sim 0 \quad \text{for a singular 2-box } \Gamma.$

15c2 Definition. The exterior derivative of a 1-form ω of class C^1 is the 2-form $d\omega$ defined by $(d\omega)(\cdot, h, k) = D_h\omega(\cdot, k) - D_k\omega(\cdot, h).$

$$\int_C d\omega = \int_{\partial C} \omega \,.$$

15c4 Exercise. For a 1-form $\omega = f(x, y) dx + g(x, y) dy$ we have $d\omega = (D_1g - D_2f)\mu_2$, where μ_2 is the volume form on \mathbb{R}^2 .

15d1)
$$\omega(x, h_1, \dots, h_n) = \langle F(x), h_1 \times \dots \times h_n \rangle . \qquad \omega|_M = \langle F, \mathbf{n} \rangle \mu_{(M, \mathcal{O})} .$$

(15d2) Flux of (vector field) F through (oriented hypersurface) (M, \mathcal{O}) is $\int_{M} \langle F, \mathbf{n} \rangle$.

(15d3)
$$\int_{(M,\mathcal{O})} \omega = \int_M \langle F, \mathbf{n} \rangle$$

15d4 Exercise. For a 1-form $\omega = f(x, y) dx + g(x, y) dy$ on \mathbb{R}^2 (or an open subset of \mathbb{R}^2) the corresponding vector field is $F = (F_1, F_2) = (q, -f)$, and $d\omega = (\operatorname{div} F)\mu_2$.

(15e1)
$$\int_{\partial B} f = \sum_{i=1}^{N} \sum_{x_i=0,1} \int_{(0,1)^n} \int f(x_1, \dots, x_N) \prod_{j:j \neq i} dx_j,$$

(15e2)
$$\int_{\partial B} \langle F, \mathbf{n} \rangle = \sum_{i=1}^{N} \sum_{x_i=0,1} (2x_i - 1) \int_{(0,1)^n} \int F_i(x_1, \dots, x_N) \prod_{j:j \neq i} f_i(x_1, \dots, x_N)$$

15e3 Proposition. Let $F \in C^1((0,1)^N \to \mathbb{R}^N)$, with DF bounded. Then the integral of div F over $(0,1)^N$ is equal to the (outward) flux of F through the boundary.

 $\mathrm{d}x_i$.

$$\Delta_{i,a}(u_1, \dots, u_n) = (u_1, \dots, u_{i-1}, a, u_i, \dots, u_n) \quad \text{for } u \in (0, 1)^n$$
$$\partial B = \sum_{i=1}^N \sum_{a=0,1} (-1)^{i-1} (2a-1) \Delta_{i,a} .$$
$$\int_{\partial B} \omega = \int_{\partial B} \langle F, \mathbf{n} \rangle$$
$$\partial \Gamma = \sum_{i=1}^N \sum_{a=0,1} (-1)^{i-1} (2a-1) \Gamma \circ \Delta_{i,a} .$$

15f1 Definition. The exterior derivative of a (k-1)-form ω of class C^1 is the k-form $d\omega$ defined by

$$(d\omega)(\cdot, h_1, \dots, h_k) = \sum_{i=1}^k (-1)^{i-1} D_{h_i} \omega(\cdot, h_1, \dots, h_{i-1}, h_{i+1}, \dots, h_k).$$

15f2 Theorem. (*Stokes' theorem*)

Let C be a k-chain in \mathbb{R}^N , and ω a (k-1)-form of class C^1 on \mathbb{R}^N . Then

 $\overline{i=1} \ a=0,1$

$$\int_C d\omega = \int_{\partial C} \omega \,.$$