After the exam of 05.08.2016: Typical errors, comments etc.

At most 40 points (rather than 35) are given per question.

Question 1

Error: only one Lagrange multiplier: $40-20=20$ points.
Clarification: in order to have only one Lagrange multiplier you need extremum on ($n-1$)-dimensional manifold.

Error: wrong number of constraints: $40-30=10$ points.
Clarification: the number of constraints $n-k$ must correspond to the dimension k of the manifold.

Error: constraints appear without explanation: $40-35=5$ points.
Clarification: you have to explain, why a manifold can be described by constraints.

Fatal errors: ${ }^{1}$
Lagrange multipliers are not used (and the goal is not reached); wrong dimensions (\mathbb{R}^{n} instead of \mathbb{R}^{n-k}, or \mathbb{R} instead of \mathbb{R}^{n}, etc); $g\left(x_{0}\right)=0$, but $g(x) \neq 0$ for $x \in M$ near x_{0}.

Question 2 for continuous f

Error: bounded support of f is not used when proving the uniform convergence of f_{θ} to $f($ as $\theta \rightarrow 0):-5$ points.

Clarification: the convergence of $(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$ to (x, y) is uniform on a bounded set (of points (x, y)), not on the whole \mathbb{R}^{2}.

Error: uniform continuity of f is not used when proving the uniform convergence of f_{θ} to $f($ as $\theta \rightarrow 0):-5$ points.

Error: bounded support of f is not used when estimating $\int\left|f_{\theta}-f\right|:-5$ points.

Error: $\max \left|f_{\theta}-f\right| \leq \max f_{\theta}-\max f:-15$ points.
Error: no proof of the uniform convergence of f_{θ} to f : -15 points.

[^0]
Question 2 For integrable f

Error: $\left|f_{\theta}-f\right| \leq\left|h_{\theta}-g\right|:-2$ points.
Clarification: we have $g \leq f$ and $f_{\theta} \leq h_{\theta}$, therefore $f_{\theta}-f \leq h_{\theta}-g \leq$ $\left|h_{\theta}-g\right|$; however, $f_{\theta}-f$ may be negative, in which case $\left|f_{\theta}-f\right|=f-f_{\theta}$ may exceed $\left|h_{\theta}-g\right|$.

Error: $\left|f_{\theta}-f\right| \leq\left|h_{\theta}-f\right| \leq\left|h_{\theta}-h\right|:-5$ points.
Error: rotation invariance of integral used but not mentioned: -5 points.
Fatal errors: a "proof" of evidently wrong claim, such as $\int\left|f_{\theta}-f\right|=0$ or $f_{\theta}=f$.

Question 3

Error: a 3-dimensional change of variables: -15 points.
Clarification: the function θ need not be differentiable, thus φ need not be a diffeomorphism.

Error: (in addition to a 3-dimensional change of variables) the determinant is taken of a matrix of the form $\left(\begin{array}{ccc}* * & 0 \\ * & * & 0 \\ 0 & 0 & 1\end{array}\right):-5$ points.

Clarification: $D \varphi$ is rather of the form $\left(\begin{array}{ccc}* & * & * \\ \text { 0. } & * \\ 0 & 0 & 1\end{array}\right)$ (assuming differentiabilty of θ, otherwise $D \varphi$ does not exist).

Grades statistics

Total	Question 1	Question 2	Question 3	Question 4
120	40	40		40
117	40	39	40	38
105		25	40	40
100	20	40	40	
90	20	30	33	
88	20	35		0
75	40	35	20	
70	20	30	40	
70	0	30	25	
70	20	25	35	7
68		26	40	
65	0	25	40	5
65		20	40	0
65		25	5	
65	40	20	25	
60	0	35	25	
60	5	30	20	
60	20	20	35	0
60		25	25	
60	20	15		

Total	Question 1	Question 2	Question 3	Question 4
48		28	20	0
45	0	15	30	
45	5	15	25	
45		15	30	0
45	0	15	30	
45	20	0	25	
45	20	5	20	
40	20	20	0	
40	0		40	0
40		10	0	30
30	10	0	20	
30	30	0		0
25		5	20	0
25	0	25		0
25		5	20	0
20		0	20	0
15		0	0	15
10		0	0	10
5	5		0	0
0		0	0	0

[^0]: ${ }^{1}$ It means, no points for this question!

