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2a Introduction

Born: I should like to put to Herr Einstein a question, namely, how
quickly the action of gravitation is propagated in your theory. . .

Einstein: It is extremely simple to write down the equations for the
case when the perturbations that one introduces in the field are in-
finitely small. . . . The perturbations then propagate with the same
velocity as light.

Born: But for great perturbations things are surely very complicated?

Einstein: Yes, it is a mathematically complicated problem. It is espe-
cially difficult to find solutions of the equations, as the equations are
nonlinear. — Discussion after lecture by Einstein in 1913.

. . .

The hardest part of differential calculus is determining when replacing
a nonlinear object by a linear one is justified.1

In other words, we want to know, when the linear approximation

f(x0 + h) ≈ f(x0) + (Df)x0h

may be trusted near x0.

2a1 Example. 2

f : R→ R, f(x) = x+ 3x2 sin 1
x

for x 6= 0, f(0) = 0, x0 = 0.

x

y

0.05

0.05

1Quoted from: Hubbard, Sect. 1.7, pp. 125–126.
2Hubbard, Example 1.9.4 on p. 157; Shifrin, Sect. 6.2, Example 1 on pp. 251–252.
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This function is differentiable everywhere; its linear approximation near 0,
f(x) ≈ x, is one-to-one. Nevertheless, f fails to be one-to-one near 0 (and the
equation f(x) = y has more than one solution).1 The linear approximation
cheats. In fact,

lim inf
x→0

f ′(x) = −2 , lim sup
x→0

f ′(x) = 4

(think, why); f is differentiable, but not continuously.

This is why throughout this section we require f to be continuously dif-
ferentiable near x0.

linear algebra

2a2 Example. The matrix A =
(

3 2 0 1
0 1 3 −1
3 1 −3 2

)
is of rank 2, it has (at least

one) non-zero minor 2 × 2, but not 3 × 3, since the first row is the sum of
the two other rows. Treated as a linear operator A : R4 → R3 it maps R4

onto a 2-dimensional subspace of R3, the image of A: A(R4) = {(z1, z2, z3) :
z1 − z2 − z3 = 0}. The kernel of A, A−1({0}) = {u ∈ R4 : Au = 0}
is a 2-dimensional subspace of R4 spanned (for instance) by two vectors
(−1, 1, 0, 1) and (0,−1, 1, 2), according to two linear dependencies of the

columns: −
(

3
0
3

)
+
(

2
1
1

)
+
(

1
−1
2

)
= 0, −

(
2
1
1

)
+
(

0
3
−3

)
+ 2

(
1
−1
2

)
= 0.

It is convenient to denote a point of R4 by (x1, x2, y1, y2); that is, x ∈ R2,
y ∈ R2, (x, y) ∈ R4. The equation A ( xy ) = 0 becomes ( 3 2

0 1 )x + ( 0 1
3 −1 ) y = 0

(the third row is redundant, being a linear combination of other rows); y =
− ( 0 1

3 −1 )
−1

( 3 2
0 1 )x = − ( 1 1

3 2 )x, since ( 0 1
3 −1 )

−1
= 1

3
( 1 1
3 0 ). Not unexpectedly,

( 0
1 ) = − ( 1 1

3 2 ) ( −11 ) and ( 1
2 ) = − ( 1 1

3 2 ) ( 0
−1 ). The more general equation

A(x, y) = z for a given z ∈ A(R4) may be solved similarly; ( 3 2
0 1 )x+( 0 1

3 −1 ) y =

z̃ (where z̃ ∈ R2 is (z1, z2) for z = (z1, z2, z3)); y = ( 0 1
3 −1 )

−1
(z̃ − ( 3 2

0 1 )x) =
1
3

( 1 1
3 0 ) z̃ − ( 1 1

3 2 )x.

In general, a matrix A : Rn → Rm has some rank r ≤ min(m,n). The
image is r-dimensional, the kernel is (n− r)-dimensional. We rearrange rows
and columns (if needed) such that the upper right r×r minor is not 0, denote
a point of Rn by (x, y) where x ∈ Rn−r, y ∈ Rr, then the equation A(x, y) = 0
becomes Bx+ Cy = 0, B : Rn−r → Rr, C : Rr → Rr, detC 6= 0;

A =

n−r r

r B C
m−r

1Bad news. . . But here are good news: all solutions of the equation f(x) = y are close
(to each other and y), namely, x = y +O(y2).
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the solution is y = −C−1Bx. More generally, the equation A(x, y) = z for a
given z ∈ A(Rn) becomes Bx+ Cy = z; the solution: y = C−1(z −Bx).

Note existence of an r-dimensional subspace E ⊂ Rn such that the re-
striction A|E is an invertible mapping from E onto A(Rn).1

Special cases:

∗ r = m ≤ n ⇐⇒ A(Rn) = Rm (onto);

∗ r = n ≤ m ⇐⇒ A−1({0}) = {0} (one-to-one); no x variables;

∗ r = m = n ⇐⇒ A is invertible (bijection).

Note that A is onto if and only if its rows are linearly independent.

analysis

We turn to the equation f(x) = y where f : Rn → Rm is continuously
differentiable near x0, and introduce A = (Df)x0 . We want to compare two
mappings, f (nonlinear) and x 7→ f(x0) + A(x − x0) (linear),2 near x0. Or,
equivalently, of h 7→ Ah (linear) and h 7→ f(x0 +h)−f(x0) (nonlinear), near
0 (that is, for small h). The relevant properties of f , including its derivative
A, are insensitive to a change of the origin3 in Rn and Rm, and therefore we
may assume WLOG4 that x0 = 0 and f(x0) = 0.

Also, all relevant properties of f are insensitive to a change of basis, both
or Rn and Rm; this argument will be used later.

Also, values of f outside a neighborhood of 0 are irrelevant; we consider
f near 0 only. This is why I often write just “f : Rn → Rm” rather than
“f : U → Rm where U ⊂ Rn is a neighborhood of 0”.

The linear algebra gives us properties of A : Rn → Rm, and we want to
prove the corresponding local properties of f : Rn → Rm near 0. Here are
some relevant definitions, global and local; the local definitions are formulated
for the case x0 = 0, f(0) = 0; you can easily generalize them to arbitrary
x0 ∈ Rn and y0 = f(x0) ∈ Rm.

2a3 Definition. (a) Let U, V ⊂ Rn be open sets. A mapping f : U → V
is a homeomorphism, if it is bijective, continuous, and f−1 : V → U is also
continuous.

(b) f : Rn → Rn is a local homeomorphism, if there exist open sets
U, V ⊂ Rn such that 0 ∈ U , 0 ∈ V , and f is a homeomorphism U → V .

1Another proof: take a basis β1, . . . , βr of A(Rn); choose α1, . . . , αr ∈ Rn such that
Aα1 = β1, . . . , Aαr = βr; consider E spanned by α1, . . . , αr.

2More exactly: affine.
3It means, all points are changed (shifted), but vectors remain intact; x and y are

points, while h and Ah are vectors.
4Without Loss Of Generality.
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2a4 Definition. (a) Let U, V ⊂ Rn be open sets. A mapping f : U → V
is a diffeomorphism,1 if it is bijective, continuously differentiable, and f−1 :
V → U is also continuously differentiable.

(b) f : Rn → Rn is a local diffeomorphism, if there exist open sets U, V ⊂
Rn such that 0 ∈ U , 0 ∈ V , and f is a diffeomorphism U → V .

2a5 Exercise. For a linear A : Rn → Rm prove that the following conditions
are equivalent:

(a) A is invertible;
(b) A is a homeomorphism;
(c) A is a local homeomorphism;
(d) A is a diffeomorphism;
(e) A is a local diffeomorphism.

2a6 Definition. (a) Let U ⊂ Rn be an open set. A mapping f : U → Rm is
open, if for every open subset U1 ⊂ U its image f(U1) ⊂ Rm is open.

(b) f : Rn → Rm is open at 0, if for every neighborhood U ⊂ Rn of 0
there exists a neighborhood V ⊂ Rm of 0 such that f(U) ⊃ V . 2,3

2a7 Exercise. (a) Prove that f is open at 0 if and only if for every sequence
y1, y2, · · · ∈ Rm such that yk → 0 there exists a sequence x1, x2, · · · ∈ Rn such
that xk → 0 and f(xk) = yk for all k large enough;

(b) generalize 2a6(b) to arbitrary x0 and y0 = f(x0);
(c) prove that f : U → Rm is open if and only if f is open at x for every

x ∈ U .

2a8 Exercise. Prove or disprove: a continuous function R → R is open if
and only if it is strictly monotone.

2a9 Exercise. For a linear A : Rn → Rm prove that the following conditions
are equivalent:

(a) A(Rn) = Rm (“onto”);
(b) A is open at 0; 4

(c) A is open.

1This is a C1 diffeomorphism (most important for this course); C0 diffeomorphism
is just a homeomorphism, and Ck diffeomorphism must be continuously differentiable k
times (both f and f−1).

2This notion is seldom used; but see for instance Sect. 2.8 in Basic Complex Analysis
by G. De Marco.

3In this form, we may interpret the phrase “U is a neighborhood of 0” as “0 is an
interior point of U” or, equally well, as “∃ε > 0 U = {x : |x| < ε}”.

4Hint: (b) use subspace E such that A|E is an invertible mapping from E onto A(Rn).

http://www.math.unipd.it/~pietro/doc/Complex_Analysis/
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2a10 Exercise. Consider the mapping f : U → R2, where U = (1, 2) ×
(−T, T ) ⊂ R2 (for a given T ∈ (0,∞)) and f(r, θ) = (r cos θ, r sin θ). Denote
V = f(U). For each of the following conditions (separately) find all T such
that the condition is satisfied:1

(a) V is open;
(b) f is continuous;
(c) f is uniformly continuous;
(d) f is continuously differentiable;
(e) f : U → V is bijective;
(f) f : U → V is a homeomorphism;
(g) f : U → V is a homeomorphism and f−1 : V → U is uniformly

continuous;
(h) f : U → V is a diffeomorphism;
(i) f is a local homeomorphism near each point of U ;
(j) f is a local diffeomorphism near each point of U ;
(k) f is an open mapping.

In the linear case we may ignore the last m − r (redundant) equations.
In the nonlinear case we cannot.

2a11 Example. Consider f : R2 → R, f(x1, x2) =
(
x1, x1 + c(x21 + x22)

)
for

a given c. The linear approximation: f(x1, x2) ≈ (x1, x1); A =
(
1 0
1 0

)
. The

equation Ax = 0 is satisfied by all x = (0, x2). However, the equation f(x) =
0 is satisfied by x = (0, 0) only (unless c = 0). The linear approximation
cheats.

In fact, for every closed set F ⊂ Rn containing 0 there exists a continu-
ously differentiable function f : Rn → R such that F = {x : f(x) = 0} and
f(0) = 0, (Df)0 = 0. 2

In the linear approximation, f(x) ≈ 0; A = (0, . . . , 0); Ax = 0 for all x.
However, f(x) = 0 for x ∈ F only.

1Hint: (h) use arccos and arcsin (you really need both); (i), (j): generalize definitions
2a3(b), 2a4(b) to arbitrary x0 and y0 = f(x0).

2Hint: cover the complement with a sequence of open balls and take the sum of an
appropriate series of functions positive inside these balls and vanishing outside.
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The case r < m is intractable. This is why we restrict ourselves to the
cases

r = m < n; A(Rn) = Rm (onto, not one-to-one);
r = m = n; A is invertible (bijection).

2b Main results formulated and discussed

First, the case r = m = n. Here is a theorem called “the inverse function
theorem” 1 or “inverse mapping theorem”.2

2b1 Theorem. Let f : Rn → Rn be continuously differentiable near 0,
f(0) = 0, and (Df)0 = A : Rn → Rn be invertible.3 Then f is a local
diffeomorphism, and

(
D(f−1)

)
0 = A−1.

2b2 Remark. The relation
(
D(f−1)

)
0 = A−1 is included for completeness.

It follows easily from the chain rule: f−1◦f = id, therefore
(
D(f−1)

)
0(Df)0 =

id. (However, differentiability of f−1 does not follow from the chain rule!)
Similarly,

(
D(f−1)

)
f(x) =

(
(Df)x

)−1 for all x near 0.

Second, the case r = m < n. Here is the “implicit function theorem”.4

2b3 Theorem. Let f : Rn−m × Rm → Rm be continuously differentiable5

near (0, 0), f(0, 0) = 0, and (Df)(0,0) = A = (B C ), B : Rn−m → Rm,
C : Rm → Rm, with C invertible. Then there exists g : Rn−m → Rm,
continuously differentiable near 0, such that the two relations f(x, y) = 0
and y = g(x) are equivalent for (x, y) near (0, 0); and (Dg)0 = −C−1B.

Clearly, g(0) = 0 (since f(0, 0) = 0).

2b4 Exercise. Deduce from 2b3 existence of ε > 0, δ > 0 such that for
every x satisfying |x| < δ there exists one and only one y satisfying |y| < ε
and f(x, y) = 0; namely, y = g(x).

Clearly, f
(
x, g(x)

)
= 0 for x near 0.

2b5 Remark. The relation (Dg)0 = −C−1B is included for completeness.
It follows easily from the chain rule: f

(
x, g(x)

)
= 0, that is, f ◦ϕ = 0 where

1Fleming, Hubbard, Shifrin, Shurman, Zorich.
2Lang.
3Recall 2a5.
4“It is without question one of the most important theorems in higher mathematics”

(Shifrin p. 255).
5As a mapping Rn → Rm.
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ϕ : x 7→
( x
g(x)

)
; we have ϕ(0) = (0, 0) and (Dϕ)0 =

( id

(Dg)0

)
; thus, 0 =

D(f ◦ ϕ)0 = (Df)(0,0)(Dϕ)0 = (B C )
( id

(Dg)0

)
= B + C(Dg)0. (However,

differentiability of g does not follow from the chain rule!) Similarly, for all x
near 0 holds (Dg)x = −C−1x Bx where (Bx Cx ) = Ax = (Df)(x,g(x)).

In dimension 1 + 1 = 2 we have

g′(x) = −
(D1f)(x,y)
(D2f)(x,y)

where y = g(x) .

Less formally, dy
dx

= −∂g/∂x
∂g/∂y

since ∂g
∂x

dx+ ∂g
∂y

dy = dg(x, y) = 0.

2b6 Exercise. Given k ∈ {1, 2, 3, . . . }, we define f : R2 → R by f(x, y) =
Im
(
(x+ iy)k

)
(where i2 = −1 and Im (a+ ib) = b).

(a) Find all k such that f satisfies the assumptions of Theorem 2b3.
(b) Find all k such that f satisfies the conclusions of Theorem 2b3 (except

for the last equality).

2b7 Exercise. Let f satisfy the assumptions of Theorem 2b3. Show that f 2

(pointwise square) violates the assumptions of Theorem 2b3 but still satisfies
its conclusions (except for the last equality).

It is not easy to prove these two theorems, but it is easy to derive one of
them from the other. First, 2b3=⇒2b1. The idea is simple: x is implicitly a
function of y according to the equation ϕ(y, x) = f(x)− y = 0.

Proof of the implication 2b3 =⇒2b1. Given f : Rn → Rn as in 2b1, we de-
fine ϕ : Rn × Rn → Rn by ϕ(y, x) = f(x) − y and check the conditions

of 2b3 for 2n, n, ϕ in place of n,m, f . We have (Df)(0,0) = (− id (Df)0 );

C = (Df)0 is invertible. Theorem 2b3 gives g : Rn → Rn, continuously
differentiable near (0, 0), such that f(x)− y = 0 ⇐⇒ x = g(y) near (0, 0).

We take ε > 0 such that both f and g are continuously differentiable on
{x : |x| < ε}, and f(x) = y ⇐⇒ x = g(y) whenever |x| < ε, |y| < ε. We
define U = {x : |x| < ε, |f(x)| < ε} and V = {y : |y| < ε, |g(y)| < ε}. Both
U and V are open and contain 0.

If x ∈ U and y = f(x), then |y| < ε and x = g(y), therefore y ∈ V . We
see that f(U) ⊂ V and g ◦ f = id on U . Similarly, g(V ) ⊂ U and f ◦ g = id
on V . It means that f |U : U → V and g|V : V → U are mutually inverse;
thus, f is a local diffeomorphism.

Second, 2b1 =⇒2b3. The idea is the diffeomorphism ϕ : (x, y) 7→(
x, f(x, y)

)
and its inverse.
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Proof of the implication 2b1 =⇒2b3. Given f : Rn−m×Rm → Rm as in 2b3,
we define ϕ : Rn−m × Rm → Rn−m × Rm by ϕ(x, y) =

(
x, f(x, y)

)
and check

the conditions of 2b1 for n, ϕ in place of n, f . We have

(Dϕ)(0,0) =
(

id 0
B C

)
;

an invertible matrix, since its determinant is det(id) det(C) = det(C) 6= 0. 1

By Theorem 2b1, ϕ is a local diffeomorphism. Its inverse ψ = ϕ−1 is also a
local diffeomorphism. Both ϕ and ψ do not change the first component x.

We define g : Rn−m → Rm by
(
x, g(x)

)
= ψ(x, 0) and note that g is con-

tinuously differentiable near 0, since it is the composition of three mappings

x
linear7−→

(
x
0

)
ψ7−→ ψ

(
x
0

)
=

(
x
g(x)

)
linear7−→ g(x) .

Finally, f(x, y) = 0 ⇐⇒ ϕ(x, y) = (x, 0) ⇐⇒ ψ(x, 0) = (x, y) ⇐⇒ y =
g(x) for (x, y) near (0, 0).

Having 2b1 ⇐⇒ 2b3, we need to prove only one of the two theorems.
Which one? Both options are in use. Some authors2 prove 2b3 by induction
in dimension, and then derive 2b1. Others3 prove 2b1 and then derive 2b3;
we do it this way, too.

2c Proof, the easy part

Given f : Rn → Rn as in 2b1, we may choose at will a pair of bases (as
explained in Sect. 1f and mentioned in Sect. 2a, Item “analysis”). We choose
bases (α1, . . . , αn) and (β1, . . . , βn) such that Aα1 = β1, . . . , Aαn = βn (here
A = (Df)0, as before), then A becomes id. That is, we may (and will)
assume WLOG that A = id. 4

2c1 Lemma. f is one-to-one near 0.

Proof. We take δ > 0 such that on the set U = {x : |x| < δ} ⊂ Rn

the function f is continuously differentiable and ‖Df − id ‖ ≤ 1
2
. We have

1Alternatively, invertibility is easy to check with no determinant. The equation(
id 0

B C

)(x
y

)
=

(
u
v

)
for given u, v becomes x = u, Bx + Cy = v, and clearly has

one and only one solution x = u, y = C−1(v −Bu).
2Curant, Zorich.
3Fleming, Hubbard, Lang, Shifrin, Shurman.
4See also: Fleming, Sect. XVIII.3, p. 515.
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‖D(f − id)‖ ≤ 1
2

on the convex set U ; by (1f31), |
(
f(b) − b

)
−
(
f(a) −

a
)
| ≤ 1

2
|b − a| for all a, b ∈ U . Thus, |

(
f(b) − f(a)

)
− (b − a)| ≤ 1

2
|b − a|;

|f(b)−f(a)| ≥ |b−a|− 1
2
|b−a| = 1

2
|b−a|; 1 a 6= b =⇒ f(a) 6= f(b) whenever

|a| < δ, |b| < δ.

Taking U as above, we introduce V = f(U) and f−1 : V → U (really,
this is (f |U)−1). The inequality |f(b)− f(a)| ≥ 1

2
|b− a| for a, b ∈ U becomes

|f−1(y)− f−1(z)| ≤ 2|y− z| for y, z ∈ V , which shows that f−1 is continuous
on V . Also, taking z = 0 we get |f−1(y)| ≤ 2|y| for all y ∈ V .

2c2 Lemma. f−1(y) = y + o(y) for y ∈ V , y → 0.

Proof. We use δ and U from the proof of 2c1, and generalize that argument
as follows. For every ε ∈ (0, 1

2
] there exists δε ∈ (0, δ] such that ‖Df −

id ‖ ≤ ε on the subset Uε = {x : |x| < δε} of U , which implies (as before)
|
(
f(b)− f(a)

)
− (b− a)| ≤ ε|b− a| for all a, b ∈ Uε. We need only the special

case (for a = 0): |f(b)− b| ≤ ε|b| for b ∈ Uε. It is sufficient to check that

|f−1(y)− y| ≤ 2ε|y| whenever y ∈ V , |y| < 1

2
δε .

Given such y, we consider x = f−1(y) ∈ U , note that x ∈ Uε (since |x| ≤
2|y| < δε), thus |f(x)− x| ≤ ε|x|, which gives |y − f−1(y)| ≤ 2ε|y|.

Did we prove differentiability of f−1 at 0? Not yet. Is f−1 defined near
0? That is, is 0 an interior point of V ?

2c3 Theorem. Let f : Rn → Rn be continuously differentiable near 0,
f(0) = 0, and (Df)0 = A : Rn → Rn be invertible. Then f is open at 0.

The proof is postponed to Sect. 2d.

2c4 Lemma. Theorem 2c3 implies Theorem 2b1.

Proof. Given f as in 2b1, we take U as in the proof of 2c1; now 2c3 gives
ε > 0 such that the set V1 = {y : |y| < ε} satisfies V1 ⊂ f(U). The
set U1 = {x ∈ U : f(x) ∈ V1} is open (since f is continuous on U), and
f(U1) = V1. Taking into account that f−1 is continuous on f(U) we see that
f |U1 is a homeomorphism between open sets U1 and V1; thus, f is a local
homeomorphism. By 2c2, f−1 is differentiable at 0.

The same holds near every point of U1 (the assumption x0 = 0 was not
a loss of generality, see page 20). Thus, f−1 is differentiable on V1, and(
D(f−1)

)
y =

(
(Df)f−1(y)

)−1 (as explained in 2b2). Continuity of D(f−1)
follows by 1f18(c), and therefore f is a local diffeomorphism.

1The triangle inequality |x+ y| ≤ |x|+ |y| implies |x| ≥ |x+ y| − |y|, that is, |u+ v| ≥
|u| − |v|.
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2d Proof, the hard part

What is the problem

We want to prove Theorem 2c3. As before, we may assume WLOG that
A = id. We cannot use the theorems, but can use Lemma 2c1. We know
that f : U → V is a homeomorphism, where U = {x : |x| < δ} ⊂ Rn is an
open ball, and δ is small enough; but we are not sure that V is open. Clearly,
0 ∈ V (since f(0) = 0). How to prove that 0 is an interior point of V ?

In dimension 1 this is easy: f(0) = 0, f ′(0) = 1; f(δ) > 0, f(−δ) < 0 (for
δ small enough); 0 is an interior point of the interval

(
f(−δ), f(δ)

)
, and V

contains this interval.
How do we know that V contains this interval? Being homeomorphic to

the interval U = (−δ, δ), V must be an interval. It is connected. Any hole
inside the interval would disconnect it.

In dimension 2, V is homeomorphic to the disk U = {x : |x| < δ} ⊂ R2,
therefore, connected. So what? Could V be like these?

True, V must contain paths through 0 in all directions (images of rays). So
what? This condition is also satisfied by these counterexamples.

Should we consider circles rather than rays? And what about higher dimen-
sion?

You see, n-dimensional topology is much more complicated than 1-dimen-
sional. A hole disconnects a line, but not a plane. Rather, a hole on a plane
disconnects the space of loops!

These two loops belong to different con-
nected components in the space of loops.

In R3 a hole does not disconnect the space of loops; rather, it disconnects
the space of. . . loops in the space of loops! And so on. Algebraic topology,
a long and hard way. . .
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2d1 Remark. In fact, for every open U ⊂ Rn, every continuous one-to-one
mapping U → Rn is open (and therefore a homeomorphism between open
sets U and f(U)). This is a well-known topological result, “the Brouwer
invariance of domain theorem”.1

2d2 Exercise. Prove invariance of domain in dimension one.2

Topology assumes only continuity of mappings, not differentiability. We
wonder, are differentiable mappings more tractable than (just) continuous
mappings?

Yes, fortunately, they are. Two analytical (rather than topological) proofs
of Theorem 2c3 are well-known. Some authors3 consider the minimizer xy
of the function x 7→ |f(x) − y|2 (for a given y near 0) and prove that f(xy)
cannot differ from y, using invertibility of the operator (Df)xy . Others4 use
iteration (in other words, successive approximations), that is, construct a
sequence of approximate solutions x1, x2, . . . of the equation f(x) = y (for
a given y near 0) and prove that the sequence converges, and its limit is a
solution; we do it this way, too.

Here is the idea. First, the linear approximation f(x) ≈ x for f leads to
the same linear approximation f−1(y) ≈ y for f−1 (see 2c2); thus, given y,
we consider x1 = y as the first approximation to the (hoped for) solution of
the equation f(x) = y. Alas, y1 = f(x1) differs from y, and we seek a better
approximation x2. The inequality |(f(b) − f(a)) − (b − a)| ≤ ε|b − a| (seen
in the proof of 2c2) suggests that f(b) − f(a) ≈ b − a, and in particular,
f(x2)− f(x1) ≈ x2 − x1. Seeking f(x2) ≈ y, that is, f(x2)− f(x1) ≈ y − y1,
we take x2 = x1 + y − y1. And so on: y2 = f(x2); x3 = x2 + y − y2; . . .

It appears that every constant ε ∈ (0, 1) ensures convergence xk → x,
and then f(x) = y. Thus, we’ll use just ε = 1

2
(as in the proof of 2c1).

Proof of Theorem 2c3. Given f as in 2c3, we assume WLOG that A = id
(as before) and take U = {x : |x| < δ} ⊂ Rn as in the proof of 2c1; we know
that f |U is a homeomorphism U → V = f(U), and

(2d3) |(f(b)− f(a))− (b− a)| ≤ 1
2
|b− a| for all a, b ∈ U .

First, we’ll prove that 0 is an interior point of V (and afterwards we’ll prove
that the mapping f is open at 0). To this end it is sufficient to prove that
y ∈ V for all y ∈ Rn such that |y| < 1

2
δ.

1By the way, it follows from the Brouwer invariance of domain theorem that an open
set in Rn+1 cannot be homeomorphic to any set in Rn (unless it is empty). Think, why.

2Hint: recall 2a8.
3Shurman; Zorich (alternative proof in Sect. 8.5.5, Exer. 4f).
4Fleming, Hubbard, Lang, Shifrin; Curant (alternative proof in Sect. 3.3g).
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Given such y, we rewrite the equation f(x) = y as

ϕ(x) = x “fixed point”

where ϕ : U → Rn is defined by

ϕ(x) = y + x− f(x) .

In order to prove that y ∈ V we need existence of a fixed point.
By (2d3),

|ϕ(b)− ϕ(a)| ≤ 1
2
|b− a| for all a, b ∈ U .

If |x| < δ, then |ϕ(x)| ≤ |ϕ(x)−ϕ(0)|+ |ϕ(0)| ≤ 1
2
|x−0|+ |y| < 1

2
δ+ 1

2
δ = δ.

We take x1 = y, x2 = ϕ(x1), x3 = ϕ(x2) and so on; then |xk| < δ, and

|x2 − x1| = |ϕ(y)− ϕ(0)| ≤ 1
2
|y| ;

|x3 − x2| = |ϕ(x2)− ϕ(x1)| ≤ 1
2
|x2 − x1| ≤ 1

4
|y| .

And so on;1 xk ∈ U , xk+1 = ϕ(xk), |xk+1−xk| ≤ 2−k|y|. The series
∑

k |xk+1−
xk| converges, thus xk are a Cauchy sequence, therefore convergent: xk → x;
and |x| ≤ 2|y| < δ (since |xk| ≤ 2|y| for all k), thus x ∈ U . By continuity of
ϕ, ϕ(x) = limk ϕ(xk) = limk xk+1 = limk xk = x; a fixed point is found, and
so, 0 is an interior point of V .

By 2a7(a) it remains to find, for given yk → 0, some xk → 0 such that
f(xk) = yk for all k large enough. This is immediate: we note that yk ∈ V
(for large k), take xk = (f |U)−1(yk) and use continuity of (f |U)−1.

All theorems are proved, since 2c3 implies 2b1 by 2c4, and 2b1 implies
2b3 as shown in Sect. 2b.

2d4 Exercise. Assume that f : Rn → R is continuously differentiable
near the origin, and (D1f)0 6= 0, . . . , (Dnf)0 6= 0. Then the equation
f(x1, . . . , xn) = 0 locally defines n functions x1(x2, . . . , xn), x2(x1, x3, . . . , xn),
. . . , xn(x1, . . . , xn−1). Find the product

∂x1
∂x2

∂x2
∂x3

. . .
∂xn−1
∂xn

∂xn
∂x1

at the origin.2

1More formally, we prove by induction in k existence of x1, . . . , xk ∈ U such that
x1 = y, x2 = ϕ(x1), . . . , xk = ϕ(xk−1), |xk−xk−1| ≤ 2−k ·2|y|, and |xk| ≤

(
1−2−k

)
·2|y|.

2Hint: first, consider a linear f .
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Using iteration in the proof only we need not bother about rate of con-
vergence. However, iteration is quite useful in computation. For fast conver-
gence, the transition from xk to xk+1 is made via Ak = (Df)xk rather than
A = (Df)0.

1

On the other hand, using only A = (Df)0 we could hope for convergence
assuming just differentiability of f near 0 (rather than continuous differentia-
bility). Let us try it for f of Example 2a1. Some xn, shown here as functions
of y, are discouraging.

y=f(x)

x=x2(y)

x=x3(y)

0.04
0.04

0.08

0.08

x

y

x=x5(y)

0.04
0.04

0.08

0.08

x

y

x=x7(y)

0.04
0.04

0.08

0.08

x

y

This is instructive. Never forget the word “continuously” in “continuously
differentiable”!2

True, the mean value theorem, and the finite increment theorem (1f31),
assume just differentiability. But this is a rare exception.

In the linear case, according to Sect. 2a (Item “linear algebra”), not only
A(x, y) = 0 ⇐⇒ y = −C−1Bx, but also A(x, y) = z ⇐⇒ y = C−1(z−Bx).
In the nonlinear case the situation is similar.

2d5 Theorem. Let f : Rn−m × Rm → Rm and A,B,C be as in Th. 2b3.
Then there exists g : Rn−m × Rm → Rm, continuously differentiable near
(0, 0), such that the two relations f(x, y) = z and y = g(x, z) are equivalent

for (x, y, z) near (0, 0, 0); and (Dg)(0,0) =
(
−C−1B C−1

)
.

Proof. Similarly to the proof of the implication 2b1 =⇒ 2b3 (in Sect. 2b) we
introduce the local diffeomorphism ϕ, its inverse ψ, define g by

(
x, g(x, z)

)
=

ψ(x, z), note that
(
x
z

) ψ7−→ ψ
(
x
z

)
=
( x
g(x,z)

) linear7−→ g(x, z), and finally, f(x, y) =
z ⇐⇒ ϕ(x, y) = (x, z) ⇐⇒ ψ(x, z) = (x, y) ⇐⇒ y = g(x, z) for (x, y, z)
near (0, 0, 0).

1If interested, see Hubbard, Sect. 2.7 “Newton’s method” and 2.8 “Superconvergence”.
2Differentiable functions are generally monstrous! In particular, such a function can

be nowhere monotone. Did you know? Can you imagine it? See, for example, Sect. 9c of
my advanced course “Measure and category”.

http://www.tau.ac.il/~tsirel/Courses/MeasCateg/main.html
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