Some solutions

Question 1

According to Th. 3f1, locally (near x_{0}), M can be given by $(n-k)$ constraints g_{1}, \ldots, g_{n-k} that satisfy the conditions of Th. 3a1. The latter theorem gives Lagrange multipliers $\lambda_{1}, \ldots, \lambda_{n-k}$ such that $\nabla f\left(x_{0}\right)=$ $\lambda_{1} \nabla g_{1}\left(x_{0}\right)+\cdots+\lambda_{n-k} \nabla g_{n-k}\left(x_{0}\right)$. The function

$$
g=\lambda_{1} g_{1}+\cdots+\lambda_{n-k} g_{n-k}
$$

does the job.

Question 2 (for continuous f)

We take $R \in(0, \infty)$ such that $f(x, y)=0$ whenever $|(x, y)|>R$, then also $f_{\theta}(x, y)=0$ whenever $|(x, y)|>R$, since $f_{\theta}(x, y)=f\left(x_{\theta}, y_{\theta}\right)$ where $x_{\theta}=x \cos \theta-y \sin \theta, y_{\theta}=x \sin \theta+y \cos \theta$, and $\left|\left(x_{\theta}, y_{\theta}\right)\right|=|(x, y)|$.

We have $\int\left|f_{\theta}-f\right| \leq \pi R^{2} \max _{x, y}\left|f_{\theta}(x, y)-f(x, y)\right|$; thus, it is sufficient to get $\left|f_{\theta}(x, y)-f(x, y)\right| \leq \varepsilon_{1}$ for all x, y; here $\varepsilon_{1}=\frac{\varepsilon}{\pi R^{2}}$. That is, we need

$$
\forall x, y\left|f\left(x_{\theta}, y_{\theta}\right)-f(x, y)\right| \leq \varepsilon_{1}
$$

Being continuous on the compact disk $|(x, y)| \leq R$, the function f is uniformly continuous on this disk; thus, there exists $\delta_{1}>0$ such that $\mid f\left(x_{\theta}, y_{\theta}\right)-$ $f(x, y) \mid \leq \varepsilon_{1}$ whenever $\left|\left(x_{\theta}, y_{\theta}\right)-(x, y)\right| \leq \delta_{1}$. Clearly, ${ }^{1}$

$$
\left|\left(x_{\theta}, y_{\theta}\right)-(x, y)\right| \leq R \theta
$$

therefore, the number

$$
\delta=\frac{\delta_{1}}{R}
$$

does the job.

[^0]
[^0]: ${ }^{1}$ In fact, $\left|\left(x_{\theta}, y_{\theta}\right)-(x, y)\right| \leq 2 R \sin \frac{1}{2} \theta$.

