0 Preliminaries

0a Conventions, notation, terminology etc. 1
0b Improper integral 2
0c Change of variable 3
Od Additive set functions [3]
0e Germs 3
Of Some linear algebra 4
0 g Some n-dimensional volumes and integrals 4

0a Conventions, notation, terminology etc.

Unless stated otherwise (or even always):
\mathbb{R}
the real line
$\mathbb{R}^{n} \ldots \ldots\left\{\begin{array}{c} \\ \\ \left.\left.x_{1}, \ldots, x_{n}\right): x_{1}, \ldots, x_{n} \in \mathbb{R}\right\} \\ \hline\end{array}\right.$
Thus, $\mathbb{R}^{m+n}=\mathbb{R}^{m} \times \mathbb{R}^{n}$ up to canonical isomorphism. ${ }^{1}$
$A \subset B \ldots . . \forall x(x \in A \Longrightarrow x \in B)$
Thus, $(A \subset B) \wedge(B \subset A) \Longleftrightarrow(A=B) .^{2}$
$A \uplus B \ldots \ldots \ldots \ldots \ldots$................. $A \cup B$ when $A \cap B=\emptyset$, otherwise undefined.
$(1, \ldots, n)$ or $\left(x_{1}, \ldots, x_{n}\right) \ldots .$. . finite sequence

$f: A \rightarrow B \ldots \ldots \ldots \ldots \ldots \ldots f \subset A \times B$ and $\forall x \in A \exists!y \in B(x, y) \in f .{ }^{3}$
$T x \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. the same as $T(x)$ when a mapping T is linear.
$|x| \quad\left(\right.$ for $\left.x \in \mathbb{R}^{n}\right) \ldots \sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$

The derivative of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at $x \in \mathbb{R}^{n}$, denoted by $(D f)_{x}$, is a linear operator $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $f(x+h)=f(x)+(D f)_{x} h+o(|h|)$ as $h \rightarrow 0$. Thus, $D f$ is a mapping from \mathbb{R}^{n} to the $n m$-dimensional space of linear operators. Also, $(D f)_{x} h=\left(D_{h} f\right)_{x}$. For $n=1,(D f)_{x} h=h f^{\prime}(x), f^{\prime}(x) \in \mathbb{R}^{m}$.
Index of terminology and notation is often available at the end of a section.

[^0]
0b Improper integral

You know: For every open $U \subset \mathbb{R}^{n}$ such that ∂U is a null set, and every $f: U \rightarrow \mathbb{R}$ continuous almost everywhere, we define first, assuming $f(\cdot) \geq 0$,

$$
\int_{U} f=\sup \left\{\int_{E} f: E \text { Jordan, } \bar{E} \subset U, f \text { bounded on } E\right\} \in[0, \infty]
$$

and then, assuming instead $\int_{U}|f|<\infty$,

$$
\int_{U} f=\int_{U} f^{+}-\int_{U} f^{-} \in(-\infty,+\infty)
$$

0b1 Remark. The same applies to arbitrary open U (even if ∂U is not a null set).

0b2 Remark. Equivalently, for $f(\cdot) \geq 0$,

$$
\begin{aligned}
\int_{U} f=\sup \left\{\int_{\mathbb{R}^{n}} g \mid g: \mathbb{R}^{n}\right. & \rightarrow \mathbb{R} \text { Riemann integrable, } \\
& \left.0 \leq g \leq f \text { on } U, g=0 \text { on } \mathbb{R}^{n} \backslash U\right\} \in[0, \infty]
\end{aligned}
$$

0b3 Remark. $\int_{U}\left(f_{1}+f_{2}\right)=\int_{U} f_{1}+\int_{U} f_{2} \in[0, \infty]$ for all $f_{1}, f_{2} \geq 0$ on U, continuous almost everywhere.

0b4 Remark. Equivalently,

$$
\int_{U}(g-h)=\int_{U} g-\int_{U} h
$$

for all $g, h: U \rightarrow[0, \infty)$ continuous almost everywhere, with finite integrals.
If $g_{1}-h_{1}=g_{2}-h_{2}$, then $\int_{U} g_{1}-\int_{U} h_{1}=\int_{U} g_{2}-\int_{U} h_{2}$, since

$$
\begin{aligned}
& g_{1}-h_{1}=g_{2}-h_{2} \Longrightarrow g_{1}+h_{2}=g_{2}+h_{1} \Longrightarrow \int_{G}\left(g_{1}+h_{2}\right)=\int_{G}\left(g_{2}+h_{1}\right) \Longrightarrow \\
& \Longrightarrow \int_{G} g_{1}+\int_{G} h_{2}=\int_{G} g_{2}+\int_{G} h_{1} \Longrightarrow \int_{G} g_{1}-\int_{G} h_{1}=\int_{G} g_{2}-\int_{G} h_{2} .
\end{aligned}
$$

0b5 Remark. All functions $f: U \rightarrow \mathbb{R}$ that are improperly integrable, that is, continuous almost everywhere and such that $\int_{U}|f|<\infty$, are a vector space, and the improper integral is a linear functional on this space.

0c Change of variable

You know: Let $U, V \subset \mathbb{R}^{n}$ be open sets, U bounded, and $\varphi: U \rightarrow V$ a diffeomorphism (of class C^{1}). Then for every Jordan set E such that $\bar{E} \subset U$, the set $F=\varphi(E)$ is Jordan, $\bar{F} \subset V$; and for every Riemann integrable $f: F \rightarrow \mathbb{R}$ the function $f \circ \varphi$ (or rather, $\left.f \circ \varphi\right|_{E}$) on E is Riemann integrable, and

$$
\int_{F} f=\int_{E}(f \circ \varphi)|\operatorname{det} D \varphi| .
$$

0c1 Remark. Let $U, V \subset \mathbb{R}^{n}$ be open sets, $\varphi: U \rightarrow V$ a diffeomorphism (of class C^{1}), and $f: V \rightarrow \mathbb{R}$. Then
(a) f is improperly integrable on V if and only if $(f \circ \varphi)|\operatorname{det} D \varphi|$ is improperly integrable on U; and
(b) in this case

$$
\int_{V} f=\int_{U}(f \circ \varphi)|\operatorname{det} D \varphi| .
$$

0d Additive set functions

A Riemann integrable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ leads to the set function F,

$$
F(A)=\int_{A} f \quad \text { for Jordan } A \subset \mathbb{R}^{n}
$$

and F is additive:

$$
F(A \uplus B)=F(A)+F(B) .
$$

Conversely, f is the density of F :

$$
f(x)=\lim _{A \rightarrow x, v(A) \neq 0} \frac{F(A)}{v(A)} \text { whenever } x \text { is a point of continuity of } f
$$

here " $A \rightarrow x$ " means that $\sup _{a \in A}|a-x| \rightarrow 0$, and v is the Jordan measure.

0e Germs

Two functions on \mathbb{R}^{n} (or another space) are said to be equal near a given point x, if they are equal on some neighborhood of x. Equality near x is an equivalence relation. Its equivalence classes are called germs (of functions) at x. The germ of f at x is denoted by $[f]_{x}$. The same applies to mappings from \mathbb{R}^{n} to any \mathbb{R}^{m}, as well as from a neighborhood of x to \mathbb{R}^{m}.

Many properties of functions apply readily to germs, according to the pattern
$[f]_{x}$ is called $\square \quad$ when $\quad f$ is \square near x; here \qquad may be "linear", "bounded", "continuous", "one-to-one" etc.
By the way, "continuous at x " is not the same as "continuous near x " (think, why).

If $\left[f_{1}\right]_{x}=\left[f_{2}\right]_{x}$ then $\lim _{y \rightarrow x} f_{1}(y)=\lim _{y \rightarrow x} f_{2}(y)$ in the following sense: either both limits exist and coincide, or neither limit exists. This way the notion of limit applies to germs; it is a local notion.

Of Some linear algebra

$A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A$ for every invertible $n \times n$ matrix A; here adj A, the adjugate matrix, satisfies $(\operatorname{adj} A)_{i, j}=(-1)^{i+j} M_{j, i}$; and $M_{j, i}$ is the minor, that is, the determinant of the $(n-1) \times(n-1)$ matrix that results from deleting row j and column i from A.

Thus, $A \operatorname{adj} A=(\operatorname{det} A) I$, whence $\forall i \quad \sum_{j} A_{i, j}(\operatorname{adj} A)_{j, i}=\operatorname{det} A$ (Laplace expansion), and $\frac{\partial}{\partial A_{i, j}} \operatorname{det} A=(\operatorname{adj} A)_{j, i} ;$ it means, $\left(D_{H} \operatorname{det}\right)_{A}=\operatorname{tr}(H \operatorname{adj} A)$ (Jacobi's formula). In particular, $\left(D_{H} \operatorname{det}\right)_{I}=\operatorname{tr} H$, that is, $(D \operatorname{det})_{I}=\operatorname{tr}$.

0 g Some n-dimensional volumes and integrals

The volume of the unit ball $\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$:

$$
V_{n}=\frac{2 \pi^{n / 2}}{n \Gamma\left(\frac{n}{2}\right)} .
$$

More generally, for every norm $\|\cdot\|$ on \mathbb{R}^{n} the unit ball $\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ is Jordan measurable; denoting its volume by V we have ${ }^{1}$

$$
\int_{\mathbb{R}^{n}} f(\|x\|) \mathrm{d} x=n V \int_{0}^{\infty} f(r) r^{n-1} \mathrm{~d} r \in[0, \infty]
$$

for every $f:[0, \infty) \rightarrow[0, \infty)$ continuous almost everywhere.
Multidimensional beta integral of Dirichlet: ${ }^{2}$

$$
\int_{\substack{x_{1} \ldots x_{n}>0, x_{1}+\cdots+x_{n}<1}} \ldots \int_{1}^{p_{1}-1} \ldots x_{n}^{p_{n}-1} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}=\frac{\Gamma\left(p_{1}\right) \ldots \Gamma\left(p_{n}\right)}{\Gamma\left(p_{1}+\cdots+p_{n}+1\right)}
$$

for all $p_{1}, \ldots p_{n}>0$.

[^1]
[^0]: 1'a rule of thumb: there is a canonical isomorphism between X and Y if and only if you would feel comfortable writing "X $=\mathrm{Y}$ ", — Reid Barton, see Mathoverflow, What is the definition of "canonical"?
 ${ }^{2}$ Why " \subset " and " \neq " rather than " \subseteq " and " \subset "? Since I need " \subset " several times a day, while " \neq " hardly once a month.
 ${ }^{3}$ Here B is the codomain, generally not the image of f.

[^1]: ${ }^{1}$ Improper integration is used.
 ${ }^{2}$ Improper integration is used, unless $p_{1}, \ldots p_{n} \geq 1$.

