0 Preliminaries

0a	Conventions, notation, terminology etc	1
0 b	Improper integral	2
0c	Change of variable	3
$0\mathbf{d}$	Additive set functions	3
0e	Germs	3
0f	Some linear algebra	4
$0\mathbf{g}$	Some n -dimensional volumes and integrals \ldots	4

0a Conventions, notation, terminology etc.

Unless stated otherwise (or even always):

 \mathbb{R} the real line Thus, $\mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n$ up to canonical isomorphism.¹ $A \subset B \dots \forall x \ (x \in A \implies x \in B)$ Thus, $(A \subset B) \land (B \subset A) \iff (A = B)$.² $A \uplus B$ just $A \cup B$ when $A \cap B = \emptyset$, otherwise undefined. $(1,\ldots,n)$ or (x_1,\ldots,x_n) finite sequence $(1, 2, \ldots)$ or (x_1, x_2, \ldots) infinite sequence $f: A \to B$ $f \subset A \times B$ and $\forall x \in A \exists ! y \in B \ (x, y) \in f^{3}$. Tx the same as T(x) when a mapping T is linear. |x| (for $x \in \mathbb{R}^n$) $\sqrt{x_1^2 + \cdots + x_n^2}$ \overline{A}, A° (for $A \subset \mathbb{R}^n$) the closure and the interior The derivative of $f: \mathbb{R}^n \to \mathbb{R}^m$ at $x \in \mathbb{R}^n$, denoted by $(Df)_x$, is a linear operator $\mathbb{R}^n \to \mathbb{R}^m$ such that $f(x+h) = f(x) + (Df)_x h + o(|h|)$ as $h \to 0$. Thus, Df is a mapping from \mathbb{R}^n to the *nm*-dimensional space of linear operators. Also, $(Df)_x h = (D_h f)_x$. For n = 1, $(Df)_x h = hf'(x)$, $f'(x) \in \mathbb{R}^m$. Index of terminology and notation is often available at the end of a section.

¹'a rule of thumb: there is a canonical isomorphism between X and Y if and only if you would feel comfortable writing "X = Y"' — Reid Barton, see Mathoverflow, What is the definition of "canonical"?

²Why " \subset " and " \subsetneq " rather than " \subseteq " and " \subset "? Since I need " \subset " several times a day, while " \subsetneq " hardly once a month.

³Here B is the codomain, generally not the image of f.

Analysis-IV

0b Improper integral

You know: For every open $U \subset \mathbb{R}^n$ such that ∂U is a null set, and every $f: U \to \mathbb{R}$ continuous almost everywhere, we define first, assuming $f(\cdot) \geq 0$,

$$\int_{U} f = \sup \left\{ \int_{E} f : E \text{ Jordan}, \overline{E} \subset U, f \text{ bounded on } E \right\} \in [0, \infty],$$

and then, assuming instead $\int_U |f| < \infty$,

$$\int_U f = \int_U f^+ - \int_U f^- \in (-\infty, +\infty).$$

0b1 Remark. The same applies to arbitrary open U (even if ∂U is not a null set).

0b2 Remark. Equivalently, for $f(\cdot) \ge 0$,

$$\begin{split} \int_{U} f &= \sup \left\{ \left. \int_{\mathbb{R}^{n}} g \right| g : \mathbb{R}^{n} \to \mathbb{R} \text{ Riemann integrable,} \right. \\ & 0 \leq g \leq f \text{ on } U, \, g = 0 \text{ on } \mathbb{R}^{n} \setminus U \right\} \in [0,\infty] \end{split}$$

0b3 Remark. $\int_U (f_1 + f_2) = \int_U f_1 + \int_U f_2 \in [0, \infty]$ for all $f_1, f_2 \ge 0$ on U, continuous almost everywhere.

0b4 Remark. Equivalently,

$$\int_{U} (g-h) = \int_{U} g - \int_{U} h$$

for all $g, h: U \to [0, \infty)$ continuous almost everywhere, with finite integrals. If $g_1 - h_1 = g_2 - h_2$, then $\int_U g_1 - \int_U h_1 = \int_U g_2 - \int_U h_2$, since

$$g_1 - h_1 = g_2 - h_2 \implies g_1 + h_2 = g_2 + h_1 \implies \int_G (g_1 + h_2) = \int_G (g_2 + h_1) \implies \\ \implies \int_G g_1 + \int_G h_2 = \int_G g_2 + \int_G h_1 \implies \int_G g_1 - \int_G h_1 = \int_G g_2 - \int_G h_2.$$

0b5 Remark. All functions $f: U \to \mathbb{R}$ that are *improperly integrable*, that is, continuous almost everywhere and such that $\int_U |f| < \infty$, are a vector space, and the improper integral is a linear functional on this space.

Analysis-IV

0c Change of variable

You know: Let $U, V \subset \mathbb{R}^n$ be open sets, U bounded, and $\varphi : U \to V$ a diffeomorphism (of class C^1). Then for every Jordan set E such that $\overline{E} \subset U$, the set $F = \varphi(E)$ is Jordan, $\overline{F} \subset V$; and for every Riemann integrable $f: F \to \mathbb{R}$ the function $f \circ \varphi$ (or rather, $f \circ \varphi|_E$) on E is Riemann integrable, and

$$\int_{F} f = \int_{E} (f \circ \varphi) |\det D\varphi|.$$

0c1 Remark. Let $U, V \subset \mathbb{R}^n$ be open sets, $\varphi : U \to V$ a diffeomorphism (of class C^1), and $f : V \to \mathbb{R}$. Then

(a) f is improperly integrable on V if and only if $(f \circ \varphi) |\det D\varphi|$ is improperly integrable on U; and

(b) in this case

$$\int_{V} f = \int_{U} (f \circ \varphi) |\det D\varphi|.$$

0d Additive set functions

A Riemann integrable $f : \mathbb{R}^n \to \mathbb{R}$ leads to the set function F,

$$F(A) = \int_A f$$
 for Jordan $A \subset \mathbb{R}^n$,

and F is *additive*:

$$F(A \uplus B) = F(A) + F(B).$$

Conversely, f is the density of F:

$$f(x) = \lim_{A \to x, v(A) \neq 0} \frac{F(A)}{v(A)} \quad \text{whenever } x \text{ is a point of continuity of } f;$$

here " $A \to x$ " means that $\sup_{a \in A} |a - x| \to 0$, and v is the Jordan measure.

0e Germs

Two functions on \mathbb{R}^n (or another space) are said to be equal *near* a given point x, if they are equal on some neighborhood of x. Equality near x is an equivalence relation. Its equivalence classes are called *germs* (of functions) at x. The germ of f at x is denoted by $[f]_x$. The same applies to mappings from \mathbb{R}^n to any \mathbb{R}^m , as well as from a neighborhood of x to \mathbb{R}^m .

Many properties of functions apply readily to germs, according to the pattern

Analysis-IV

 $[f]_x$ is called ______ when f is _____ near x; here ______ may be "linear", "bounded", "continuous", "one-to-one" etc.

By the way, "continuous at x" is not the same as "continuous near x" (think, why).

If $[f_1]_x = [f_2]_x$ then $\lim_{y\to x} f_1(y) = \lim_{y\to x} f_2(y)$ in the following sense: either both limits exist and coincide, or neither limit exists. This way the notion of limit applies to germs; it is a *local* notion.

0f Some linear algebra

 $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$ for every invertible $n \times n$ matrix A; here $\operatorname{adj} A$, the adjugate matrix, satisfies $(\operatorname{adj} A)_{i,j} = (-1)^{i+j} M_{j,i}$; and $M_{j,i}$ is the minor, that is, the determinant of the $(n-1) \times (n-1)$ matrix that results from deleting row j and column i from A.

Thus, $A \operatorname{adj} A = (\det A)I$, whence $\forall i \sum_{j} A_{i,j}(\operatorname{adj} A)_{j,i} = \det A$ (Laplace expansion), and $\frac{\partial}{\partial A_{i,j}} \det A = (\operatorname{adj} A)_{j,i}$; it means, $(D_H \det)_A = \operatorname{tr}(H \operatorname{adj} A)$ (Jacobi's formula). In particular, $(D_H \det)_I = \operatorname{tr} H$, that is, $(D \det)_I = \operatorname{tr}$.

0g Some *n*-dimensional volumes and integrals

The volume of the unit ball $\{x \in \mathbb{R}^n : |x| < 1\}$:

$$V_n = \frac{2\pi^{n/2}}{n\Gamma\left(\frac{n}{2}\right)} \,.$$

More generally, for every norm $\|\cdot\|$ on \mathbb{R}^n the unit ball $\{x \in \mathbb{R}^n : \|x\| < 1\}$ is Jordan measurable; denoting its volume by V we have¹

$$\int_{\mathbb{R}^n} f(\|x\|) \,\mathrm{d}x = nV \int_0^\infty f(r) r^{n-1} \,\mathrm{d}r \in [0,\infty]$$

for every $f: [0, \infty) \to [0, \infty)$ continuous almost everywhere.

Multidimensional beta integral of Dirichlet:²

$$\int \cdots \int x_1^{p_1-1} \dots x_n^{p_n-1} \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n = \frac{\Gamma(p_1) \dots \Gamma(p_n)}{\Gamma(p_1 + \dots + p_n + 1)}$$

for all $p_1, ..., p_n > 0$.

а

¹Improper integration is used.

²Improper integration is used, unless $p_1, \ldots p_n \ge 1$.