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The relation

integration

point functions additive set functions

<~
differentiation

was treated in Analysis-1I1. A similar relation

integration

first-order differential forms additive path functions

e |
differentiation

15 treated here, and generalized:

integration

——

higher-order differential forms additive functions of singular boxes

differentiation

... this chapter may seem rather abstract and
artificial ... the best procedure for the mo-
ment is simply to regard differential forms as
completely new mathematical objects. . .
Corwin and Szczarba, p. 487

...a k-form w is some sort

of mapping

w: {k-surfaces in A} — R.
Shurman, p. 404.

la Why path functions

Life is a path function. You begin life, you end life-that’s not so
interesting, right? But quality of life is a path function. It’s the path
that you take from the beginning to the end, the integral of that path,
that’s the special part. Christopher Edwards

By a path (in R") we mean a function v : [to,?1] — R" (real num-
bers ty < t; may depend on the path) of class C'; that is, continuous on
[to, 1], differentiable on (tg,t1), with uniformly continuous derivative ~/(-).


http://news.stanford.edu/pr/2006/pr-edwards-120606.html
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But sometimes we admit piecewise C' paths. A path is called closed if
V(to) = (t).

A path may describe the motion of a body (a car, aircraft, ship, subma-
rine, planet, particle etc); () is the position of the body at time t.

For a car, the fuel consumption is roughly proportional to the energy
required to overcome resistance, namely, air resistance and rolling resistance.
This energy is a function §2 of a path;

wa—/lwwwwwa,

to

where v(t) = |7/(t)] is the speed of the car, and F(t) is the resistance force.
In a reasonable approximation,® the air resistance is of the form cyv? + cjv
(viscous and wind resistance), and the rolling resistance is a constant, co.
Thus,

00) = [ (al/(OF +aly (0] + a)ly O] dt.

to
For a planet or a particle resistance is usually negligible, but external fields
(usually gravitational and/or electromagnetic) do a work (energy exchange)

where F,(t) is the force vector. Its dependence on 7 is often of the form
F.,(t) = F(vy(t)) for a given vector field F’; that is, F' : R® — R".
And the most famous path function is, of course, the length,

wa=[1wwﬂm.

lal Exercise. 2 Derive the energy conservation
1 / 2 1 / 2 i /
Sl )R = Smly ()P = [ (Fy(0),7/ (1)
to
from the Newton’s second law of motion
my"(t) = F(t).

"Wikipedia, “Fuel economy in automobiles” and “Drag (physics)”.
2Shifrin, Sect. 8.3.



http://en.wikipedia.org/wiki/Fuel_economy_in_automobiles
http://en.wikipedia.org/wiki/Drag_(physics)
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1b Some properties of path functions

Path functions may be roughly classified according to presence or absence of
the following properties.
ADDITIVITY: for every path v : [to, t1] — R,

(1b1) QY ito.) + Q2 17) = Q) for all t € (to,t1) .

All path functions mentioned in Sect. [La] are additive.
STATIONARITY: for every path v : [to, 1] — R™,

(1b2) Qy(-—s)) =Qy) forall s eR;

here (- — s) is the time shifted path ¢t — ~(t — s) for t € [tg + s,t1 + s].
Non-examples: for an aircraft, a night flight may differ in fuel consump-
tion from a similar day flight; for a particle, external field sources may change
in time.
For a stationary 2 we may restrict ourselves to the case t, = 0.
SYMMETRY AND ANTISYMMETRY (FOR STATIONARY §) ONLY): for every
path v : [0,¢;] — R™

(1b3) Q-1
(1b4) Qy-1) = —Q(7); antisymmetry

~—

=Q(v); symmetry; or

here the inverse path v_; : t — ~(t; — t) for t € [0,,].

Every stationary path function € is the sum of its symmetric part v
(Q(y) + Q(7-1) /2 and antisymmetric part v — (Q(7) — Q(y-1)/2; and if Q
is additive then its symmetric part and antisymmetric part are also additive
(think, why).

NO WAITING CHARGE:

(1b5) v(+) = const (that is, 7/(-) = 0) implies Q(v) =0.
PARAMETRIZATION INVARIANCE:

(1b6) Q(yop) =Q(y)

whenever v : [tg,t1] — R™ is a path and ¢ : [so, s1] — [to,?1] an increasing
diffeomorphism (sometimes, only piecewise). In this case the path v o ¢ :
[s0, $1] = R™ is called equivalent to .

Clearly, parametrization invariance implies stationarity.
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1b7 Exercise. Consider path functions of the form

(1b8) Q:'ykétlﬁlf(u*ﬂtyq/@))dt

for arbitrary continuous functions f : R x R” x R* — R.

(a) For each of the properties defined above give a sufficient condition in
terms of f.

(b) Are your conditions necessary?

1b9 Exercise. ! Determine the work [(F(v(t)),~'(t)) d¢ done on a particle
moving along 7 in R? through the force field F(z,y, z) = (1, —z, z), where v
is

(a) the line segment from (0,0,0) to (1,2,1);

(b) the unit circle in the plane z = 1 with center (0,0, 1) beginning and
ending at (1,0, 1) and starting toward (0, 1, 1).

1b10 Exercise. ? The same for F(z,y,z) = (2% ¢% 2%) and ~(t) =
(cost,sint,at), t € [0,%;] (the arc of helix).

The following property holds for a very restricted but very important
class of path functions.

Given paths v,7y1,72, - : [to, t1] — R", we define convergence, v, — 7,
as follows:

Vt € [to, t1] Y(t) = (1),

(1b11) ,
AL Vk ~; € Lip(L),

The condition 7, € Lip(L) is equivalent to V¢ |7/ (¢)] < L (with one-sided
derivatives when needed). Note that this convergence is stronger than the
uniform convergence.

CONTINUITY:

(1b12) v — v implies  Q(v) — Q(7) .

Significantly, the length is a discontinuous path function. A counterex-
ample: 7y, (t) = (¢, £sinkt) (or just v,(t) = + sin kt).

All path functions mentioned in Sect. become continuous if one stip-
ulates convergence in C! for paths, that is, max; [y, () —+/(t)| — 0. But we
do not!

!Corwin, Szczarba Sect. 13.3.
2Hubbard, Sect. 6.5.
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1c First-order differential forms emerge

1cl Definition. Let 2 be a stationary additive path function, and f :
R™ x R" — R a continuous function. We say that f is the derivative of
Q (symbolically, f = DQ) if

(1c2) a6 = | Y Ft. 1) at

for every path ~.

Such f is unique (if exists), since

d
dt (7|tot]) = 11%1+€Q<7|tt+e])

fOy(t), (1)) =

If such f exists, we say that € is continuously differentiable (or that D
exists), and denote f(z,h) by (DpQ),.!

1c3 Proposition. If a stationary additive path function €2 is continuous and
DX exists then for every = the function h — (D), is affine (that is, the
function h — (DyQ2), — (Dof2), is linear).

1c4 Lemma. The following two conditions on a function f : R® — R are
equivalent:
(a) f(z+(1—0)y) =0f(x)+ (1—0)f(y) for all z,y € R™ and 0 € (0, 1);
(b) f is affine; that is, the function x — f(z) — f(0) is linear.

Proof. We define g(z) = f(z) — f(0).

(b)=(a): f(0z+(1-0)y)—f(0) = g(0z+(1-0)y) = Og(x)+(1-0)g(y) =
0(f(x) — f(0))+ (1= 0)(f(y) — f(0)) =0f(x) + (1 —0)f(y) — f(0).

(a)=(b):

First, we have g(0z) + f(0) = f(0z) = f(0z + (1 —6)0) = 0f(x) + (1 —
0)f(0) = 0g(x) + f(0), that is, g(6x) = g(z) for § € (0,1) and therefore for
0 € (0,00) (since (1/0)g(z) = 9((1/9) ))-

Second, g(3z + 3y) + f(0) = f(32 + 3y) = 3f(z) + 5f(y) = 39(2) +
%g(y) + f(0), and we get additivity: g(z +y) = g(x) 9(y).
) Third, g(z) + g(—x) = ¢(0) = 0, thus g(fz) = Og(x) also for negative

. ]

1c5 Lemma. Let 6 € (0,1) and T, = wW*__[£, %], Then Jn f—=0Jaf
(as k — oo) for every Riemann integrable f: R — R.

!The same condition may be imposed on an arbitrary path function, and then it may
be called “additivity, stationarity and continuous differentiability”.
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Inonn -

Proof. The claim holds when f is the indicator of an interval, since in

this case | ka f—=0Jxf] < @. By linearity the claim holds for all step

functions. By sandwich, it holds for all integrable functions. O

Now we prove the proposition admitting piecewise C!' paths. For the
other case see Remark [Ic7] afterwards.

Proof of Prop.[Ic3
First,

1e6) = mptes [ iGat0)at = [ sGo.w) .

to

since Q(7x) — Q(7) by continuity of 2, and sup, | f (v(2),7;.(t)) —F (v (), 7)) =
0 due to uniform continuity of f on bounded sets. By it is sufficient to
prove that
(DhQ)wo = 0<Dh1Q)xo + (1 - 9)(Dh29)x0

whenever h = 0hy + (1 — 6)hy, 6 € (0,1), and 2o € R". We construct paths
v, Yk : [0, t1] — R™ such that
hy

7(0) = 7(0) = 20, L
Y (t)="h forallte (0,t),

Ve
hi forte (0,¢)NT, ™ h PPPPL
wz{l o 4 =
h

hy forte (O,tl) \Tk,

= ho

T} being as in Lemma |lch|

We have v;,(£) = (%) (for integer ¢ such that £ € [0,]), since ﬁ.(;:l)/k Y (t) dt =
fi(/l,:l)/k v (t) dt; thus, sup, |7k (t)—v(t)| < 0|h1|/k — 0; and ;. € Lip(max(|hq], |h2|).

Thus, v — 7.

By (Ic6),
t1 t1
/ flxo + th,,(t)) dt —>/ f(xo+th,h)dt.
0 0
We have

t1
/ f(@o+th,v,(t)) dt:/ f(x0+th,h1)dt+/ f(xg+th, hy)dt.
0 [0,t1]N T

[0,¢1]\ Tk
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By Lemma [Ic5] in the limit £ — co we get

t1 t1 31
/ Flwo + th, b dt = 9/ Flwo -+ th, hn) dt + (1 — e)/ F(wo + th, hy) dt
0 0 0
We see that the continuous function

v f(a,h) = 0f(x,hy) — (1 —0)f(z,hy)

has zero integral on every straight interval of direction h. It follows easily
that this function vanishes everywhere. O]

1c7 Remark. If paths are required to be C! (rather than piecewise C1), the
proposition still holds; here is why. Instead of

Yy, = g by + (1 = Qg )by

we take
% =ah; + (1 — a)hy

where o is such a piecewise linear approximation of 1, :

/ \e\a // \\

I =

Still, % (£) = (%), since the integral of o over the period is equal to 0/k.
As before, 7, — . And 7 is of class Ct. It remains to check that

t1 t1

y/fh@ﬁW»ﬁ—/fh@mWDﬂ—w as k — oo.
to to

We note that 4, = ;. (and therefore the difference vanishes) outside a set of

1-dimensional volume (’)(%) On this set, the difference is O(1), since both

7] and || never exceed max(|hi],|hs|), and f is bounded on a bounded

set.

1c8 Exercise. Assume that an additive path function €2 is continuous, and
satisfies

Q(y) = F(Iv(t)]) = F(Ir(to)l)
(where F'is a given function) in two cases: first, for all v of the form ~(¢) =

o(t)x (“radial”), and second, for all v such that |y()| = const (“tangential”).
Prove that the same formula holds for all ~.
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1c9 Definition. A first-order differential form of class C™ on R" is a func-
tion w : R™ x R" — R of class C"™ such that for every x € R" the function
w(x,-) is linear.

For brevity we say just “l-form”.
Every 1-form w leads to an additive stationary path function 2,

t1
(1c10) 00) = [ w7 ®)d= [ o
to Y
note the convenient notation fww. This € satisfies the “no waiting charge”
condition (1b5|).
Now Proposition [lc3| may be reformulated: if an additive path function
Q) is continuous and DS? exists then

vy Q) =/7w+/t:1f(v(t)) dt

for some 1-form w of class C° and some continuous function f : R™ — R.

Indeed, f(z) = (Do2), and w(z,h) = (Dp2), — (Do),

1c11 Exercise. Prove that the symmetric part of Q is v +— j;zl f(y(t)) dt
and the antisymmetric part is v — fw w.

Note that the symmetric part (if not identically zero) violates the “no

waiting charge” condition (|1b5[), while the antisymmetric part satisfies this
condition.

1c12 Exercise. The path function 7 j;';l f(~(t)) dt is continuous for
arbitrary continuous f : R" — R.
Prove it.

The path function v fyw is continuous for arbitrary 1-form w; we’ll
prove it much later.

We have w(z, h) = w(z, hier+- - -+hpe,) = w(x,e1)hi+- - -+w(z, e,)hy =
fi(x)hy +- -+ fu(z)h,. Traditionally one denotes the coordinates hy, ..., hy,
of the vector h by dx1,...,dx, and writes

w= fidexy+---+ fdx,, or
w(e) =w(Ty,...,z,) = fi(zr, ..., xn)dey + -+ folzr, ... x) day,

rather than

w(Ty, ..., Ty dey, ... dey) = fi(xg, ..o xn)dey + -+ folr, ..o x) doy,
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In this notation,

/(fl(fv) doy+ -+ fu(2) don) =/l(fl(v(t))d%(tH---+fn(7(t))d%(t))

for y(t) = (7(t), -, m(?)).

1c13 Exercise. Prove that the path function v +— fvw is parametrization
invariant.

A curve is often defined as an equivalence class of paths. Then, by
a 1-form may be integrated over a curve. But be warned: such “curve” need
not be piecewise smooth (since /() may vanish on an infinite set) even if
paths are C*'. On the picture below you see what may happen to the set
Y([to, t1]) for v € C.

1c15 Exercise. ! Prove that the following pairs of paths are equivalent:

(a) 11(t) = (sint,cost), t € [0,27]; 75(t) = (—cost,sint), t € [F, 57”],

(b) 71(15) = (2 COSt,2SiIlt), le [Oa %]7 72(25) = (21:_2;227 ﬁl__tﬂ)) le [07 1]

1c16 Exercise. 2 Compute f,y w for w(z,y) = xdz — ydy over the following
paths:

(a) y(t) = (coswt,sin7t), t € [0, 1];

(b) v(t) = (1 —¢,0), t €0,2];

(c)yt)=01—-t,1—|1—t|),te]0,2].

1¢17 Exercise. ® The same for w(z,y,2) = yzdr + zzdy + zy dz and
(a) v(t) = (cos2nt, sin 27t, 2t), t € [0, 3];
(b) 1(t) = (1,0,1), £ € [0,6].

1c18 Exercise. * The same for w(z,y) = ydr + rydy and a closed curve
that traverses the ellipse 2—;—1—%’—; = 1 once in the “counterclockwise” direction.

LCorwin, Szczarba Sect. 13.1.
2Devinatz, Sect. 9.1.
3Devinatz, Sect. 9.1.
4Devinatz, Sect. 9.1.
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1c19 Exercise. ! Integrate the 1-form ydz on R3 along the intersection of
the unit sphere and the plane = + y + z = 0, oriented counterclockwise as
viewed from high above the zy-plane.?

1d Example: winding number

Every point (z,y) € R?\ {(0,0)} is (rcosf,rsinf) for r = \/2? + y? and
some 6, but 6 is not unique. We note that

R*\ {(0,0)} = U, UU, UU3 U Uy,
Ur={(z,y) x>0}, Uy ={(x,y):y>0},
Us={(z,y):x <0}, Uy={(x,y):y <0}
and define functions 6; : U; — R for i = 1,2, 3,4 by

¥y

Y

01(z,y) = arcsin Os(x,y) = arccos

T
T

05(z,y) = ™ — arcsin 04(z,y) = — arccos

then

61:920nU1ﬂU2, «92:030nUgﬂU3,
93:(94—|—27TOHU3QU4, 64:(910HU4HU1.

They conform only up to a constant; but their derivatives (or gradients) do
conform,

D@z:DGJ on UZHUJ

A calculation gives

1
V(z,y) € Ui Vioi(z,y) = m(—yﬁ),
that is, for all x = (xq,22) € U;, h = (hy, hy) € R,
det(l’, h) 1 l’l hl
(Dr6) ||2 22 + 22 |v2 Dy

LShifrin, Sect. 8.3.
2Hint: find an orthonormal basis for the plane.
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We introduce a 1-form w on R?\ {0} by
w(z,h) = (Dpb;), whenever z € U;.
That is,
1

2 2
T+ 5

X1 dl‘l

—ydx + xdy
w= -,
To dl‘g

Wiz, x2) = 22 + y?

I

It is easy to guess that fﬂ/ w is the angle of rotation (around the origin), and
therefore
w € 277 for all closed paths v in R*\ {0}.
.
Here is a way to the proof.

1d1 Exercise. (a) If 7y : [tg, t1] — U; then fvw = 0;(v(t1)) — 0i(~(t0));

(b) for every v : [to,t1] — R?\ {0} there exists a partition t; < s; <
ce < sp < ty of [tg,t1] and dg,. .., i € {1,2,3,4} such that y([ty, s1]) C U,
7([31752]) CU, ..., 7([Sk*1a Sk]) - Uik717 7([5k7t1]) - Uik;l

(c) every 7 : [to, t1] — R*\ {0} satisfies 0;, (y(t1)) — 04y (v(t0)) — [, w € 27Z
whenever v(tg) € Ui, v(t1) € Uy;

(d) if y(to) = v(t1) then fvw € 2nZ.
Prove it.

The integer - fww is called the winding number (or index) of a close
path v on R?\ {0} around 0. The winding number of v around another point
ro € R?\ v([to,t1]) may be defined as the winding number of the shifted
path ¢ — ~y(t) — xo around 0. This is an integer-valued continuous function
of xy defined on the open set R? \ ([to, t1]); therefore it is constant on each
connected component of this open set. The proof of the continuity is simple:
if x;, — xo then

/t "Wy (t) = a0y ()t — / "y (t) — o,/ (1))dt

: det(z,h) . : . : :
since w(x, h) = eéﬁ; ) is continuous in z (for a given h), uniformly outside a

neighborhood of 0.

It would be interesting to integrate over all z, € R? the winding number
around zy. This could give us a formula for calculating the area of a planar
gci{n%n via integral over the boundary of this domain. The function z

TP 1 unbounded (near 0), with unbounded support, which leads to an

'Hint: continuity of +y is enough, differentiability does not help.
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improper integral. It converges near 0, but diverges on infinity (try polar
coordinates). Thus, the right choice of exhaustion is important. It is futile
to nullify w(z, h) for large =, but it is wise to integrate w(7y(t) —xq, 7'(t)) over
not too large zo. It appears that!

/ w(x — xg, h) = wdet(x,h) as R — o0}
|:C()|§R

thus, the integrated winding number is % ftil det (’y(t), 04 (t))dt, the half of the
integral over «y of the 1-form (—ydx + xdy). We'll return to this form in the
end of Sect. 4.

1d2 Exercise. * Compute [ w for w(z,y) = —ydetrdy and 4 that bounds
the triangle with vertices (0,0), (a,0),(b,¢) (a,b,c > 0) and traverses its
boundary once in the “counterclockwise” direction.

le Higher-order differential forms

lel Definition. A singular k-cube in R™ is a mapping I : [0, 1]¥ — R" of
class C; that is, I' is continuous on [0, 1]¥, differentiable on (0,1)*, and its
derivative DI is uniformly continuous (that is, extends by continuity to the
boundary of the cube).

Similarly we may use any closed box in R¥, not just the cube; then we
have a singular k-box.

le2 Example. A singular 2-box in R?: [Sh:Sect.9.13]
['(r,0) = (rcosf,rsinf) for (r,0) € [0,1] x [0,27].
Note that this is not a homeomorphism.
1le3 Example. A singular 2-box in R3:
['(p,0) = (sinfsin g, sinf cos @, cos ) for (p,0) € [0,27] x [0, 7] .
Also, not a homeomorphism.

A singular 1-box is nothing but a path.
A singular 2-box may be thought of as a path in the space of paths.
Even in two ways. Or, as a parametrized surface. But this “surface” may be

ITry to check it, if you are ambitious enough.
2Fleming, Sect. 6.4.
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rather strange (recall the one-dimensional example (1c14))) and/or degener-
ated (even to a single point).
A function €2 of a singular k-box is called additive if

) = 3 ()

CeP

for every partition P of a box B. For k = 1 this is (1b1]).
Similarly to (1c2|) we consider €2 of the form

(led) Q) = /Bf(l"(u), (Dil)u, ., (DiD)y) du;

here (D11")y, ..., (Dgl'), € R™ are partial derivatives of I'; and f : R™ x
(R")* — R is a continuous function.

Again, we wonder what can be said about f if 2 is continuous in the
following sense:

(leb) I'; =T implies Q(I';) — QI),

where convergence of singular k-cubes (or boxes) I',T'j, Ty, -+ : [0,1]F — R

is defined by

Vu € [0,1]% Tj(u) — T'(u),
JLVj T, € Lip(L).

(For k =1 this is (1b11))).

We consider first the case k& = 2. Similarly to Prop. [lc3| we have the
following.

1le6 Proposition. If ) satisfies (led)) and is continuous then for all =, h; €
R™ the function hy — f(z, hy, ho) is affine.

Proof. Similarly to (|1c6),
(1eT7)

I'; = T' implies / F(D(w), (DiT;)y, (DoT'y),) du — / F(L(w), (DiT)y, (DoI),,) du.
B B
Again, by it is sufficient to prove that

f(@o, ha, ha) = 0 f (o, ha, hy) + (1 = 0) f(xo, ha, hy)
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whenever hy = 6h4 + (1 — )k, 6 € (0,1), and 2o € R™. Given a box
B =1[0,U4] x [0,Us] C R? we construct I',I"; : B — R" such that

I'(0,0) =T';(0,0) = o,
(DlF)u = (DJ‘J)U = hl for all u € B° s
(Dol'), = hy for all u € B,
hy forue B°N (R xT7),

<D2Pj)u = " o
hy for uwe B°\ (R xTj),

I
hl,

"
h

T} being as in Lemma . These I'; are not singular boxes (since they are
only piecewise C1), but still, (1e7)) applies to I';, since there exist (by the
argument of ) singular boxes I'; such that I'; — I' and

— 0.

‘/Bf(r(u)v(lej)U7(D2fj)u) du—/ F(T(u), (D1T;)u, (Dal';)u) du

B

Similarly to the proof of [Ic3| we get

Uz
/ (/f(iUO + urhy + usha, ha, (Dal'j) wotuihy+ushs) dUl) dug —
0
Uz
= 9/ (/f(a:o k4 ushs, ha, b)) du1> dus+
0

Uz
—f-(l —9>/ (/f(Io—f-U,lhl—f—UghQ,hl,hg) d’LL1> dUQ.
0
We conclude that the continuous function
T f(:U, h17 h2) - Hf(x, h‘17 hIZ) - (1 - 9)f(37,h1, h/2/)

has zero integral on every parallelepiped, and therefore vanishes everywhere.
m

Assuming in addition that I'(-) = const implies Q(I') = 0 we get f(z,0,0) =
0, but still, f(z, hi,0) need not vanish. Here is an appropriate generalization
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of the “no waiting charge” condition ({1b5|):
(1e8) if I'(B) is contained in a (k — 1)-dimensional affine subspace of R"
then Q(I') = 0.

Taking I'(uy,us) = x¢+ uihy we see that (Le§) implies f(xz, hy,0) = 0. Thus,
for every x, f(x,hq, hy) is linear in hy for each hy; similarly it is linear in hy
for each hs; that is,

condition (|le8) implies that f(z,-,) is a bilinear form;

flw b ho) = (@) (ha)i(ha); -

ij=1

Further, taking I'(u1, us) = xo + urh + ush we see that f(z,h,h) = 0 for all
h (and z). It means that the bilinear form is antisymmetric,

f(ﬂf, ha, hl) = —f(iCa hi, hz) ;
indeed,

f('ra hl + h27 hl + h?) — f(xa hl) hl) +f<f[f, h/la hg)—’—f(l', h2; h1)+f($7 h27h2) .
2 N v N ”

~~ ~~

Generalization to k = 3,4, ... is straightforward.

First, recall a notion from linear algebra: a (multililear) k-form! on R™ is
a function L : (R")* — R such that L(xy,..., ;) is separately linear in each
of the k variables x1,...,z; € R®. Further, L is called antisymmetric? if it
changes its sign under exchange of any pair of arguments.

1e9 Exercise. The following three conditions on a multililear k-form L on
R™ are equivalent:

(a) L is antisymmetric;

(b) L(x1,...,x,) = 0 whenever x; = x; for some i # j;

(¢) L(z1,...,x,) = 0 whenever vectors xy, ...,z are linearly dependent.

Now we generalize and [Le6]

1e10 Definition. A differential form of order® k and of class C™ on R" is
a function w : R® x (R")* — R of class C™ such that for every x € R™ the
function w(x,-,...,-) is an antisymmetric multililear k-form on R”™.

!Called also multililear form (or function) of degree (or order) k.
20r “skew symmetric”, or “alternating”.
30r “degree”.
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For brevity we say “differential k-form” or just “k-form”.

lell Proposition. If a function €2 of a singular k-box in R™ is of the form

(1ed]), satisfies ([leb)) and ([1e§]), then the function f from ((led]) is a k-form
(of class C?).

Similarly to (1c10) we define the integral of a k-form w over a singular
k-box I,

(lel2) /Fw = /Bw(F(u), (DiT)u, ..., (DiI)y) du

(recall (Led)) and observe that I' — Jpw is an additive function of a singular
box. Now, Prop. [lel]] gives a sufficient condition for 2 to be the integral of
some w.

A k-form on R™ may be thought of as a mapping from R™ to the vector
space of all antisymmetric multililear k-forms on R™. What is the dimension
of this space?

First, £ = 1. A linear form is uniquely determined by its values on the
basis vectors eq,...,e, of R" and these values are arbitrary; thus, linear
forms are an n-dimensional space.

Second, k = 2. An antisymmetric bilinear form is uniquely determined
by its values on the pairs (e;, e;) for i < j, and these values are arbitrary;
thus, bilinear forms are a space of dimension () = ”("271).

Similarly, antisymmetric multililear k-forms are a space of dimension (Z)

Differential 0-forms, as well as differential n-forms, are functions with
1-dimensional values, since (3) =1= (Z), basically, scalar functions. More
exactly, a differential 0-form w : R™ — R is itself a scalar function, while a
differential n-form w corresponds to a scalar function x — w(zx,eq,...,€,).

1e13 Exercise. ! Find wa where
w(z,eq,e3) =21, w(x,eq,e3)=w(z,e,e3)=0,

that is,
hy ko
hs ks

and T'(u,v) = (u*,u + v,v?) for u,v € [—1,1].

w(z, h, k) =2, for z,h, k € R?,

'Hubbard, Sect. 6.2.
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1-form, [I2]

bilinear form,

convergence of paths,
convergence of singular boxes,

curve, [I3]

derivative of path function, 9]
differential form, first-order,
differential form,

index,

integral

of 1-form,
of form, [20]
inverse path, [7]

k-form, [20]

length, [6]

multililear form,
antisymmetric, [I9]

path, [f
closed, [6]
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singular box, [I6]
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continuous, [17]
singular cube,

winding number,

(D)4, ..., (D),
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