1 From path functions to differential forms

1a	Why path functions	5
1b	Some properties of path functions	7
1c	First-order differential forms emerge	9
1d	Example: winding number	14
1e	Higher-order differential forms	16

The relation

was treated in Analysis-III. A similar relation

is treated here, and generalized:

1a Why path functions

Life is a path function. You begin life, you end life-that's not so interesting, right? But quality of life is a path function. It's the path that you take from the beginning to the end, the integral of that path, that's the special part. Christopher Edwards

By a path (in \mathbb{R}^n) we mean a function $\gamma : [t_0, t_1] \to \mathbb{R}^n$ (real numbers $t_0 < t_1$ may depend on the path) of class C^1 ; that is, continuous on $[t_0, t_1]$, differentiable on (t_0, t_1) , with uniformly continuous derivative $\gamma'(\cdot)$.

But sometimes we admit piecewise C^1 paths. A path is called *closed* if $\gamma(t_0) = \gamma(t_1)$.

A path may describe the motion of a body (a car, aircraft, ship, submarine, planet, particle etc); $\gamma(t)$ is the position of the body at time t.

For a car, the fuel consumption is roughly proportional to the energy required to overcome resistance, namely, air resistance and rolling resistance. This energy is a function Ω of a path;

$$\Omega(\gamma) = \int_{t_0}^{t_1} |F(t)| v(t) \,\mathrm{d}t \,,$$

where $v(t) = |\gamma'(t)|$ is the speed of the car, and F(t) is the resistance force. In a reasonable approximation,¹ the air resistance is of the form $c_2v^2 + c_1v$ (viscous and wind resistance), and the rolling resistance is a constant, c_0 . Thus,

$$\Omega(\gamma) = \int_{t_0}^{t_1} (c_2 |\gamma'(t)|^2 + c_1 |\gamma'(t)| + c_0) |\gamma'(t)| \, \mathrm{d}t \, dt$$

For a planet or a particle resistance is usually negligible, but external fields (usually gravitational and/or electromagnetic) do a work (energy exchange)

$$\Omega(\gamma) = \int_{t_0}^{t_1} \langle F_{\gamma}(t), \gamma'(t) \rangle \,\mathrm{d}t$$

where $F_{\gamma}(t)$ is the force vector. Its dependence on γ is often of the form $F_{\gamma}(t) = F(\gamma(t))$ for a given vector field F; that is, $F : \mathbb{R}^n \to \mathbb{R}^n$.

And the most famous path function is, of course, the length,

$$\Omega(\gamma) = \int_{t_0}^{t_1} |\gamma'(t)| \,\mathrm{d}t \,.$$

1a1 Exercise.² Derive the energy conservation

$$\frac{1}{2}m|\gamma'(t_1)|^2 - \frac{1}{2}m|\gamma'(t_0)|^2 = \int_{t_0}^{t_1} \langle F_{\gamma}(t), \gamma'(t) \rangle \,\mathrm{d}t$$

from the Newton's second law of motion

$$m\gamma''(t) = F_{\gamma}(t)$$
.

 $^{^1 \}rm Wikipedia,$ "Fuel economy in automobiles" and "Drag (physics)". $^2 \rm Shifrin, \, Sect. \, 8.3.$

1b Some properties of path functions

Path functions may be roughly classified according to presence or absence of the following properties.

ADDITIVITY: for every path $\gamma : [t_0, t_1] \to \mathbb{R}^n$,

(1b1)
$$\Omega(\gamma|_{[t_0,t]}) + \Omega(\gamma|_{[t,t_1]}) = \Omega(\gamma) \text{ for all } t \in (t_0,t_1).$$

All path functions mentioned in Sect. 1a are additive. STATIONARITY: for every path $\gamma : [t_0, t_1] \to \mathbb{R}^n$,

(1b2)
$$\Omega(\gamma(\cdot - s)) = \Omega(\gamma) \text{ for all } s \in \mathbb{R};$$

here $\gamma(\cdot - s)$ is the time shifted path $t \mapsto \gamma(t - s)$ for $t \in [t_0 + s, t_1 + s]$.

Non-examples: for an aircraft, a night flight may differ in fuel consumption from a similar day flight; for a particle, external field sources may change in time.

For a stationary Ω we may restrict ourselves to the case $t_0 = 0$.

SYMMETRY AND ANTISYMMETRY (FOR STATIONARY Ω ONLY): for every path $\gamma : [0, t_1] \to \mathbb{R}^n$,

(1b3)	$\Omega(\gamma_{-1}) = \Omega(\gamma);$	symmetry; or
(1b4)	$\Omega(\gamma_{-1}) = -\Omega(\gamma);$	antisymmetry

here the inverse path $\gamma_{-1}: t \mapsto \gamma(t_1 - t)$ for $t \in [0, t_1]$.

Every stationary path function Ω is the sum of its symmetric part $\gamma \mapsto (\Omega(\gamma) + \Omega(\gamma_{-1})/2)$ and antisymmetric part $\gamma \mapsto (\Omega(\gamma) - \Omega(\gamma_{-1})/2)$; and if Ω is additive then its symmetric part and antisymmetric part are also additive (think, why).

NO WAITING CHARGE:

(1b5) $\gamma(\cdot) = \text{const}$ (that is, $\gamma'(\cdot) = 0$) implies $\Omega(\gamma) = 0$.

PARAMETRIZATION INVARIANCE:

(1b6)
$$\Omega(\gamma \circ \varphi) = \Omega(\gamma)$$

whenever $\gamma : [t_0, t_1] \to \mathbb{R}^n$ is a path and $\varphi : [s_0, s_1] \to [t_0, t_1]$ an increasing diffeomorphism (sometimes, only piecewise). In this case the path $\gamma \circ \varphi : [s_0, s_1] \to \mathbb{R}^n$ is called *equivalent* to γ .

Clearly, parametrization invariance implies stationarity.

Analysis-IV

1b7 Exercise. Consider path functions of the form

(1b8)
$$\Omega: \gamma \mapsto \int_{t_0}^{t_1} f(t, \gamma(t), \gamma'(t)) \, \mathrm{d}t$$

for arbitrary continuous functions $f : \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$.

(a) For each of the properties defined above give a sufficient condition in terms of f.

(b) Are your conditions necessary?

1b9 Exercise. ¹ Determine the work $\int \langle F(\gamma(t)), \gamma'(t) \rangle dt$ done on a particle moving along γ in \mathbb{R}^3 through the force field F(x, y, z) = (1, -x, z), where γ is

(a) the line segment from (0,0,0) to (1,2,1);

(b) the unit circle in the plane z = 1 with center (0, 0, 1) beginning and ending at (1, 0, 1) and starting toward (0, 1, 1).

1b10 Exercise.² The same for $F(x, y, z) = (x^2, y^2, z^2)$ and $\gamma(t) = (\cos t, \sin t, at), t \in [0, t_1]$ (the arc of helix).

The following property holds for a very restricted but very important class of path functions.

Given paths $\gamma, \gamma_1, \gamma_2, \cdots : [t_0, t_1] \to \mathbb{R}^n$, we define convergence, $\gamma_k \to \gamma$, as follows:

(1b11)
$$\begin{aligned} \forall t \in [t_0, t_1] \ \gamma_k(t) \to \gamma(t) \,, \\ \exists L \ \forall k \ \gamma_k \in \operatorname{Lip}(L) \,, \end{aligned}$$

The condition $\gamma_k \in \text{Lip}(L)$ is equivalent to $\forall t \ |\gamma'(t)| \leq L$ (with one-sided derivatives when needed). Note that this convergence is stronger than the uniform convergence.

CONTINUITY:

(1b12)
$$\gamma_k \to \gamma \quad \text{implies} \quad \Omega(\gamma_k) \to \Omega(\gamma) \,.$$

Significantly, the length is a discontinuous path function. A counterexample: $\gamma_k(t) = (t, \frac{1}{k} \sin kt)$ (or just $\gamma_k(t) = \frac{1}{k} \sin kt$). All path functions mentioned in Sect. 1a become continuous if one stip-

All path functions mentioned in Sect. 1a become continuous if one stipulates convergence in C^1 for paths, that is, $\max_t |\gamma'_k(t) - \gamma'(t)| \to 0$. But we do not!

¹Corwin, Szczarba Sect. 13.3.

²Hubbard, Sect. 6.5.

1c First-order differential forms emerge

1c1 Definition. Let Ω be a stationary additive path function, and f: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ a continuous function. We say that f is the *derivative* of Ω (symbolically, $f = D\Omega$) if

(1c2)
$$\Omega(\gamma) = \int_{t_0}^{t_1} f(\gamma(t), \gamma'(t)) \,\mathrm{d}t$$

for every path γ .

Such f is unique (if exists), since

$$f(\gamma(t),\gamma'(t)) = \frac{\mathrm{d}}{\mathrm{d}t}\Omega\big(\gamma|_{[t_0,t]}\big) = \lim_{\varepsilon \to 0+} \frac{1}{\varepsilon}\Omega\big(\gamma|_{[t,t+\varepsilon]}\big) \,.$$

If such f exists, we say that Ω is continuously differentiable (or that $D\Omega$ exists), and denote f(x, h) by $(D_h\Omega)_x$.¹

1c3 Proposition. If a stationary additive path function Ω is continuous and $D\Omega$ exists then for every x the function $h \mapsto (D_h\Omega)_x$ is affine (that is, the function $h \mapsto (D_h\Omega)_x - (D_0\Omega)_x$ is linear).

1c4 Lemma. The following two conditions on a function $f : \mathbb{R}^n \to \mathbb{R}$ are equivalent:

(a) $f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$ for all $x, y \in \mathbb{R}^n$ and $\theta \in (0, 1)$; (b) f is affine; that is, the function $x \mapsto f(x) - f(0)$ is linear.

Proof. We define g(x) = f(x) - f(0). (b) \Longrightarrow (a): $f(\theta x + (1-\theta)y) - f(0) = g(\theta x + (1-\theta)y) = \theta g(x) + (1-\theta)g(y) = \theta (f(x) - f(0)) + (1-\theta)(f(y) - f(0)) = \theta f(x) + (1-\theta)f(y) - f(0)$. (a) \Longrightarrow (b):

First, we have $g(\theta x) + f(0) = f(\theta x) = f(\theta x + (1 - \theta)0) = \theta f(x) + (1 - \theta)f(0) = \theta g(x) + f(0)$, that is, $g(\theta x) = \theta g(x)$ for $\theta \in (0, 1)$ and therefore for $\theta \in (0, \infty)$ (since $(1/\theta)g(x) = g((1/\theta)x)$).

Second, $g(\frac{1}{2}x + \frac{1}{2}y) + f(0) = f(\frac{1}{2}x + \frac{1}{2}y) = \frac{1}{2}f(x) + \frac{1}{2}f(y) = \frac{1}{2}g(x) + \frac{1}{2}g(y) + f(0)$, and we get additivity: g(x+y) = g(x) + g(y).

Third, g(x) + g(-x) = g(0) = 0, thus $g(\theta x) = \theta g(x)$ also for negative θ .

1c5 Lemma. Let $\theta \in (0,1)$ and $T_k = \bigoplus_{i=-\infty}^{\infty} [\frac{i}{k}, \frac{i+\theta}{k}]$. Then $\int_{T_k} f \to \theta \int_{\mathbb{R}} f$ (as $k \to \infty$) for every Riemann integrable $f : \mathbb{R} \to \mathbb{R}$.

¹The same condition may be imposed on an arbitrary path function, and then it may be called "additivity, stationarity and continuous differentiability".

Analysis-IV

Proof. The claim holds when f is the indicator of an interval, since in this case $|\int_{T_k} f - \theta \int_{\mathbb{R}} f| \leq \frac{\theta(1-\theta)}{k}$. By linearity the claim holds for all step functions. By sandwich, it holds for all integrable functions. \Box

Now we prove the proposition admitting piecewise C^1 paths. For the other case see Remark 1c7 afterwards.

Proof of Prop. 1c3. First,

(1c6)
$$\gamma_k \to \gamma$$
 implies $\int_{t_0}^{t_1} f(\gamma(t), \gamma'_k(t)) dt \to \int_{t_0}^{t_1} f(\gamma(t), \gamma'(t)) dt$,

since $\Omega(\gamma_k) \to \Omega(\gamma)$ by continuity of Ω , and $\sup_t |f(\gamma(t), \gamma'_k(t)) - f(\gamma_k(t), \gamma'_k(t))| \to 0$ due to uniform continuity of f on bounded sets. By 1c4 it is sufficient to prove that

$$(D_h\Omega)_{x_0} = \theta(D_{h_1}\Omega)_{x_0} + (1-\theta)(D_{h_2}\Omega)_{x_0}$$

whenever $h = \theta h_1 + (1 - \theta) h_2$, $\theta \in (0, 1)$, and $x_0 \in \mathbb{R}^n$. We construct paths $\gamma, \gamma_k : [0, t_1] \to \mathbb{R}^n$ such that

$$\gamma(0) = \gamma_k(0) = x_0,$$

$$\gamma'(t) = h \quad \text{for all } t \in (0, t_1),$$

$$\gamma'_k(t) = \begin{cases} h_1 \quad \text{for } t \in (0, t_1) \cap T_k^{\circ}, \\ h_2 \quad \text{for } t \in (0, t_1) \setminus T_k, \end{cases}$$

 T_k being as in Lemma 1c5.

We have $\gamma_k(\frac{i}{k}) = \gamma(\frac{i}{k})$ (for integer *i* such that $\frac{i}{k} \in [0, t_1]$), since $\int_{i/k}^{(i+1)/k} \gamma'_k(t) dt = \int_{i/k}^{(i+1)/k} \gamma'(t) dt$; thus, $\sup_t |\gamma_k(t) - \gamma(t)| \le \theta |h_1|/k \to 0$; and $\gamma_k \in \operatorname{Lip}(\max(|h_1|, |h_2|))$. Thus, $\gamma_k \to \gamma$.

By (1c6),

$$\int_0^{t_1} f(x_0 + th, \gamma'_k(t)) \, \mathrm{d}t \to \int_0^{t_1} f(x_0 + th, h) \, \mathrm{d}t \, dt$$

We have

$$\int_0^{t_1} f(x_0 + th, \gamma'_k(t)) \, \mathrm{d}t = \int_{[0, t_1] \cap T_k} f(x_0 + th, h_1) \, \mathrm{d}t + \int_{[0, t_1] \setminus T_k} f(x_0 + th, h_2) \, \mathrm{d}t \, .$$

By Lemma 1c5, in the limit $k \to \infty$ we get

$$\int_0^{t_1} f(x_0 + th, h) \, \mathrm{d}t = \theta \int_0^{t_1} f(x_0 + th, h_1) \, \mathrm{d}t + (1 - \theta) \int_0^{t_1} f(x_0 + th, h_2) \, \mathrm{d}t \, .$$

We see that the continuous function

$$x \mapsto f(x,h) - \theta f(x,h_1) - (1-\theta)f(x,h_2)$$

has zero integral on every straight interval of direction h. It follows easily that this function vanishes everywhere.

1c7 Remark. If paths are required to be C^1 (rather than piecewise C^1), the proposition still holds; here is why. Instead of

$$\gamma'_k = 1_{T_k} h_1 + (1 - 1_{T_k}) h_2$$

we take

$$\tilde{\gamma}_k' = \alpha h_1 + (1 - \alpha) h_2$$

where α is such a piecewise linear approximation of $\mathbb{1}_{T_k}$:

Still, $\tilde{\gamma}_k(\frac{i}{k}) = \gamma(\frac{i}{k})$, since the integral of α over the period is equal to θ/k . As before, $\tilde{\gamma}_k \to \gamma$. And $\tilde{\gamma}_k$ is of class C^1 . It remains to check that

$$\left|\int_{t_0}^{t_1} f(\gamma(t), \tilde{\gamma}'_k(t)) \,\mathrm{d}t - \int_{t_0}^{t_1} f(\gamma(t), \gamma'_k(t)) \,\mathrm{d}t\right| \to 0 \quad \text{as } k \to \infty.$$

We note that $\tilde{\gamma}'_k = \gamma'_k$ (and therefore the difference vanishes) outside a set of 1-dimensional volume $\mathcal{O}(\frac{1}{k})$. On this set, the difference is $\mathcal{O}(1)$, since both $|\gamma'_k|$ and $|\tilde{\gamma}'_k|$ never exceed max $(|h_1|, |h_2|)$, and f is bounded on a bounded set.

1c8 Exercise. Assume that an additive path function Ω is continuous, and satisfies

$$\Omega(\gamma) = F(|\gamma(t_1)|) - F(|\gamma(t_0)|)$$

(where F is a given function) in two cases: first, for all γ of the form $\gamma(t) = \varphi(t)x$ ("radial"), and second, for all γ such that $|\gamma(\cdot)| = \text{const}$ ("tangential"). Prove that the same formula holds for all γ .

Analysis-IV

1c9 Definition. A first-order differential form of class C^m on \mathbb{R}^n is a function $\omega : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ of class C^m such that for every $x \in \mathbb{R}^n$ the function $\omega(x, \cdot)$ is linear.

Analysis-IV

For brevity we say just "1-form".

Every 1-form ω leads to an additive stationary path function Ω ,

(1c10)
$$\Omega(\gamma) = \int_{t_0}^{t_1} \omega(\gamma(t), \gamma'(t)) \, \mathrm{d}t = \int_{\gamma} \omega;$$

note the convenient notation $\int_{\gamma} \omega$. This Ω satisfies the "no waiting charge" condition (1b5).

Now Proposition 1c3 may be reformulated: if an additive path function Ω is continuous and $D\Omega$ exists then

$$\forall \gamma \quad \Omega(\gamma) = \int_{\gamma} \omega + \int_{t_0}^{t_1} f(\gamma(t)) \, \mathrm{d}t$$

for some 1-form ω of class C^0 and some continuous function $f : \mathbb{R}^n \to \mathbb{R}$. Indeed, $f(x) = (D_0 \Omega)_x$ and $\omega(x, h) = (D_h \Omega)_x - (D_0 \Omega)_x$.

1c11 Exercise. Prove that the symmetric part of Ω is $\gamma \mapsto \int_{t_0}^{t_1} f(\gamma(t)) dt$ and the antisymmetric part is $\gamma \mapsto \int_{\gamma} \omega$.

Note that the symmetric part (if not identically zero) violates the "no waiting charge" condition (1b5), while the antisymmetric part satisfies this condition.

1c12 Exercise. The path function $\gamma \mapsto \int_{t_0}^{t_1} f(\gamma(t)) dt$ is continuous for arbitrary continuous $f : \mathbb{R}^n \to \mathbb{R}$.

Prove it.

The path function $\gamma \mapsto \int_{\gamma} \omega$ is continuous for arbitrary 1-form ω ; we'll prove it much later.

We have $\omega(x,h) = \omega(x,h_1e_1 + \dots + h_ne_n) = \omega(x,e_1)h_1 + \dots + \omega(x,e_n)h_n = f_1(x)h_1 + \dots + f_n(x)h_n$. Traditionally one denotes the coordinates h_1, \dots, h_n of the vector h by dx_1, \dots, dx_n and writes

$$\omega = f_1 dx_1 + \dots + f_n dx_n, \quad \text{or}$$
$$\omega(x) = \omega(x_1, \dots, x_n) = f_1(x_1, \dots, x_n) dx_1 + \dots + f_n(x_1, \dots, x_n) dx_n$$

rather than

$$\omega(x_1,\ldots,x_n;dx_1,\ldots,dx_n)=f_1(x_1,\ldots,x_n)\,dx_1+\cdots+f_n(x_1,\ldots,x_n)\,dx_n\,.$$

Analysis-IV

In this notation,

$$\int_{\gamma} \left(f_1(x) \, dx_1 + \dots + f_n(x) \, dx_n \right) = \int_{t_0}^{t_1} \left(f_1(\gamma(t)) \, \mathrm{d}\gamma_1(t) + \dots + f_n(\gamma(t)) \, \mathrm{d}\gamma_n(t) \right)$$

for $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t)).$

1c13 Exercise. Prove that the path function $\gamma \mapsto \int_{\gamma} \omega$ is parametrization invariant.

A *curve* is often defined as an equivalence class of paths. Then, by 1c13, a 1-form may be integrated over a curve. But be warned: such "curve" need not be piecewise smooth (since $\gamma'(\cdot)$ may vanish on an infinite set) even if paths are C^1 . On the picture below you see what may happen to the set $\gamma([t_0, t_1])$ for $\gamma \in C^1$.

1c15 Exercise. ¹ Prove that the following pairs of paths are equivalent:

- (a) $\gamma_1(t) = (\sin t, \cos t), t \in [0, 2\pi]; \gamma_2(t) = (-\cos t, \sin t), t \in [\frac{\pi}{2}, \frac{5\pi}{2}];$ (b) $\gamma_1(t) = (2\cos t, 2\sin t), t \in [0, \frac{\pi}{2}]; \gamma_2(t) = (\frac{2-2t^2}{1+t^2}, \frac{4t}{1+t^2}), t \in [0, 1].$

1c16 Exercise. ² Compute $\int_{\gamma} \omega$ for $\omega(x, y) = x \, dx - y \, dy$ over the following paths:

- (a) $\gamma(t) = (\cos \pi t, \sin \pi t), t \in [0, 1];$
- (b) $\gamma(t) = (1 t, 0), t \in [0, 2];$
- (c) $\gamma(t) = (1 t, 1 |1 t|), t \in [0, 2].$

1c17 Exercise. ³ The same for $\omega(x, y, z) = yz \, dx + xz \, dy + xy \, dz$ and (a) $\gamma(t) = (\cos 2\pi t, \sin 2\pi t, 2t), t \in [0, 3];$ (b) $\gamma(t) = (1, 0, t), t \in [0, 6].$

1c18 Exercise. ⁴ The same for $\omega(x, y) = y \, dx + xy \, dy$ and a closed curve that traverses the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ once in the "counterclockwise" direction.

¹Corwin, Szczarba Sect. 13.1.

²Devinatz, Sect. 9.1.

³Devinatz, Sect. 9.1.

⁴Devinatz, Sect. 9.1.

1c19 Exercise. ¹ Integrate the 1-form $y \, dx$ on \mathbb{R}^3 along the intersection of the unit sphere and the plane x + y + z = 0, oriented counterclockwise as viewed from high above the xy-plane.²

1d Example: winding number

Every point $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ is $(r \cos \theta, r \sin \theta)$ for $r = \sqrt{x^2 + y^2}$ and some θ , but θ is not unique. We note that

$$\mathbb{R}^{2} \setminus \{(0,0)\} = U_{1} \cup U_{2} \cup U_{3} \cup U_{4},$$
$$U_{1} = \{(x,y) : x > 0\}, \quad U_{2} = \{(x,y) : y > 0\},$$
$$U_{3} = \{(x,y) : x < 0\}, \quad U_{4} = \{(x,y) : y < 0\}$$

and define functions $\theta_i: U_i \to \mathbb{R}$ for i = 1, 2, 3, 4 by

$$\theta_1(x,y) = \arcsin \frac{y}{\sqrt{x^2 + y^2}}, \quad \theta_2(x,y) = \arccos \frac{x}{\sqrt{x^2 + y^2}}, \\ \theta_3(x,y) = \pi - \arcsin \frac{y}{\sqrt{x^2 + y^2}}, \quad \theta_4(x,y) = -\arccos \frac{x}{\sqrt{x^2 + y^2}},$$

then

$$\theta_1 = \theta_2 \text{ on } U_1 \cap U_2, \quad \theta_2 = \theta_3 \text{ on } U_2 \cap U_3,$$

$$\theta_3 = \theta_4 + 2\pi \text{ on } U_3 \cap U_4, \quad \theta_4 = \theta_1 \text{ on } U_4 \cap U_1.$$

They conform only up to a constant; but their derivatives (or gradients) do conform,

$$D\theta_i = D\theta_j$$
 on $U_i \cap U_j$.

A calculation gives

$$\forall (x,y) \in U_i \quad \nabla \theta_i(x,y) = \frac{1}{x^2 + y^2} (-y,x) \,,$$

that is, for all $x = (x_1, x_2) \in U_i$, $h = (h_1, h_2) \in \mathbb{R}^2$,

$$(D_h \theta_i)_x = \frac{\det(x,h)}{|x|^2} = \frac{1}{x_1^2 + x_2^2} \begin{vmatrix} x_1 & h_1 \\ x_2 & h_2 \end{vmatrix}.$$

¹Shifrin, Sect. 8.3.

^{2}Hint: find an orthonormal basis for the plane.

Analysis-IV

$$\omega(x,h) = (D_h \theta_i)_x$$
 whenever $x \in U_i$.

That is,

$$\omega(x_1, x_2) = \frac{1}{x_1^2 + x_2^2} \begin{vmatrix} x_1 & dx_1 \\ x_2 & dx_2 \end{vmatrix}; \qquad \omega = \frac{-y \, dx + x \, dy}{x^2 + y^2}.$$

It is easy to guess that $\int_{\gamma} \omega$ is the angle of rotation (around the origin), and therefore

$$\int_{\gamma} \omega \in 2\pi \mathbb{Z} \quad \text{for all closed paths } \gamma \text{ in } \mathbb{R}^2 \setminus \{0\}.$$

Here is a way to the proof.

1d1 Exercise. (a) If $\gamma : [t_0, t_1] \to U_i$ then $\int_{\gamma} \omega = \theta_i(\gamma(t_1)) - \theta_i(\gamma(t_0));$

(b) for every $\gamma : [t_0, t_1] \to \mathbb{R}^2 \setminus \{0\}$ there exists a partition $t_0 < s_1 < \cdots < s_k < t_1$ of $[t_0, t_1]$ and $i_0, \ldots, i_k \in \{1, 2, 3, 4\}$ such that $\gamma([t_0, s_1]) \subset U_{i_0}, \gamma([s_1, s_2]) \subset U_{i_1}, \ldots, \gamma([s_{k-1}, s_k]) \subset U_{i_{k-1}}, \gamma([s_k, t_1]) \subset U_{i_k};^1$

(c) every $\gamma : [t_0, t_1] \to \mathbb{R}^2 \setminus \{0\}$ satisfies $\theta_{i_1}(\gamma(t_1)) - \theta_{i_0}(\gamma(t_0)) - \int_{\gamma} \omega \in 2\pi\mathbb{Z}$ whenever $\gamma(t_0) \in U_{i_0}, \, \gamma(t_1) \in U_{i_1};$

(d) if $\gamma(t_0) = \gamma(t_1)$ then $\int_{\gamma} \omega \in 2\pi \mathbb{Z}$. Prove it.

The integer $\frac{1}{2\pi} \int_{\gamma} \omega$ is called the *winding number* (or index) of a close path γ on $\mathbb{R}^2 \setminus \{0\}$ around 0. The winding number of γ around another point $x_0 \in \mathbb{R}^2 \setminus \gamma([t_0, t_1])$ may be defined as the winding number of the shifted path $t \mapsto \gamma(t) - x_0$ around 0. This is an integer-valued continuous function of x_0 defined on the open set $\mathbb{R}^2 \setminus \gamma([t_0, t_1])$; therefore it is constant on each connected component of this open set. The proof of the continuity is simple: if $x_k \to x_0$ then

$$\int_{t_0}^{t_1} \omega(\gamma(t) - x_k, \gamma'(t)) \mathrm{d}t \to \int_{t_0}^{t_1} \omega(\gamma(t) - x_0, \gamma'(t)) \mathrm{d}t$$

since $\omega(x,h) = \frac{\det(x,h)}{|x|^2}$ is continuous in x (for a given h), uniformly outside a neighborhood of 0.

It would be interesting to integrate over all $x_0 \in \mathbb{R}^2$ the winding number around x_0 . This could give us a formula for calculating the area of a planar domain via integral over the boundary of this domain. The function $x \mapsto \frac{\det(x,h)}{|x|^2}$ is unbounded (near 0), with unbounded support, which leads to an

¹Hint: continuity of γ is enough, differentiability does not help.

improper integral. It converges near 0, but diverges on infinity (try polar coordinates). Thus, the right choice of exhaustion is important. It is futile to nullify $\omega(x, h)$ for large x, but it is wise to integrate $\omega(\gamma(t) - x_0, \gamma'(t))$ over not too large x_0 . It appears that¹

$$\int_{|x_0| \le R} \omega(x - x_0, h) \to \pi \det(x, h) \quad \text{as } R \to \infty;$$

thus, the integrated winding number is $\frac{1}{2} \int_{t_0}^{t_1} \det(\gamma(t), \gamma'(t)) dt$, the half of the integral over γ of the 1-form (-ydx + xdy). We'll return to this form in the end of Sect. 4.

1d2 Exercise. ² Compute $\int_{\gamma} \omega$ for $\omega(x, y) = \frac{-y \, dx + x \, dy}{2}$ and γ that bounds the triangle with vertices (0, 0), (a, 0), (b, c) (a, b, c > 0) and traverses its boundary once in the "counterclockwise" direction.

1e Higher-order differential forms

1e1 Definition. A singular k-cube in \mathbb{R}^n is a mapping $\Gamma : [0,1]^k \to \mathbb{R}^n$ of class C^1 ; that is, Γ is continuous on $[0,1]^k$, differentiable on $(0,1)^k$, and its derivative $D\Gamma$ is uniformly continuous (that is, extends by continuity to the boundary of the cube).

Similarly we may use any closed box in \mathbb{R}^k , not just the cube; then we have a singular k-box.

1e2 Example. A singular 2-box in \mathbb{R}^2 : [Sh:Sect.9.13]

 $\Gamma(r,\theta) = (r\cos\theta, r\sin\theta) \text{ for } (r,\theta) \in [0,1] \times [0,2\pi].$

Note that this is not a homeomorphism.

1e3 Example. A singular 2-box in \mathbb{R}^3 :

 $\Gamma(\varphi, \theta) = (\sin \theta \sin \varphi, \sin \theta \cos \varphi, \cos \theta) \quad \text{for } (\varphi, \theta) \in [0, 2\pi] \times [0, \pi].$

Also, not a homeomorphism.

A singular 1-box is nothing but a path.

A singular 2-box may be thought of as a path in the space of paths. Even in two ways. Or, as a parametrized surface. But this "surface" may be

¹Try to check it, if you are ambitious enough.

²Fleming, Sect. 6.4.

Analysis-IV

rather strange (recall the one-dimensional example (1c14)) and/or degenerated (even to a single point).

A function Ω of a singular k-box is called *additive* if

$$\Omega(\Gamma) = \sum_{C \in P} \Omega(\Gamma|_C)$$

for every partition P of a box B. For k = 1 this is (1b1).

Similarly to (1c2) we consider Ω of the form

(1e4)
$$\Omega(\Gamma) = \int_{B} f(\Gamma(u), (D_{1}\Gamma)_{u}, \dots, (D_{k}\Gamma)_{u}) du;$$

here $(D_1\Gamma)_x, \ldots, (D_k\Gamma)_x \in \mathbb{R}^n$ are partial derivatives of Γ , and $f : \mathbb{R}^n \times (\mathbb{R}^n)^k \to \mathbb{R}$ is a continuous function.

Again, we wonder what can be said about f if Ω is continuous in the following sense:

(1e5)
$$\Gamma_j \to \Gamma \text{ implies } \Omega(\Gamma_j) \to \Omega(\Gamma),$$

where convergence of singular k-cubes (or boxes) $\Gamma, \Gamma_1, \Gamma_2, \cdots : [0, 1]^k \to \mathbb{R}^n$ is defined by

$$\forall u \in [0, 1]^k \ \Gamma_j(u) \to \Gamma(u) , \exists L \ \forall j \ \Gamma_j \in \operatorname{Lip}(L) .$$

(For k = 1 this is (1b11)).

We consider first the case k = 2. Similarly to Prop. 1c3 we have the following.

1e6 Proposition. If Ω satisfies (1e4) and is continuous then for all $x, h_1 \in \mathbb{R}^n$ the function $h_2 \mapsto f(x, h_1, h_2)$ is affine.

Proof. Similarly to (1c6), (1e7)

$$\Gamma_j \to \Gamma$$
 implies $\int_B f(\Gamma(u), (D_1\Gamma_j)_u, (D_2\Gamma_j)_u) du \to \int_B f(\Gamma(u), (D_1\Gamma)_u, (D_2\Gamma)_u) du$.

Again, by 1c4 it is sufficient to prove that

$$f(x_0, h_1, h_2) = \theta f(x_0, h_1, h'_2) + (1 - \theta) f(x_0, h_1, h''_2)$$

whenever $h_2 = \theta h'_2 + (1 - \theta) h''_2$, $\theta \in (0, 1)$, and $x_0 \in \mathbb{R}^n$. Given a box $B = [0, U_1] \times [0, U_2] \subset \mathbb{R}^2$, we construct $\Gamma, \Gamma_j : B \to \mathbb{R}^n$ such that

 T_j being as in Lemma 1c5. These Γ_j are not singular boxes (since they are only piecewise C^1), but still, (1e7) applies to Γ_j , since there exist (by the argument of 1c7) singular boxes $\tilde{\Gamma}_j$ such that $\tilde{\Gamma}_j \to \Gamma$ and

$$\left| \int_{B} f\big(\Gamma(u), (D_1 \tilde{\Gamma}_j)_u, (D_2 \tilde{\Gamma}_j)_u\big) \,\mathrm{d}u - \int_{B} f\big(\Gamma(u), (D_1 \Gamma_j)_u, (D_2 \Gamma_j)_u\big) \,\mathrm{d}u \right| \to 0.$$

Similarly to the proof of 1c3 we get

$$\begin{split} \int_{0}^{U_{2}} \left(\int f(x_{0} + u_{1}h_{1} + u_{2}h_{2}, h_{1}, (D_{2}\Gamma_{j})_{x_{0} + u_{1}h_{1} + u_{2}h_{2}}) \, \mathrm{d}u_{1} \right) \, \mathrm{d}u_{2} \to \\ & \to \theta \int_{0}^{U_{2}} \left(\int f(x_{0} + u_{1}h_{1} + u_{2}h_{2}, h_{1}, h_{2}') \, \mathrm{d}u_{1} \right) \, \mathrm{d}u_{2} + \\ & + (1 - \theta) \int_{0}^{U_{2}} \left(\int f(x_{0} + u_{1}h_{1} + u_{2}h_{2}, h_{1}, h_{2}') \, \mathrm{d}u_{1} \right) \, \mathrm{d}u_{2} \, \mathrm{d}u_$$

We conclude that the continuous function

$$x \mapsto f(x, h_1, h_2) - \theta f(x, h_1, h_2') - (1 - \theta) f(x, h_1, h_2'')$$

has zero integral on every parallelepiped, and therefore vanishes everywhere. $\hfill\square$

Assuming in addition that $\Gamma(\cdot) = \text{const}$ implies $\Omega(\Gamma) = 0$ we get f(x, 0, 0) = 0, but still, $f(x, h_1, 0)$ need not vanish. Here is an appropriate generalization

of the "no waiting charge" condition (1b5):

(1e8) if $\Gamma(B)$ is contained in a (k-1)-dimensional affine subspace of \mathbb{R}^n then $\Omega(\Gamma) = 0$.

Taking $\Gamma(u_1, u_2) = x_0 + u_1 h_1$ we see that (1e8) implies $f(x, h_1, 0) = 0$. Thus, for every x, $f(x, h_1, h_2)$ is linear in h_2 for each h_1 ; similarly it is linear in h_1 for each h_2 ; that is,

condition (1e8) implies that $f(x, \cdot, \cdot)$ is a bilinear form;

$$f(x, h_1, h_2) = \sum_{i,j=1}^{n} c_{i,j}(x)(h_1)_i(h_2)_j.$$

Further, taking $\Gamma(u_1, u_2) = x_0 + u_1h + u_2h$ we see that f(x, h, h) = 0 for all h (and x). It means that the bilinear form is antisymmetric,

$$f(x, h_2, h_1) = -f(x, h_1, h_2);$$

indeed,

$$\underbrace{f(x, h_1 + h_2, h_1 + h_2)}_{=0} = \underbrace{f(x, h_1, h_1)}_{=0} + f(x, h_1, h_2) + f(x, h_2, h_1) + \underbrace{f(x, h_2, h_2)}_{=0} + \underbrace{f(x, h_2, h_2)}_{=0}$$

Generalization to $k = 3, 4, \ldots$ is straightforward.

First, recall a notion from linear algebra: a (multililear) k-form¹ on \mathbb{R}^n is a function $L : (\mathbb{R}^n)^k \to \mathbb{R}$ such that $L(x_1, \ldots, x_k)$ is separately linear in each of the k variables $x_1, \ldots, x_k \in \mathbb{R}^n$. Further, L is called antisymmetric² if it changes its sign under exchange of any pair of arguments.

1e9 Exercise. The following three conditions on a multililear k-form L on \mathbb{R}^n are equivalent:

- (a) L is antisymmetric;
- (b) $L(x_1, \ldots, x_k) = 0$ whenever $x_i = x_j$ for some $i \neq j$;
- (c) $L(x_1, \ldots, x_k) = 0$ whenever vectors x_1, \ldots, x_k are linearly dependent.

Now we generalize 1c9 and 1e6.

1e10 Definition. A differential form of order³ k and of class C^m on \mathbb{R}^n is a function $\omega : \mathbb{R}^n \times (\mathbb{R}^n)^k \to \mathbb{R}$ of class C^m such that for every $x \in \mathbb{R}^n$ the function $\omega(x, \cdot, \ldots, \cdot)$ is an antisymmetric multililear k-form on \mathbb{R}^n .

¹Called also multililear form (or function) of degree (or order) k.

²Or "skew symmetric", or "alternating".

 $^{^{3}}$ Or "degree".

For brevity we say "differential k-form" or just "k-form".

1e11 Proposition. If a function Ω of a singular k-box in \mathbb{R}^n is of the form (1e4), satisfies (1e5) and (1e8), then the function f from (1e4) is a k-form (of class C^0).

Similarly to (1c10) we define the integral of a k-form ω over a singular k-box Γ ,

(1e12)
$$\int_{\Gamma} \omega = \int_{B} \omega \big(\Gamma(u), (D_1 \Gamma)_u, \dots, (D_k \Gamma)_u \big) \, \mathrm{d}u$$

(recall (1e4)) and observe that $\Gamma \mapsto \int_{\Gamma} \omega$ is an additive function of a singular box. Now, Prop. 1e11 gives a sufficient condition for Ω to be the integral of some ω .

A k-form on \mathbb{R}^n may be thought of as a mapping from \mathbb{R}^n to the vector space of all antisymmetric multililear k-forms on \mathbb{R}^n . What is the dimension of this space?

First, k = 1. A linear form is uniquely determined by its values on the basis vectors e_1, \ldots, e_n of \mathbb{R}^n , and these values are arbitrary; thus, linear forms are an *n*-dimensional space.

Second, k = 2. An antisymmetric bilinear form is uniquely determined by its values on the pairs (e_i, e_j) for i < j, and these values are arbitrary; thus, bilinear forms are a space of dimension $\binom{n}{2} = \frac{n(n-1)}{2}$.

Similarly, antisymmetric multililear k-forms are a space of dimension $\binom{n}{k}$. Differential 0-forms, as well as differential *n*-forms, are functions with 1-dimensional values, since $\binom{n}{0} = 1 = \binom{n}{n}$; basically, scalar functions. More exactly, a differential 0-form $\omega : \mathbb{R}^n \to \mathbb{R}$ is itself a scalar function, while a differential *n*-form ω corresponds to a scalar function $x \mapsto \omega(x, e_1, \ldots, e_n)$.

1e13 Exercise. ¹ Find $\int_{\Gamma} \omega$ where

$$\omega(x, e_2, e_3) = x_1, \quad \omega(x, e_1, e_2) = \omega(x, e_1, e_3) = 0,$$

that is,

$$\omega(x,h,k) = x_1 \begin{vmatrix} h_2 & k_2 \\ h_3 & k_3 \end{vmatrix} \quad \text{for } x,h,k \in \mathbb{R}^3,$$

and $\Gamma(u, v) = (u^2, u + v, v^3)$ for $u, v \in [-1, 1]$.

¹Hubbard, Sect. 6.2.

Index

1-form, 12

bilinear form, 19

convergence of paths, 8 convergence of singular boxes, 17 curve, 13

derivative of path function, 9 differential form, first-order, 12 differential form, 19

index, 15 integral of 1-form, 12 of form, 20 inverse path, 7

k-form, 20

length, 6

multililear form, 19 antisymmetric, 19

path, 5

closed, 6

path function additive, 7 continuous, 8 no waiting charge, 7 higher dimension, 19 parametrization invariance, 7 stationary, 7symmetric, antisymmetric, 7singular box, 16singular box function additive, 17 continuous, 17 singular cube, 16 winding number, 15 $(D_1\Gamma)_x,\ldots,(D_k\Gamma)_x,\,17$ $(D_h\Omega)_x, 9$ $dx_1,\ldots,dx_n,\,12$ $\Gamma_j \to \Gamma, 17$ $\gamma_k \to \gamma, \, 8$ $\gamma_{-1}, 7$ $\int_{\Gamma} \omega, \ 20 \\ \int_{\gamma} \omega, \ 12$

 $\Omega(\Gamma), 17$