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2a Planar curves

Recall the notions of relative neighborhood and relative open set.
Let M ⊂ R2.

2a1 Definition. A chart of M is a pair (G,ψ) of an open set G 6= ∅ in R
and a mapping ψ : G→M such that

(a) ψ(G) is (relatively) open in M ;
(b) ψ is a homeomorphism from G to ψ(G);
(c) ψ ∈ C1(G→ R2);
(d) Dψ does not vanish (on G).

If a point of M belongs to ψ(G), we say that (G,ψ) is a chart of M around
this point.

2a2 Definition. A co-chart1 of M is a pair (U,ϕ) of an open set U in R2

and a function ϕ : U → R such that
(a) M ∩ U = {x ∈ U : ϕ(x) = 0} 6= ∅;
(b) ϕ ∈ C1(U);
(c) Dϕ does not vanish on M ∩ U .

If a point of M belongs to U , we say that (U,ϕ) is a co-chart of M around
this point.

1Not a standard terminology.
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In particular, if M is the graph of a function f of class C1 near x0, we
may take ψ(t) =

(
t, f(t)

)
and ϕ(x, y) = y− f(x). The case x = g(y) may be

treated similarly. We’ll see soon that the general case reduces to these two
special cases (locally, but not globally).

2a3 Remark. (a) If (G,ψ) is a chart of M and G0 ⊂ G an open subset
(nonempty), then (G0, ψ|G0) is a chart of M ;1

(b) if (U,ϕ) is a co-chart of M and U0 ⊂ U is an open subset (that
intersects M), then (U0, ϕ|U0) is a co-chart of M .

2a4 Exercise. Let h : R2 → R2 be a diffeomorphism. If (G,ψ) is a chart
of M , then (G, h ◦ ψ) is a chart of h(M). If (U,ϕ) is a co-chart of M , then
(h(U), ϕ ◦ h−1) is a co-chart of h(M).

Prove it.

2a5 Proposition. The following three conditions on a set M ⊂ R2 and a
point (x0, y0) ∈M are equivalent:

(a) there exists a chart of M around (x0, y0);
(b) there exists a co-chart of M around (x0, y0);
(c) there exists a local diffeomorphism h : R2 → R2 near (x0, y0) such

that
(x, y) ∈M ⇐⇒ h(x, y) ∈ R× {0}

for all (x, y) near (x0, y0).

Proof. By 2a4, (c)=⇒(a) (and (c)=⇒(b)), since the line R× {0} evidently
has a chart (and a co-chart) near every point.

V

M

ψ(G)

chart

W

V

co-chart

graph

From a chart to a co-chart (and graph).

(a)=⇒(b): given G and ψ, ψ(t) =
(
ψ1(t), ψ2(t)

)
, ψ(t0) = (x0, y0), we assume

that ψ′1(t0) 6= 0 (otherwise we swap the coordinates x, y) and apply to ψ1

1ψ(G0) is open in ψ(G), and ψ(G) is open in M , therefore ψ(G0) is open in M (think,
why).
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the inverse function theorem. Reducing G as needed we ensure that ψ1 is
a diffeomorphism from G to an open neighborhood V of x0. Taking into
account that ψ(G) is a neighborhood of (x0, y0) in M , we reduce V and G
(again) and choose a neighborhood W of y0 such that

M ∩ (V ×W ) = ψ(G) ∩ (V ×W ) .

We take U = V ×W , define ϕ : U → R by

ϕ(x, y) = y − ψ2

(
ψ−1

1 (x)
)
,

and check that (U,ϕ) is a co-chart.
(b)=⇒(c): given U and ϕ, we assume that (D2ϕ)(x0,y0) 6= 0 (otherwise we

swap the coordinates x, y). The mapping h : (x, y) 7→ (x, ϕ(x, y)) fits, as was
seen in the proof of the implicit function theorem.

2a6 Definition. A nonempty set M ⊂ R2 is a one-dimensional manifold
(or 1-manifold) if for every (x0, y0) ∈ M there exists a chart of M around
(x0, y0).

“Co-chart” instead of “chart” gives an equivalent definition due to 2a5.

2a7 Definition. Let M ⊂ R2 be a 1-manifold; a function f : M → R is
continuously differentiable if for every chart (G,ψ) of M the function f ◦ ψ
is continuously differentiable on G.

2a8 Exercise. The set C1(M) of all continuously differentiable functions on
M is an algebra; that is, a vector space, and f, g ∈ C1(M) =⇒ fg ∈ C1(M).
Also, if ϕ ∈ C1(R) and f ∈ C1(M) then ϕ ◦ f ∈ C1(M).

Prove it.

2a9 Exercise. Let M ⊂ R2 be a 1-manifold, f : M → R, and for every
x ∈ M there exists a chart (G,ψ) of M around x such that f ◦ ψ ∈ C1(G).
Then f ∈ C1(M).

Prove it.

2a10 Exercise. Which of the following subsets of R2 are 1-manifolds? Prove
your answers, both affirmative and negative.

∗ M1 = R× {0};
∗ M2 = [0, 1]× {0};
∗ M3 = (0, 1)× {0};
∗ M4 = {(0, 0)};
∗ M5 = R× {0, 1};
∗ M6 = R× Z;
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∗ M7 = R× {1, 1
2
, 1

3
, . . . };

∗ M8 = M7 ∪M1;
∗ M9 = {(r cosϕ, r sinϕ) : 0 < r < 1, ϕ = 1/r};
∗ M10 = M9 ∪M4;
∗ M11 = {(r cosϕ, r sinϕ) : 0 < r < 1, ϕ = 1/(1− r)};
∗ M12 = {(x, y) : x2 + y2 = 1};
∗ M13 = M11 ∪M12;
∗ Mp = {(x, y) : xp + yp = 1}; examine all p ∈ (−∞, 0) ∪ (0,∞).

2b Higher dimensions; orientation; tangent space

Let M ⊂ RN , n ∈ {1, . . . , N − 1}, and x0 ∈M .

2b1 Definition. A chart (n-chart) of M is a pair (G,ψ) of an open set
G 6= ∅ in Rn and a mapping ψ : G→M such that

(a) ψ(G) is (relatively) open in M ;
(b) ψ is a homeomorphism from G to ψ(G);
(c) ψ ∈ C1(G→ RN);
(d) for every u ∈ G the linear operator (Dψ)u from Rn to RN is one-to-

one.
If a point of M belongs to ψ(G), we say that (G,ψ) is a chart of M around
this point.

2b2 Definition. A co-chart1 (n-cochart) of M is a pair (U,ϕ) of an open
set U in RN and a mapping ϕ : U → RN−n such that

(a) M ∩ U = {x ∈ U : ϕ(x) = 0} 6= ∅;
(b) ϕ ∈ C1(U → RN−n);
(c) for every x ∈ M ∩ U the linear operator (Dϕ)x from RN to RN−n is

onto.
If a point of M belongs to U , we say that (U,ϕ) is a co-chart of M around
this point.

Clearly, n-charts and n-cocharts are well-defined for a subset of an N -di-
mensional vector space.2

In particular, if M is the graph of a mapping f : Rn → RN−n of class
C1 near x0, that is, M = {(u, f(u)) : u ∈ Rn}, then we may take ψ(u) =
(u, f(u)) and ϕ(u, v) = v − f(u) for u ∈ Rn, v ∈ RN−n.

This is one out of
(
N
n

)
similar cases. If a linear operator maps RN onto

RN−n, it does not mean that it is ( A B ) with invertible B. Some (N−n)×
1Not a standard terminology.
2Or affine space S (and then (Dψ)x : Rn → ~S and (Dϕ)x : ~S → RN−n).
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(N − n) minor is not zero, but not just the rightmost minor. That is, some
N − n out of the N variables are functions of the other n variables; but not
just the last N − n variables and the first n variables.

N−n

n N−n

A B

=N−n

N−n

2b3 Exercise. Generalize 2a4.

2b4 Proposition. The following three conditions on a set M ⊂ RN and a
point x0 ∈M are equivalent:

(a) there exists an n-chart of M around x0;
(b) there exists an n-cochart of M around x0;
(c) there exists a local diffeomorphism h : RN → RN near x0 such that

(u, v) ∈M ⇐⇒ h(u, v) ∈ Rn × {0N−n}

for all (u, v) ∈ Rn × RN−n near x0.

I skip the proof; it is a straightforward generalization of 2a5.
As before, the general case reduces (locally) to the

(
N
n

)
special cases; some

N−n variables are functions of the other n variables. In other words, M has
a n-chart (or n-cochart) around x0 if and only if M has n degrees of freedom
at x0.

2b5 Exercise. Let (G1, ψ1), (G2, ψ2) be two n-charts of M around x0. Prove
existence of a mapping ϕ : G1 → G2 of class C1 near u1 = ψ−1

1 (x0) such that
ψ1(u) = ψ2(ϕ(u)) for all u near u1, and det(Dϕ)u1 6= 0.1

2b6 Exercise. A relation det(Dϕ)u1 > 0 (for (G1, ψ1), (G2, ψ2), u1 and ϕ
as above) is an equivalence relation between n-charts of M around x0.

Prove it.

Clearly, there exist exactly two equivalence classes (provided that M has
an n-chart around x0, of course). These equivalence classes are called the
two orientations of M at x0.

2b7 Exercise. If M has an n-chart at x0 then M cannot have an m-chart
at x0 for m 6= n. Prove it. However, M can have an m-chart for m 6= n at
another point; give an example.

1Hint: M has n degrees of freedom at x0. Values of ϕ outside a neighborhood of u1
are irrelevant.
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2b8 Definition. A nonempty set M ⊂ RN is an n-dimensional manifold (or
n-manifold) if for every x0 ∈M there exists an n-chart of M around x0.1,2

“Co-chart” instead of “chart” gives an equivalent definition.
The same applies to a subset M of an N -dimensional vector3 space.
A relatively open nonempty subset of an n-manifold is an n-manifold.

In particular, for every chart (G,ψ) of M the set ψ(G) is an n-manifold (a
single-chart piece of M), and for every co-chart (U,ϕ) of M the set M ∩ U
is an n-manifold.

In addition, sometimes one defines anN -manifold in RN as just a nonempty
open subset of RN , and a 0-manifold as just a nonempty discrete4 subset of
RN .

2b9 Exercise. Let M1 be an n1-manifold in RN1 , and M2 an n2-manifold in
RN2 ; then M1 ×M2 is an (n1 + n2)-manifold in RN1+N2 .

Prove it.5

2b10 Definition. Let M ⊂ RN be an n-manifold; a function f : M → R is
continuously differentiable if for every chart (G,ψ) of M the function f ◦ ψ
is continuously differentiable on G.

2b11 Exercise. Generalize 2a8, 2a9 accordingly.

2b12 Exercise. Define the notion of a function continuous almost every-
where on a manifold. Formulate and prove counterparts of 2a8, 2a9 for this
notion.

2b13 Example. 6 Consider the set M of all 3× 3 matrices A of the form

A =

a2 ab ac
ba b2 bc
ca cb c2

 for a, b, c ∈ R , a2 + b2 + c2 = 1 .

1These are manifolds of class C1; manifolds of class Cm are defined similarly. For M
of class C1 we can define C1(M) but not C2(M). You may reconsider the last item of
2a10: when is Mp of class Cm?

2“In the literature this is usually called a submanifold of Euclidean space. It is possible
to define manifolds more abstractly, without reference to a surrounding vector space.
However, it turns out that practically all abstract manifolds can be embedded into a
vector space of sufficiently high dimension. Hence the abstract notion of a manifold is not
substantially more general than the notion of a submanifold of a vector space.” Sjamaar,
page 69.

3Or affine.
4That is, each point (and therefore each subset) is relatively open.
5You may choose one of the three equivalent conditions (a), (b), (c) of 2b4. Or, just

for fun, you may give three proofs! On the other hand, you may prove it for 0 ≤ n1 ≤ N1,
0 ≤ n2 ≤ N2, not just 0 < n1 < N1, 0 < n2 < N2.

6The projective plane in disguise.
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These are orthogonal projections to one-dimensional subspaces of R3. We
treat M as a subset of the six-dimensional space of all symmetric 3 × 3
matrices.

The set M is invariant under transformations A 7→ UAU−1 where U
runs over all orthogonal matrices (linear isometries); these are linear trans-
formations of the six-dimensional space of matrices. If A corresponds to
x = (a, b, c) then UAU−1 corresponds to Ux. For arbitrary A,B ∈ M there
exists U such that UAU−1 = B (“transitive action”).

Thus, M looks the same around all its points (“homogeneous space”). In
order to prove that M is a 2-manifold (in R6) it is sufficient to find a chart
(or co-chart) around a single point of M , say,

A1 =

1 0 0
0 0 0
0 0 0

 ∈M .

2b14 Exercise. Find a 2-chart of M around A1.1

2b15 Exercise. Locally, near A1, four coordinates should be smooth func-
tions of the other two coordinates. Which two? Calculate explicitly these
four functions of two variables.2

Recall the two orientations of M at x0 introduced after 2b6.

2b16 Definition. (a) An orientation of an n-manifold M ⊂ RN is a family
(Ox)x∈M of orientations Ox of M at points x such that for every x0 ∈M and
every (G,ψ) ∈ Ox0 the relation (G,ψ) ∈ Ox holds for all x near x0.

(b) M is orientable if it has (at least one) orientation.

The same applies to M ⊂ V where V is an N -dimensional vector3 space.
We will see that a sphere is orientable but the Möbius strip (see 2c21)

is not, as well as M of 2b13. However, a single-chart piece of a manifold is
orientable.

An oriented manifold is, by definition, a pair (M,O) of a manifold and
its orientation. By a chart of an oriented manifold (M,O) we mean a chart
(G,ψ) of M such that (G,ψ) ∈ Ox for all x ∈ ψ(G).

If two orientations of M agree at x, then they agree near x (think, why).
Thus, they agree on a relatively open subset of M . Similarly, they disagree
on a relatively open subset of M . These two sets are relatively clopen. If M

1Hint: (b, c) 7→ (
√

1− b2 − c2, b, c) = x 7→ A = ψ(b, c).
2Hint: solve a quadratic equation.
3Or affine.
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is connected, then it has at most two orientations. If M is connected and
orientable (in particular, connected and single-chart), then it has exactly
two orientations. For instance, Rn has exactly two orientations; and the
same holds for arbitrary n-dimensional vector or affine subspace of RN .

When M = V is an n-dimensional vector subspace of RN (or of arbitrary
N -dimensional vector space), linear charts are convenient: G = Rn and
ψ : Rn → V is a linear bijection. Two such linear charts (Rn, ψ1), (Rn, ψ2)
are related via a matrix ϕ : Rn → Rn such that ψ1 = ψ2 ◦ ϕ, that is,
ϕ = ψ−1

2 ◦ψ1. If detϕ > 0, then these two charts give the same orientation of
V ; if detϕ < 0, they give the two different orientations. Note that the linear
operators ψ : Rn → V correspond bijectively to bases

(
ψ(e1), . . . , ψ(en)

)
of

V (here (e1, . . . , en) is the usual basis of Rn), and two such bases are related
via the matrix ϕ = (ϕi,j)i,j:

ψ1(ek) = ψ2

(
ϕ(ek)

)
= ψ2(ϕ1,ke1+· · ·+ϕn,ken) = ϕ1,kψ2(e1)+· · ·+ϕn,kψ2(en) .

Thus, an orientation of M = V may be thought of as an equivalence class
of bases. The same applies to an n-dimensional affine subspace M = S of
RN (or of arbitrary N -dimensional vector1 space); the two orientations of S

correspond evidently to the two orientations of the difference space ~S.
If in addition V (or S) is endowed with a Euclidean metric, then it is

convenient to use linear isometries ψ : Rn → V and the corresponding or-
thonormal bases of V (or ~S).

2b17 Example. (a) M = R; there are two orthonormal bases, (1) and (−1);
they give the two orientations of R.

(b) M = R2; an orthonormal basis is either(
(cos θ, sin θ), (cos(θ + π

2
), sin(θ + π

2
))
)

=
(
(cos θ, sin θ), (− sin θ, cos θ)

)
or (

(cos θ, sin θ), (cos(θ − π
2
), sin(θ − π

2
))
)

=
(
(cos θ, sin θ), (sin θ,− cos θ)

)
;

these two cases give the two orientations of R2.
(c) M = R3; an orthonormal basis is either (a, b, a × b) or (a, b,−a × b)

for |a| = |b| = 1, 〈a, b〉 = 0; these two cases give the two orientations of R3. 2

2b18 Definition. Let M be an n-manifold in RN .

1Or affine.
2About relevance of orientations of our three-dimensional space to physics, chemistry

and biology see Wikipedia:Chirality (and follow the links there).

http://en.wikipedia.org/wiki/Chirality
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(a) A vector h ∈ RN is tangent to M at x0 ∈M if dist(x0 +εh,M) = o(ε)
(as ε→ 0);

(b) the tangent space Tx0M (to M at x0) is the set of all tangent vectors
(to M at x0).

The same applies to M ⊂ V where V is an N -dimensional vector space.1,2

Though, the distance needs a metric; but o(·) does not depend on the choice
of a norm on V .

The next exercise shows (in particular) that the tangent space is indeed
a vector subspace of RN , of dimension n, and may be defined without men-
tioning a distance.

2b19 Exercise. Let (G,ψ) be a chart around x0 = ψ(u0) and (U,ϕ) a
co-chart around x0. Prove that the following three conditions on a vector
h ∈ RN are equivalent:

(a) h is a tangent vector (at x0);
(b) h belongs to the image of the linear operator (Dψ)u0 : Rn → RN ;
(c) h belongs to the kernel of the linear operator (Dϕ)x0 : RN → RN−n.

What about (Dhf)x for h ∈ TxM and f ∈ C1(M)? Wait for Sect. 5a.

2b20 Example. Let M ⊂ R2 be the graph of a function f ∈ C1(R). Then
T(t,f(t))M = {

(
λ, λf ′(t)

)
: λ ∈ R}.

2b21 Exercise. Generalize 2b20 to curves and surfaces in R3 (that are
graphs).

If M = S is an affine subspace then TxS = ~S for every x ∈ S; and
if M is a vector subspace then TxM = M for every x ∈ M ; for affine

subspace TxM = M −M .
If (G,ψ) is a chart of M around x0 = ψ(u0) then (Dψ)u0 : Rn → Tx0M is a

linear chart of Tx0M (“the tangent chart”). For two charts (G1, ψ1), (G2, ψ2)
of M around x0, ψ1 = ψ2◦ϕ, the chain rule gives (Dψ1)u1 = (Dψ2)u2◦(Dϕ)u1 ,
where ψ1(u1) = x0 = ψ2(u2). Clearly, the charts (G1, ψ1) and (G2, ψ2) of
M give the same orientation of M at x0 if and only if the tangent charts(
Rn, (Dψ1)u1

)
and

(
Rn, (Dψ2)u2

)
give the same orientation of Tx0M . This

way the two orientations of M at x0 correspond to the two orientations of
Tx0M .

Thus, an orientation of M may be thought of as a family of orientations
of the tangent spaces TxM , x ∈M .3

1Or affine space S; and then Tx0
M ⊂ ~S.

2Geometrically, it looks more natural to define Tx0
M as the affine subspace of all

x0 + h. But the version Tx0
M ⊂ ~S is algebraically natural and widely used.

3But not an arbitrary family; indeed, the family (Ox)x∈M in Def. 2b16 is not arbitrary.
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2b22 Exercise (cylinder). Let M1 be an n-manifold in RN , and h ∈ RN

satisfy
∀x ∈M1 h /∈ TxM1 .

Consider the set
M = {x+ λh : x ∈M1, λ ∈ R} .

Assume that the mapping (x, λ) 7→ x+λh is a homeomorphism M1×R→M .
Then

(a) M is an (n+ 1)-manifold in RN ;
(b) if (G,ψ1) is a chart of M1, then (G×R, ψ) for ψ : (u, λ) 7→ ψ1(u)+λh

is a chart of M .
Prove it. And show by counterexamples that no one of the two conditions

(h /∈ TxM1, and homeomorphism) can be dropped.

2b23 Exercise (cone). Let M1 be an n-manifold in RN such that

∀x ∈M1 x /∈ TxM1 .

Consider the set
M = {λx : x ∈M1, λ ∈ (0,∞)} .

Assume that the mapping (x, λ) 7→ λx is a homeomorphism M1 × (0,∞)→
M . Then

(a) M is an (n+ 1)-manifold in RN ;
(b) if (G,ψ1) is a chart of M1, then (G×(0,∞), ψ) for ψ : (u, λ) 7→ λψ1(u)

is a chart of M .
Prove it.

2b24 Exercise (surface of revolution or body of revolution).
Let M1 be an n-manifold in R3 (here n = 1 or n = 2) such that

∀(x, y, z) ∈M1 (0,−z, y) /∈ T(x,y,z)M1 .

Consider the set

M = {(x, cy − sz, sy + cz) : (x, y, z) ∈M1, (c, s) ∈ S}

where S = {(c, s) ∈ R2 : c2 + s2 = 1} (the circle). Assume that the mapping(
(x, y, z), (c, s)

)
7→ (x, cy − sz, sy + cz) is a homeomorphism M1 × S → M .

Then
(a) M is an (n+ 1)-manifold in R3;
(b) if (G1, ψ1) is a chart of M1 and (G2, ψ2) is a chart of S, then (G1 ×

G2, ψ) is a chart of M ; here ψ(u1, u2) = (x, cy−sz, sy+cz) whenever ψ1(u1) =
(x, y, z) and ψ2(u2) = (c, s).

Prove it.
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2c Forms on manifolds; local integration

2c1 Definition. A differential form of order k (or k-form)1 on an n-man-
ifold M ⊂ RN is a continuous function ω on the set {(x, h1, . . . , hk) : x ∈
M, h1, . . . , hk ∈ TxM} such that for every x ∈ M the function ω(x, ·, . . . , ·)
is an antisymmetric multililear k-form on TxM .

Given a k-form ω on M , the integral
∫

Γ
ω is well-defined for every singular

k-box Γ in M (that is, k-box Γ : B → RN such that Γ(B) ⊂M); recall (1e12)
and note that (DiΓ)u ∈ TΓ(u)M .

The case k = n is important.
Let us compare two notions, singular n-box in M and n-chart of M . These

are Γ : B → M and ψ : G → M ; both B and G are subsets of Rn; both Γ
and ψ are continuously differentiable; but B is a closed box, while G is an
open set; and ψ is a homeomorphism (and more), while Γ may degenerate
(even be constant). Anyway, let us define

∫
(G,ψ)

ω similarly to
∫

Γ
ω:

(2c2)

∫
(G,ψ)

ω =

∫
G

ω
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
du .

The integrand is continuous, but may be unbounded; also G may be un-
bounded; thus, the integral is interpreted as improper, and may converge or
diverge.

Here is parametrization invariance, similar to (1b6).

2c3 Proposition. Let (G1, ψ1), (G2, ψ2) be two charts of an oriented man-
ifold (M,O). If ψ1(G1) = ψ2(G2) then∫

(G1,ψ1)

ω =

∫
(G2,ψ2)

ω

for every n-form ω on M ; that is, either these two integrals converge and are
equal, or both integrals diverge.

Some observations before the proof.
The space of all antisymmetric multililear n-forms L on Rn (or on arbi-

trary n-dimensional vector space) is one-dimensional (recall the paragraph
before 1e13), thus, an n-form ω on an n-manifold M is basically a (scalar)
function on M . More exactly, such ω corresponds to the scalar function
x 7→ ω

(
x, e1(x), . . . , en(x)

)
where x ∈ M and (e1(x), . . . , en(x)) is a basis of

TxM . Be warned: such a basis, continuous in x, need not exist (on the whole

1These are forms of class C0.
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M) even if M is orientable.1 But clearly, it exists on a single-chart piece of
M .

On Rn, the determinant is an antisymmetric multililear n-form; and there-
fore (by the one-dimensionality), every such form L is

L(a1, . . . , an) = c det(a1, . . . , an) for a1, . . . , an ∈ Rn .

A linear operator Rn → Rn corresponds to a matrix,

Rn 3 x 7→ Ax ∈ Rn ,

and leads to such an antisymmetric multililear n-form L on Rn:

L(a1, . . . , an) = det(Aa1, . . . , Aan) for a1, . . . , an ∈ Rn .

For the usual basis (e1, . . . .en) of Rn we have L(e1, . . . , en) = detA, since
Ae1, . . . , Aen are the columns of the matrix A. By the one-dimensionality,
L(a1, . . . , an) = (detA) det(a1, . . . , an), that is,

(2c4) det(Aa1, . . . , Aan) = (detA) det(a1, . . . , an) .

By the one-dimensionality (again),

(2c5) L(Aa1, . . . , Aan) = (detA)L(a1, . . . , an)

for every antisymmetric multililear n-form L on Rn.
Applying linear change of variables to the unit cube [0, 1]n ⊂ Rn we get

the volume of the parallelotope

P(a1, . . . , an) = A([0, 1]n) = {λ1a1 + · · ·+ λnan : λ1, . . . , λn ∈ [0, 1]} ⊂ Rn

generated by vectors a1 = Ae1, . . . , an = Aen (the columns of the matrix A)
emanating from the vertex 0 (the corner point):

v
(
P(a1, . . . , an)

)
= | det(a1, . . . , an)| .

Taking into account that the sign of det(a1, . . . , an) is related to an orientation
of Rn (as explained before 2b17), one says that det(a1, . . . , an) is the oriented
volume (or signed volume) of the parallelotope generated by a1, . . . , an.

On an n-dimensional vector space V “the” volume (Jordan measure) is
defined up to a (positive) coefficient. On the other hand, “the” antisymmetric

1In particular, it does not exist for the sphere M = S2 ⊂ R3; see Wikipedia:Hairy ball
theorem.

http://en.wikipedia.org/wiki/Hairy_ball_theorem
http://en.wikipedia.org/wiki/Hairy_ball_theorem
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multililear n-form L on V is defined up to a coefficient (not just positive).
They correspond naturally by the formula

v
(
P(a1, . . . , an)

)
= |L(a1, . . . , an)| ;

each Jordan measure v (a special set function) corresponds to two forms
(±L) that in turn correspond to the two orientations of V .

On an n-dimensional Euclidean vector space E we have a single Jordan
measure and two “normalized” antisymmetric multililear n-forms ±L (cor-
responding to the two orientations of E); L(e1, . . . , en) = ±1 for every or-
thonormal basis of E. In particular, this holds in every n-dimensional vector
subspace of RN .

Proof of Prop. 2c3.
The mapping ϕ = ψ−1

2 ◦ψ1 : G1 → G2 is a homeomorphism (the composition
of two homeomorphisms G1 → ψ1(G1) = ψ2(G2) → G2), and moreover, a
diffeomorphism (since 2b5 applies near every point). By change of variable
(Sect. 0c) it is sufficient to prove that

ω
(
ψ1(u1), (D1ψ1)u1 , . . . , (Dnψ1)u1

)
=

= ω
(
ψ2(u2), (D1ψ2)u2 , . . . , (Dnψ2)u2

)
| det(Dϕ)u1|

whenever u2 = ϕ(u1). Also, det(Dϕ)u1 > 0, since both charts conform to the
given orientation O.

Let x ∈ M , u1 ∈ G1, u2 ∈ G2 satisfy ψ1(u1) = x = ψ2(u2), then ϕ(u1) =
u2. We introduce an antisymmetric multililear n-form

L(a1, . . . , an) = ω
(
x, (Dψ2)u2a1, . . . , (Dψ2)u2an

)
for a1, . . . , an ∈ Rn .

By the chain rule, the relation ψ1 = ψ2 ◦ ϕ implies (Dψ1)u1 = (Dψ2)u2 ◦
(Dϕ)u1 ; therefore,

ω
(
x, (D1ψ1)u1 , . . . , (Dnψ1)u1

)
= ω

(
x, (Dψ1)u1e1, . . . , (Dψ1)u1en

)
=

= ω
(
x, (Dψ2)u2(Dϕ)u1e1, . . . , (Dψ2)u2(Dϕ)u1en

)
=

= L
(
(Dϕ)u1e1, . . . , (Dϕ)u1en

)
=
(
det(Dϕ)u1

)
L(e1, . . . , en) =

=
(
det(Dϕ)u1

)
ω
(
x, (D1ψ2)u2 , . . . , (Dnψ2)u2

)
by (2c5).

Thus, we may write
∫
ψ(G)

ω instead of
∫

(G,ψ)
ω. Also, we may write

∫
U
ω

whenever a relatively open set U ⊂ M is such that U = ψ(G) for some
n-chart (G,ψ) of (M,O). However, the orientation of M is essential. The
opposite orientation leads to the opposite value of the integral.
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2c6 Definition. An n-form µ on an oriented n-manifold (M,O) in RN is
the volume form, if for every x ∈ M the antisymmetric multililear n-form
µ(x, ·, . . . , ·) on TxM is normalized and Ox-positive.

“Normalized” means that it corresponds to the Jordan measure on the
Euclidean subspace TxM of the Euclidean space RN . And “Ox-positive”
means that for some (therefore, every) chart (G,ψ) ∈ Ox,

(2c7) µ
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
> 0 where u = ψ−1(x) .

The same applies to a manifold in an N -dimensional Euclidean vector1

space (but fails in the absence of a Euclidean metric).
Clearly, such µ is unique. Is it clear that µ exists? Surely, µ(x, ·, . . . , ·)

is well-defined for each x; but is it continuous in all the variables (including
x)? An affirmative answer will be given (after Example 2c18).

Having the volume form µ on (M,O) we define the n-dimensional volume

(2c8) v(U) =

∫
(G,ψ)

µ ∈ (0,∞]

whenever U = ψ(G) for an n-chart (G,ψ) of (M,O).
Also, for a function f : M → R continuous almost everywhere we define2

(2c9)

∫
U

f =

∫
G

f
(
ψ(u)

)
µ
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
du ;

the integral is interpreted as improper, and may converge or diverge.

2c10 Exercise. Formulate and prove parametrization invariance for
∫
U
f

(similar to 2c3).3

2c11 Example. Let M ⊂ R2 be the graph of a function f ∈ C1(R). The
whole M is covered by the chart R = G+ 3 x 7→ ψ+(x) = (x, f(x)) ∈ M ;
denote by O+ the corresponding orientation of M , and by O− the other
orientation. The two volume forms on M are µ±

(
(x, f(x)), (λ, λf ′(x))

)
=

±λ
√

1 + f ′2(x) (clearly, continuous functions of x and λ); thus,

v
(
ψ+(G)

)
=

∫
G

µ+

(
(x, f(x)), (1, f ′(x))

)
dx =

∫
G

√
1 + f ′2(x) dx

1Or affine.
2Surely, such

∫
U
f is never interpreted as

∫
RN f · 1lU (unless n = N); indeed, U cannot

be a Jordan set of non-zero volume (since U◦ = ∅). On the other hand, for n = N , this∫
U
f is the same as the improper integral of Analysis-3 (just use the trivial chart). Many

authors include n into the notation; say, Vn(U) rather than v(U), and
∫
U
f dVn rather

than
∫
U
f . When N = 3, one often uses d` (or ds) for n = 1; dA (or dS, or dσ) for n = 2;

and dv for n = 3.
3For a continuous f we may just apply 2c3 to the n-form fµ.
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is the 1-dimensional volume (just the length) of a part of the curve M . Note
that

(2c12) v
(
{(x, f(x)) : a < x < b}

)
=

∫ b

a

√
1 + f ′2(x) dx

is an additive function of a box (a, b) ⊂ R, and x 7→
√

1 + f ′2(x) is the
derivative of this box function. Informally,

(d`)2 = (dx)2 + (dy)2 , where y = f(x) .

Another chart R = G− 3 x 7→ ψ−(x) = (−x, f(−x)) ∈ M corresponds
to O−; we have v

(
ψ−(G)

)
=
∫
G
µ−
(
(−x, f(−x)), (−1,−f ′(−x))

)
dx =∫

G

√
1 + f ′2(−x) dx; taking G = (−b,−a) we get (2c12) again. The same

length via the other orientation.

Can we generalize 2c11 to a surface M in R3 (the graph of a function
f ∈ C1(R2))? We know the tangent space (recall 2b21) T(x,y,f(x,y))M , it is
spanned by two vectors, (1, 0, (D1f)(x,y)) and (0, 1, (D2f)(x,y)), but they are
not orthogonal. How to know that a form is normalized? We could apply
the orthogonalization process, but it leads to unpleasant formulas already for
n = 2 (and even worse for higher n). Fortunately a better way exists.

For arbitrary n vectors a1, . . . , an ∈ Rn,(
det(a1, . . . , an)

)
2 =

(
det(A)

)
2 = det(AtA) =

= det
(
〈ai, aj〉

)
i,j =

∣∣∣∣∣∣∣∣
〈a1, a1〉 . . . 〈a1, an〉
〈a2, a1〉 . . . 〈a2, an〉
. . . . . . . . . . . . . . . . . . . . .
〈an, a1〉 . . . 〈an, an〉

∣∣∣∣∣∣∣∣ ;

here A = ( a1 . . . an ) is the matrix whose columns are the vectors a1, . . . , an;
accordingly, AtA is the matrix of scalar products (think, why), the so-
called Gram matrix, and its determinant is called the Gram determinant,
or Gramian of a1, . . . , an. We see that the volume of a parallelotope is the
root of the Gramian,

(2c13) v
(
P(a1, . . . , an)

)
=
√

det
(
〈ai, aj〉

)
i,j

in Rn, and therefore, in every n-dimensional Euclidean vector space. In
particular, in every n-dimensional subspace of RN .

Given a one-to-one linear operator B : Rn → RN , we have vn(B(E)) =
cvn(E) for all Jordan sets E ⊂ Rn, with some c > 0 that depends on B (but
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does not depend on E). Taking a parallelotope E = P(a1, . . . , an) we have
B(E) = P(Ba1, . . . , Ban). Thus, the ratio√

det
(
〈Bai, Baj〉

)
i,j

| det(a1, . . . , an)|
does not depend on a basis (a1, . . . , an) of Rn .

In particular,

(2c14)
√

det
(
〈Bei, Bej〉

)
i,j does not depend

on an orthonormal basis (e1, . . . , en) of Rn .

Let µ be a volume form on (M,O), and (G,ψ) a chart of (M,O). By
(2c13), vn

(
P((D1ψ)u, . . . , (Dnψ)u)

)
= Jψ(u), where

Jψ(u) =
√

det
(
〈(Diψ)u, (Djψ)u〉

)
i,j

is the (generalized) Jacobian of ψ. Clearly, Jψ : G → (0,∞) is continuous.
Normalization of µ becomes

(2c15) µ
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
= Jψ(u) .

By (2c8) and (2c2),

(2c16) v(U) =

∫
ψ(G)

µ =

∫
G

Jψ(u) du .

By (2c9),

(2c17)

∫
U

f =

∫
G

f(ψ(u))Jψ(u) du .

Here U = ψ(G) for an n-chart (G,ψ) of (M,O).
Now we are in position to generalize 2c11.

2c18 Example. Let M ⊂ R3 be the graph of a function f ∈ C1(R2);
that is, M = {(x, y, f(x, y)) : x, y ∈ R}. The whole M is covered by the
chart R2 = G 3 (x, y) 7→ ψ(x, y) = (x, y, f(x, y)) ∈ M ; denote by O the
corresponding orientation of M . We have

(D1ψ)(x,y) =
(
1, 0, (D1f)(x,y)

)
; (D2ψ)(x,y) =

(
0, 1, (D2f)(x,y)

)
;

J2
ψ(x, y) =

∣∣∣∣1 + (D1f)2 D1f ·D2f
D1f ·D2f 1 + (D2f)2

∣∣∣∣ =

= 1 + (D1f)2 + (D2f)2 + (D1f)2(D2f)2 − (D1f)2(D2f)2 =

= 1 + (D1f)2 + (D2f)2 = 1 + |∇f(x, y)|2 .
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The volume form µ must satisfy

µ
(
(x, y, f(x, y)), (1, 0, (D1f)(x,y)), (0, 1, (D2f)(x,y))

)
=
√

1 + |∇f(x, y)|2 .

Given h, k ∈ T(x,y,f(x,y))M , we have h = (h1, h2, h3) = h1(1, 0, (D1f)(x,y)) +
h2(0, 1, (D2f)(x,y)) (think, why), and the same for k; thus,

µ
(
(x, y, f(x, y)), h, k

)
= (h1k2 − k1h2)µ

(
·, (1, 0, D1f), (0, 1, D2f)

)
=

=
√

1 + |∇f(x, y)|2
∣∣∣∣h1 h2

k1 k2

∣∣∣∣ ;

clearly, a continuous function of x, y, h and k. Existence of the volume form
is thus verified (for the considered case), and

v
(
ψ(G)

)
=

∫
G

√
1 + |∇f(x, y)|2 dxdy

is the 2-dimensional volume (just the area) of a part of the surface M . Once
again,

(2c19) v
(
ψ(B)

)
=

∫
B

Jψ

is an additive function of a box B ⊂ R2, and Jψ is its derivative. Informally,

(dA)2 = (dxdy)2 + (dxdz)2 + (dydz)2 , where z = f(x, y) .

The other orientation leads to the same area.

Existence of the volume form in general is proved similarly. Locally, M
is the graph {(x, f(x))} of a mapping f : Rn → RN−n. Using a chart (G,ψ),
ψ(x) =

(
x, f(x)

)
, we see that µ(ψ(x), h1, . . . , hn) is the (continuous) Jψ(x)

multiplied by a polynomial (in fact, just the determinant) of the projections
on h1, . . . , hn from T(x,f(x)) ⊂ RN onto Rn.

The case n = N−1 (a hypersurface) is important. In this case f : Rn → R
has the gradient ∇f , and we wonder, whether the formula J2

ψ = 1 + |∇f |2
still holds, or was it a good luck in low dimensions.

2c20 Lemma. Jψ =
√

1 + |∇f |2.

Proof. We have Dkψ = ek+(Dkf)eN for k = 1, . . . , n. According to (2c14),
we are free to choose an orthonormal basis in Rn. We choose it such that
∇f = |∇f |e1. Then (D1ψ)(x,f(x)) = e1 + |∇f(x)|eN , (D2ψ)(x,f(x)) = e2, . . . ,
(Dnψ)(x,f(x)) = en; these vectors being orthogonal, we get the determinant of

a diagonal matrix: J2
ψ =

∣∣e1 + |∇f(x)|eN
∣∣2 · |e2|2 . . . |en|2 = 1 + |∇f(x)|2.
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2c21 Exercise. Consider a Möbius strip1 (without the edge),

M = {Γ(s, θ) : s ∈ (−1, 1), θ ∈ [0, 2π]} ,

Γ(s, θ) =

( (R+rs cos θ
2

) cos θ

(R+rs cos θ
2

) sin θ

rs sin θ
2

)
,

for given R > r > 0. Prove that it is a non-orientable 2-manifold in R3. 2

Two facts without proofs: every 1-manifold in RN is orientable; every
compact 2-manifold in R3 is orientable.

2c22 Exercise. Continuing 2b13 prove that the compact 2-manifold M ⊂
R6 is non-orientable.3

2c23 Exercise. Let f ∈ C1(R), Ma be the graph of f(·) + a for a ∈ R, and
g ∈ C(R2) compactly supported. Prove that

(a)
∫
R da

∫
Ma
g2 ≥

∫
R2 g

2;
(b) the equality holds if and only if ∀x, y f ′(x)g(x, y) = 0.

2c24 Exercise. Find Jψ given ψ(ϕ, θ) = (sin θ cosϕ, sin θ sinϕ, cos θ). Com-
pare your answer with the formula of volume in spherical coordinates.

2c25 Exercise. Find Jψ given ψ(x) =
(
x,
√

1− |x|2
)
∈ Rn+1 for x ∈ Rn,

|x| < 1.
Answer: 1/

√
1− |x|2.

2c26 Exercise. Consider spherical caps Ma = {x : |x| = 1, xN > a} in RN

(for 0 < a < 1).

(a) v(Ma) =

∫
|u|2<1−a2

du√
1− |u|2

(n-dimensional integral, n = N − 1);

(b) v(Ma) = nVn

∫ √1−a2

0

rn−1 dr√
1− r2

, where Vn = 2πn/2

nΓ(n/2)
is the volume of

the n-dimensional unit ball;
(c) v(Ma)

NVN/2
→ 0 as N →∞ (but not uniformly in a, of course);

(d) (Archimedes) v(Ma) = 2π(1− a) for N = 3.
Prove it.4

1Images from Wikipedia.
2Hint: think about the function θ 7→ µ

(
Γ(0, θ), D1Γ(0, θ), D2Γ(0, θ)

)
.

3Hint: similar to 2c21. (In fact, a part of M is diffeomorphic to the Möbius strip.)
4Hint: (a) use 2c25; (b) recall Sect. 0g.
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Here is a probabilistic interpretation. Let a point (x1, . . . , xN) on the unit
sphere in RN be chosen at random, uniformly;

(c) if N is large, then xN is usually small;
(d) if N = 3, then xN is distributed uniformly.
Geometric interpretation of Item (d) is Archimedes’ Hat-Box Theorem.1

2c27 Exercise. Consider a half-space G = RN−1 × (0,∞) ⊂ RN , semi-
spheres Mr = {x ∈ G : |x| = r} for r > 0, and a compactly supported
f ∈ C(G). Prove that

(a)

∫
Mr

f =

∫
|u|<r

r√
r2 − |u|2

f
(
u,
√
r2 − |u|2

)
du;

(b)

∫ ∞
0

dr

∫
Mr

f =

∫
G

f .

2c28 Exercise (product). Let M1 be an n1-manifold in RN1 and M2 an
n2-manifold in RN2 . By 2b9, the set M = M1 × M2 is an n-manifold in
RN where n = n1 + n2 and N = N1 + N2. Let (G1, ψ1) be a chart of M1

and (G2, ψ2) a chart of M2; consider the product-chart (G,ψ) of M , that is,
G = G1 ×G2 and ψ(u1, u2) =

(
ψ1(u1), ψ2(u2)

)
. Prove that

(a) Jψ(u1, u2) = Jψ1(u1)Jψ2(u2);
(b) v(U1 × U2) = v(U1)v(U2) ∈ (0,∞], where U1 = ψ1(G1), U2 = ψ2(G2).

2c29 Exercise (scaling). Let M be an n-manifold in RN , and s ∈ (0,∞).
By 2b3, the set sM = {sx : x ∈M} is an n-manifold. Let (G,ψ) be a chart
of M ; consider the scaled chart (G, sψ) of sM . Prove that

(a) Jsψ(u) = snJψ(u);
(b) v(sU) = snv(U) ∈ (0,∞], where U = ψ(G).

2c30 Exercise (motion). Let M be an n-manifold in RN , and T : RN →
RN an isometric affine mapping. By 2b3, the set T (M) is an n-manifold.
Let (G,ψ) be a chart of M ; consider the corresponding chart (G, T ◦ ψ) of
T (M). Prove that

(a) JT◦ψ(u) = Jψ(u);
(b) v(T (U)) = v(U) ∈ (0,∞], where U = ψ(G).

1Weisstein, Eric W. ”Archimedes’ Hat-Box Theorem.” From MathWorld – A Wolfram
Web Resource.

http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html
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2c31 Exercise (cylinder). Let M1, h,M, (G1, ψ1), (G × R, ψ) be as in
2b22(b). Then

Jψ(u, λ) = Jψ1(u) dist(h, Tψ1(u)M1) .

In particular, if 〈h, ·〉 is constant on M1, then h ⊥ TxM1, thus,

Jψ(u, λ) = |h|Jψ1(u) .

Prove it.1

2c32 Exercise (cone). Let M1,M, (G,ψ1), (G×(0,∞), ψ) be as in 2b23(b).
Then

Jψ(u, λ) = λnJψ1(u) dist(x, TxM1) where x = ψ1(u) .

In particular, if ∀x ∈M1 |x| = c, then x ⊥ TxM1, thus,

Jψ(u, λ) = cλnJψ1(u) .

Prove it.

2c33 Exercise (surface of revolution or body of revolution).
Let M1, n,M, S, (G1, ψ1), (G2, ψ2), (G1 ×G2, ψ) be as in 2b24(b). Then

Jψ(u1, u2) = Jψ1(u1) dist((0,−z, y), T(x,y,z)M1) where (x, y, z) = ψ1(u1) .

In particular, if M1 ⊂ R2×{0}, then also T(x,y,z)M1 ⊂ R2×{0}; (0,−z, y) =
(0, 0, y) ⊥ R2 × {0}; thus,

Jψ(u1, u2) = |y|Jψ1(u1) where (x, y, 0) = ψ1(u1) .

Prove it.

2d Partitions of unity; global integration

2d1 Definition. (a) A k-form ω on an n-manifold M ⊂ RN is compactly
supported if there exists a compact set K ⊂M that supports ω in the sense
that ω(x, h1, . . . , hk) = 0 for all x ∈M \K and h1, . . . , hk ∈ TxM .

(b) ω is a single-chart form if there exist a compact set K ⊂ M that
supports ω and a chart (G,ψ) of M such that K ⊂ ψ(G).

The same applies to continuous functions on M (they are 0-forms).

1Hint: first, try N = 2, n = 1.
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Recall that
∫

(M,O)
ω is defined (in Sect. 2c) whenever (M,O) is an oriented

n-manifold and ω a single-chart n-form on M . The linearity,

(2d2)

∫
(M,O)

(c1ω1 + c2ω2) = c1

∫
(M,O)

ω1 + c2

∫
(M,O)

ω2 ,

is evident provided that both forms ω1, ω2 have compact supports within the
same chart.

Every compact subset of M can be covered by finitely many charts. They
overlap. We could try to construct a partition of the compact set into simple-
chart sets. But it is better to split ω into single-chart forms, using the so-
called “partition of unity”.1

2d3 Lemma. Let M ⊂ RN be an n-manifold and K ⊂ M a compact set.
Then there exist single-chart continuous functions ρ1, . . . , ρi : M → [0, 1]
such that ρ1 + · · ·+ ρi = 1 on K.

Proof. For every x ∈ K the function fx : y 7→
(
εx−|y−x|

)
+ is single-chart

if εx is small enough; it is also continuous, and (strictly) positive in the open
εx-neighborhood of x. These neighborhoods are an open covering of K; we
choose a finite subcovering and get single-chart functions f1, . . . , fi : M →
[0,∞) whose sum f = f1 + · · ·+ fi is (strictly) positive on K. We take ε > 0
such that f(·) ≥ ε on K and note that functions ρ1, . . . , ρi : M → [0,∞)
defined by

ρj(x) =
fj(x)

max(f(x), ε)

have the required properties.

It follows that every compactly supported k-form on M is the sum of
some single-chart k-forms,

ω = ω1 + · · ·+ ωi , ωj = ρjω

(that is, ωj(x, h1, . . . , hk) = ρj(x)ω(x, h1, . . . , hk)).
For k = n we can define (assuming that O is an orientation of M)

(2d4)

∫
(M,O)

(ω1 + · · ·+ ωi) =

∫
(M,O)

ω1 + · · ·+
∫

(M,O)

ωi

1For now, partition of unity into continuous functions. Later, partition into C1 func-
tions will be needed. (See 3b10. Ultimately, partitions into C∞ functions exist, but we do
not need them.)
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if this is correct; that is, we need

(2d5)

∫
(M,O)

ω1 + · · ·+
∫

(M,O)

ωi =

∫
(M,O)

ω̃1 + · · ·+
∫

(M,O)

ω̃ĩ

whenever ω1 + · · · + ωi = ω̃1 + · · · + ω̃ĩ. This equality will be proved after
some preparation.

All compactly supported k-forms on M are a vector space (infinite-dimen-
sional, of course). Forms compactly supported by a given chart are a vector
subspace; and these subspaces, together, span the whole space. Therefore

(2d6) if two linear functionals on compactly supported forms

are equal on all single-chart forms, then they are equal.

In particular, this applies to continuous functions (0-forms).
Given single-chart n-forms ω1, . . . , ωi, we introduce the functional

L : f 7→
∫

(M,O)

fω1 + · · ·+
∫

(M,O)

fωi

on compactly supported continuous functions f : M → R; it is linear, since
each

∫
(M,O)

fωj is linear by (2d2). By (2d2) (again),

L(f) =

∫
(M,O)

fω where ω = ω1 + · · ·+ ωi

for single-chart f (for non-single-chart f the right-hand side is generally not
defined yet). Given also ω = ω̃1 + · · ·+ ω̃ĩ, we introduce L̃ and note that

L(f) =

∫
(M,O)

fω = L̃(f)

for single-chart f . By (2d6), L = L̃. Choosing f such that f(·) = 1 on the
union of supports of ω1, . . . , ωi, ω̃1, . . . , ω̃ĩ we get (2d5).

We see that (2d4) is indeed a correct definition of
∫

(M,O)
ω whenever ω is

a compactly supported n-form on M .
Improper integral applies to forms without compact support. Arbitrary

n-form ω on M splits into the O-positive part ω+O and the O-negative part
ω−O,

ω+O(x, ·) =

{
ω(x, ·) if ω(x, ·) is Ox-positive,

0 otherwise;

ω−O = (−ω)+O ;

ω = ω+O − ω−O ;
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see (2c7) for “Ox-positive”. We define∫
(M,O)

ω+O = sup
f

∫
(M,O)

fω+O ∈ [0,∞]

where the supremum is taken over all compactly supported continuous f :
M → [0, 1]. Finally,∫

(M,O)

ω =

∫
(M,O)

ω+O −
∫

(M,O)

ω−O ;

of course,
∫

(M,O)
ω−O ∈ [0,∞] is defined similarly to

∫
(M,O)

ω+O. If
∫

(M,O)
ω+O <

∞ and
∫

(M,O)
ω−O <∞, one says that ω is integrable. Otherwise the improper

integral may be −∞, +∞, or ∞−∞ (undefined).

2d7 Exercise. Integrable forms are a vector space, and the integral is a
linear functional on this space.

Prove it.1

Now we can define the n-dimensional volume of an oriented n-manifold
(M,O) by

v(M,O) =

∫
(M,O)

µ(M,O) ∈ (0,∞]

where µ(M,O) is the volume form on (M,O). Compactness of M is sufficient
and not necessary for finiteness of the volume. Nice; but the Möbius strip
should have an area, too!

We want to define

(2d8)

∫
M

f =

∫
(G,ψ)

fµ(G,ψ) =

∫
G

(f ◦ ψ)Jψ

for a single-chart f ∈ C(M); here (G,ψ) is a chart such that f is compactly
supported within ψ(G), and µ(G,ψ) is the volume form on the n-manifold ψ(G)
(oriented, even if M is non-orientable). To this end we need a counterpart
of Prop. 2c3: ∫

(G1,ψ1)

fµ(G1,ψ1) =

∫
(G2,ψ2)

fµ(G2,ψ2)

whenever (G1, ψ1), (G2, ψ2) are charts such that ψ1(G1) = ψ2(G2) supports
f . We do it similarly to the proof of 2c3, but this time we split the relatively
open set U = ψ1(G1) = ψ2(G2) in two relatively open sets U−, U+ according

1Hint: recall 0b3–0b5.
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to the sign of detDϕ (having ψ−1
2 = ϕ ◦ ψ−1

1 on U). It remains to take into
account that µ(G1,ψ1) = µ(G2,ψ2) on U+ but µ(G1,ψ1) = −µ(G2,ψ2) on U−.

We see that (2d8) is indeed a correct definition of
∫
M
f for a single-chart

f ∈ C(M). Now, similarly to (2d4), we define

(2d9)

∫
M

f =

∫
M

f1 + · · ·+
∫
M

fi

whenever f = f1 + · · ·+ fi with single-chart fj ∈ C(M).

2d10 Exercise. (a) Prove that (2d9) is a correct definition of
∫
M
f for all

compactly supported f ∈ C(M);
(b) formulate and prove linearity and monotonicity of the integral.

Consider a function f : M → R continuous almost everywhere.1 If f is
single-chart, we define ∫

M

f =

∫
G

(f ◦ ψ)Jψ = (2c9)

for a chart (G,ψ) that supports f ; by 2c10, the integral does not depend on
the chart. But now it is treated as improper, and may converge (then f is
called integrable) or diverge. This integral is a linear functional on the vector
subspace of integrable functions supported by a given chart. Similarly to
(2d5) it extends to a linear functional on compactly supported f (continuous
almost everywhere, of course). And then, by exhaustion, we get rid of the
compact support.

Accordingly, we have the (n-dimensional) Jordan measure on M , and sets
of volume zero. A single point is of volume zero, of course.

2d11 Exercise. (a) Every compact subset of an n-manifold in RN (for n <
N) is of (N -dimensional) volume zero in RN .2

(b) Let M be an n-manifold in RN ; M1 an n1-manifold in RN ; n1 < n; and
M1 ⊂ M . Then every compact subset of M1 is of (n-dimensional) volume
zero in M .

Prove it.3

2d12 Example. Consider the sphere M = {(x, y, z) : x2 +y2 +z2 = 1} ⊂ R3

and the 2-chart (G,ψ) of the sphere, called the spherical coordinates:

G = (−π, π)× (0, π) , ψ(ϕ, θ) = (sin θ cosϕ, sin θ sinϕ, cos θ) .

1Recall 2b12.
2Why just compact? Wait for Example 3b7.
3Hint: (a) locally, a graph; (b) ψ−1 ◦ ψ1.
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The circle {(x, 0, z) : x2 + z2 = 1} ⊂ M is a set of volume zero by 2d11(b).
Therefore the semicircle M \ ψ(G) = {(x, 0, z) : x2 + z2 = 1, x ≤ 0} is of
volume zero. Using 2c16 and 2c24 we calculate the area of the sphere; not
unexpectedly, we get

v(M) =

∫
G

Jψ =

∫ π

−π
dϕ

∫ π

0

sin θ dθ = 4π .

2d13 Exercise. Prove that the area of the (non-compact) Möbius strip 2c21
is 4πrR

(
1 +O

(
r2

R2

))
.

2d14 Example (product). Let M1 be an n1-manifold in RN1 and M2 an
n2-manifold in RN2 . Then, using 2c28,

v(M1 ×M2) = v(M1)v(M2) ∈ (0,∞] .

2d15 Example (scaling). Let M be an n-manifold in RN , and s ∈ (0,∞).
Then, using 2c29,

v(sM) = snv(M) ∈ (0,∞] .

This is a generalization of the special case v(sE) = sNv(E) from Analysis-
III. In contrast, we have no such generalization of the more general formula
v(T (E)) = s1 . . . sNv(E) where T (x1, . . . , xN) = (s1x1, . . . , cNxN). Indeed,
everyone knows the length of a circle, but the length of an ellipse is an elliptic
integral!1

2d16 Example (motion). Let M be an n-manifold in RN , and T : RN →
RN an isometric affine mapping. Then, using 2c30,

v(T (M)) = v(M) ∈ [0,∞] .

Also, ∫
T (M)

f ◦ T−1 =

∫
M

f

(in the appropriate sense) for every f : M → R continuous almost every-
where. In particular, (a) if f ◦ T−1 = f then

∫
T (M)

f =
∫
M
f ; and (b) if

T (M) = M then
∫
M
f ◦ T−1 =

∫
M
f .

2d17 Example (cylinder). LetM1, h,M be as in 2b22, but with (a, b) ⊂ R
rather than the whole R; and let 〈h, ·〉 be constant on M1. Then, using 2c31,

v(M) = (b− a)|h|v(M1) .

1Wikipedia:Ellipse#Circumference.

http://en.wikipedia.org/wiki/Ellipse#Circumference
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2d18 Example (cone). Let M1 and M be as in 2b23, but with (a, b) ⊂
(0,∞) rather than the whole (0,∞); and let ∀x ∈ M1 |x| = c. Then, using
2c32,

v(M) =
c

n+ 1
(bn+1 − an+1)v(M1) .

2d19 Example (surface of revolution or body of revolution).
Let M1, n,M be as in 2b24, and M1 ⊂ R2 × {0}. Then, using 2c33,

v(M) = 2π

∫
M1

|y| .

Assuming in addition that M1 ⊂ R× (0,∞)×{0} we get the Pappus-Guldin
centroid theorem:1,2

(for n = 1) The surface area of a surface of revolution generated by rotating
a plane curve about an external axis on the same plane is equal to the
product of the arc length of the curve and the distance traveled by its
geometric centroid.

(for n = 2) The volume of a solid of revolution generated by rotating a plane
figure about an external axis on the same plane is equal to the product
of the area of the figure and the distance traveled by its geometric
centroid.

2d20 Exercise. (a) Find the integral of the function x 7→ x2
i over the sphere

x2
1 + · · ·+ x2

N = 1 without ANY computation.3

(b) Prove that v(Ma)
NVN

≤ 1
2a2N

(here Ma is the spherical cap as in 2c26).

2d21 Exercise. Find the area of the part of the cylinder x2 + y2 = 1 in R3

situated inside the cylinder x2 + z2 = 1 (that is, satisfying x2 + z2 < 1). 4

2d22 Exercise. Find (a) the area of the part of the sphere x2 + y2 + z2 = 1
in R3 situated inside the cylinder x2 + y2 = x; and (b) the area of the part
of the cylinder inside the sphere.5

2d23 Exercise. The density of a “material” sphere of radius R is propor-
tional to the distance to the vertical diameter. Find the centroid of the upper
hemisphere.6

1See “Pappus’s centroid theorem” in Wikipedia.
2Centroid, defined in Analysis-3 for sets of positive volume, generalizes readily to

manifolds.
3Hint: use 2d16.
4Answer: 8.
5Answer: (a) 2π − 4; (b) 8.
6Answer: (0, 0, 4

3πR).

http://en.wikipedia.org/wiki/Pappus%27s_centroid_theorem
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2d24 Exercise. Find the centroid of the (homogeneous) conic surface 0 <
z =

√
x2 + y2 < 1. 1

Vector-valued functions may be integrated as well. Given f : M → R`,
f : x 7→

(
f1(x), . . . , f`(x)

)
, we define

(2d25)

∫
M

f =

(∫
M

f1, . . . ,

∫
M

f`

)
provided that these ` integrals are well-defined. Accordingly, for f : M → V
where V is an `-dimensional vector space, we define

∫
M
f by

(2d26) L

(∫
M

f

)
=

∫
M

L ◦ f for all linear L : V → R ,

provided that the right-hand side is well-defined for all L.
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co-chart, 22, 25
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cone, 31, 41, 47
continuously differentiable, 27
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differential form, 32

Gram determinant (Gramian), 36
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Möbius strip, 39
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motion, 40, 46
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oriented, 28

parallelotope, 33

parametrization invariance, 32
partition of unity, 42
product, 40, 46

revolution, 31, 41, 47

scaling, 40, 46
single-chart, 27, 41

tangent space, 30
tangent vector, 30

volume, 35, 44
volume form, 35∫
M
f , 44, 45∫

U
ω, 34∫

U
f , 35∫

(G,ψ)
ω, 32∫

(M,O)
ω, 42

Jψ, 37
TxM , 30
v(M,O), 44
v(U), 35

1Answer: (0, 0, 23 ).
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