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Multidimensional integral of derivative is much more interesting than one-
dimensional.

3a Fundamental theorem of integral calculus: intro-
duction

The fundamental theorem of integral calculus (FTIC),1 in dimension one,
states that

(3a1)

∫ b

a

f ′(x) dx = f(b−)− f(a+)

whenever f is differentiable on (a, b) and f ′ is Riemann integrable. In par-
ticular,

(3a2)

∫
R
f ′(x) dx = 0 if f ∈ C1(R) has a bounded support.

Here is a multidimensional generalization:

(3a3)

∫
Rn

detDf = 0 if f ∈ C1(Rn → Rn) has a bounded support;

its proof, given later (in Sect. 5c), is considerably harder than the proof of
(3a2). And the ultimate form of FTIC is Stokes’ theorem (formulated and
proved later, in Sect. 6).

The rest of this course is devoted to multidimensional forms of FTIC
(including the divergence theorem) and their applications.

1The (second) fundamental theorem of (integral) calculus. The terminology is a bit
controversial.
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3b Integrating the gradient

Interestingly, (3a1) may be thought of as (3a2) applied to the function
f · 1l[a,b]. Yes, this function is not differentiable (and moreover, not con-
tinuous), but let us approximate it:

f(a)

f(b)

a−ε a b b+ε

1
ε
f(a)

− 1
ε
f(b)

f(a) +

∫ b

a

f ′(x) dx− f(b) = 0 .

This simple idea becomes much more interesting in higher dimensions. The
equality (3a1) has no evident n-dimensional counterpart, but (3a2) has:

(3b1)

∫
Rn

∇f = 0 if f ∈ C1(Rn) has a bounded support.

Given a geometric body E ⊂ Rn, we approximate its
indicator 1lE and take the gradient. In the boundary
layer of thickness ε we get the inwards normal vector of
length 1/ε. In the limit (for ε→ 0+) we see that the in-
tegral over ∂E of the (inwards) normal unit vector must
vanish. This is indeed true and useful. However, the
limiting procedure, helpful for intuition, is less helpful
for the proof (which happens often in mathematics).

Now we finish this informal prelude and start the formal theory. n=N−1
We take the case n = N − 1; that is, we consider an n-dimensional

manifold M in Rn+1, often called a hypersurface. In this case, two sides of
M will be defined locally (but not globally; think about the Möbius strip),
after some preparation.

Given x0 ∈M , we consider germs1 [σ] (at x0) of functions σ : RN \M → R
that are continuous near x0 and satisfy σ(·) = ±1 near x0.

3b2 Lemma. There exist exactly 4 such germs; two are constant; the other
two are not, and these two are mutually opposite ([σ] and [−σ]).

Proof. The conditions on σ (and M) are invariant under local homeomor-
phisms. By 2b4(c), WLOG we assume that M is the hyperplane Rn × {0}

1Recall Sect. 0e.
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near x0. We take σ of the germ and ε > 0 such that σ is continuous and
equal ±1 on the set {x ∈ RN \M : |x− x0| < ε}, and note that this set has
exactly two connected components.

From now on, [σ] stands for one of the two non-constant germs; let us
call it side indicator.

3b3 Definition. A function f : RN \M → R is continuous up to M , if it is
continuous (on RN \M) and for every x0 ∈M the limits

f−(x) = lim
y→x,σ(y)=−1

f(y) and f+(x) = lim
y→x,σ(y)=+1

f(y)

exist for all x ∈M near x0.

In this case the germs [f−], [f+] (of functions on M) are well-defined and
continuous. The difference f+(x0)− f−(x0) of these “one-sided limits” at x0

is the jump of f at x0. Its sign depends on the sign of σ.
The same applies when M is an n-dimensional manifold in an (n+ 1)-di-

mensional vector1 space. In contrast, the unit normal vector and the singular
gradient, defined below, require Euclidean metric.

The tangent space TxM , being a hyperplane in RN , is

TxM = {h : 〈h,nx〉 = 0}

for some unit vector nx ∈ RN , the so-called unit normal vector. It is well-
defined up to the sign. When using together nx and the side indicator we
always assume that they conform:

σ(x+ λnx) =

{
−1 for small λ < 0,

+1 for small λ > 0.

Thus we have a germ of a mapping x 7→ nx. It is continuous due to an explicit
formula given in the following exercise. (However, a continuous mapping
x 7→ nx on the whole M exists if and only if M is orientable; we’ll return to
this point in Sect. 4d.)

n=N−1
3b4 Exercise. Let M be locally the graph,

{(x1, . . . , xN) : xN = g(x1, . . . , xn)} ,

of a continuously differentiable function g. Then the formula

σ(x1, . . . , xN) =

{
−1 for xN < g(x1, . . . , xn),

+1 for xN > g(x1, . . . , xn)

1Or affine.
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defines a side indicator, and the formula

nx =
1√

1 + |∇g|2
(
−(D1g), . . . ,−(Dng), 1

)
defines the corresponding unit normal vector.

Prove it.1

Here is a more convenient notation for the one-sided limits:

f(x− 0nx) = f−(x) and f(x+ 0nx) = f+(x) .

3b5 Definition. The singular gradient2 ∇sng f(x) at x ∈ M of a function
f : RN \M → R continuous up to M is the vector

∇sng f(x) =
(
f(x+ 0nx)− f(x− 0nx)

)
nx .

Note that the singular gradient does not depend on the sign of σ (and
nx). It is a continuous mapping ∇sng f : M → RN . (Think, what happens if
M is the Möbius strip.)

3b6 Lemma. Assume that f : RN \M → R is continuously differentiable,
and ∇f is bounded (on RN \M). Then f is continuous up to M .

Proof. Let x0 ∈M ; we have to prove existence of the two one-sided limits.
We reuse the argument of the proof of 3b2: the conditions on f (and M) are
invariant under local diffeomorphisms.3 By 2b4(c), WLOG we assume that
M is the hyperplane Rn × {0} in the ε-neighborhood of x0;4 and |∇f | ≤ C
on this neighborhood. The set {x ∈ RN \ M : |x − x0| < ε} consists of
two open half-balls. We have |f(y)− f(z)| ≤ C|y − z| whenever y, z belong
to the same half-ball (think, why). If yk → x0 and all yk belong to the
same half-ball, then f(yk) are a Cauchy sequence, therefore, converge. And
|f(yk)− f(zk)| → 0 whenever zk are another such sequence.

A compact subset of an n-manifold in RN is of (N -dimensional) volume
zero5 (recall 2d11(a)). However, this may fail for a bounded subset. When a
manifold M is not a closed set,6 it may be rather wild near a point of M \M ,
see the example below. Note that the set M \M is closed (which was seen
in the proof of 3b6).

1Hint: d
dλ

∣∣
λ=0

ϕ(x+ λnx) where ϕ(x1, . . . , xN ) = xN − g(x1, . . . , xn).
2Not a standard terminology.
3The bound for ∇f need not be invariant, but boundedness is invariant.
4This neighborhood cannot contain a point of M \M ; think, why.
5Except for the case n = N , of course.
6Be warned: “The notion of closed manifold is unrelated with that of a closed set.”

Wikipedia:Closed manifold#Contrasting terms

http://en.wikipedia.org/wiki/Closed_manifold#Contrasting_terms
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3b7 Example. A bounded 1-manifold in R2 need not be a set of area zero.
We start with a sequence of pairwise disjoint closed intervals [s1, t1], [s2, t2],

. . . ⊂ (0, 1) such that
∑

k(tk − sk) = a < 1 and the open set G = (s1, t1) ∪
(s2, t2) ∪ . . . is dense in (0, 1).1 The set M0 = { sk+tk

2
: k = 1, 2, . . . } of the

centers of these intervals is a 0-manifold in R (a discrete set). Its closure
contains [0, 1] \G; thus, v∗(M0) = v∗(M0) = 1− a > 0.

The set M1 = M0 × (0, 1) is a 1-manifold in R2 (recall 2b9), not of area
zero.

n=N−1
3b8 Theorem. Let M ⊂ RN be an n-manifold, K ⊂ M a compact subset,
and f : RN \K → R a continuously differentiable function with a bounded
support and bounded gradient ∇f (on RN \K). Then∫

RN\K
∇f +

∫
M

∇sng f = 0 .

3b9 Remark. First, continuity up to M is ensured by Lemma 3b6. Second,
both integrands being vector-valued, both integrals are treated as in (2d25)–
(2d26). Third, K is of volume zero, and ∇f · 1lRn+1\K is integrable (think,
why).2 Fourth, ∇sng f is continuous and compactly supported (by K) on M
(think, why).

3b10 Lemma. Let (U1, . . . , U`) be an open covering of a compact set K ⊂
RN . Then there exist functions ρ1, . . . , ρi ∈ C1(RN → [0, 1]) such that
ρ1 + · · ·+ ρi = 1 on K and each ρj has a compact support within some Um.

Proof. Similar to the proof of Lemma 2d3, with the following modifications.
First, the sets U1, . . . , U` are used instead of charts. Second, functions fx :
y 7→ (ε2

x − |y − x|2)2
+ are used instead of y 7→ (εx − |y − x|)+, in order to

ensure continuous differentiability.

x x+εx

fx

ε
f

f+ ε
2
(1− f

ε
)2+

Third (for the same reason), f(x) + ε
2

(
1− f(x)

ε

)
2
+ is used in the denominator

of ρk instead of max(f(x), ε).

Still, N = n+ 1, and M,K, f are as in Theorem 3b8.

1Its complement [0, 1] \G is sometimes called a fat Cantor set.
2Lebesgue’s criterion applies. But really, a much simpler argument suffices, since

“volume zero” is much stronger than “Lebesgue measure zero”.
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3b11 Lemma. Let h ∈ RN be such that

∀x ∈ K h /∈ TxM .

Then 〈
h,

∫
RN\K

∇f +

∫
M

∇sng f

〉
= 0 .

n=N−1
Proof. WLOG, h = (0, . . . , 0, 1) is the last vector of the usual basis of RN

(otherwise, use another orthonormal basis).
For every x ∈ K we take a co-chart (U,ϕ) of M around x. By 2b19(c),

(Dϕ)xh 6= 0, that is, (DNϕ)x 6= 0. The implicit function theorem gives us
an open set U ⊂ Rn and an open interval V ⊂ R such that x ∈ U × V and
M ∩ (U × V ) is the graph of a function U → V (of class C1). Such U × V
are an open covering of K. We take a finite subcovering W1, . . . ,W`, add
one more open set W0 = RN \K, and get a finite open covering of a closed
ball B that supports f . Lemma 3b10 gives ρ1, . . . , ρi ∈ C1(RN) such that
ρ1 + · · ·+ ρi = 1 on B and each ρj has a compact support within some Wm.
Taking into account linearity of integrals and gradients we reduce the claim
for f to the same claim for ρ1f, . . . , ρif . Thus, WLOG, we may assume that
f has a compact support either within RN \K or within some U × V .

If f has a compact support within RN \K then we extend f to K as 0
and get f ∈ C1(RN), ∇sng f = 0,

∫
RN\K ∇f =

∫
RN ∇f = 0 by (3b1).

It remains to consider f that has a compact support within some U × V ,
V = (a, b), such that M ∩ (U × V ) is the graph of some g ∈ C1(U), g : U →
(a, b). On one hand, taking into account that ∇f is integrable,∫

RN\K
〈h,∇f〉 =

∫
U×(a,b)\K

DNf =

=

∫
U

du1 . . . dun

(∫ g(u)

a

+

∫ b

g(u)

)
dt
∂

∂t
f(u1, . . . , un, t) =

=

∫
U

(
f(u, g(u)−)− f(u, g(u)+)

)
du .

On the other hand, using the side indicator

σ(u, t) =

{
−1 for t < g(u),

+1 for t > g(u)
for u ∈ U and t ∈ (a, b) ,

we have for u ∈ U and x = (u, g(u))

nx =
1√

1 + |∇g(u)|2
(
−(D1g)u, . . . ,−(Dng)u, 1

)
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(recall 3b4); thus,

〈h,nx〉 =
1√

1 + |∇g(u)|2
;

f(x− 0nx) = f
(
u, g(u)−

)
, f(x+ 0nx) = f

(
u, g(u)+

)
;

〈h,∇sng f(x)〉 =
f
(
u, g(u)+

)
− f

(
u, g(u)−

)√
1 + |∇g(u)|2

;

and finally, using 2c20,∫
M

〈h,∇sng f〉 =

∫
U

f
(
u, g(u)+

)
− f

(
u, g(u)−

)√
1 + |∇g(u)|2

√
1 + |∇g(u)|2 =

=

∫
U

(
f(u, g(u)+)− f(u, g(u)−)

)
du .

Proof of Theorem 3b8. Every point of M has a neighborhood U such that1

|〈nx,ny〉| ≥
1

2
for all x, y ∈M ∩ U

(since y 7→ ny is continuous near x). A partition of unity (used similarly to
the proof of 3b11) reduces the claim for f to the same claim for ρf where
ρ ∈ C1(RN) has a compact support either within RN \ K or within some
U . The former case is trivial (as before); consider the latter case: ρ has a
compact support within U . We introduce K̃ = K ∩U , extend ρf to RN \ K̃
as 0 on K \ K̃, and observe that K̃ and ρf satisfy the conditions of Theorem
3b8. Thus (renaming K̃ and ρf into K and f), WLOG,

|〈nx,ny〉| ≥
1

2
for all x, y ∈ K .

We choose x0 ∈ K and note that every h ∈ RN such that |h − nx0| < 1/2
satisfies the condition of Lemma 3b11, since

h ∈ TxM =⇒ 〈h,nx〉 = 0 =⇒ |〈nx0 ,nx〉| = |〈nx0−h,nx〉| <
1

2
=⇒ x /∈ K .

By 3b11, the vector
∫
RN\M ∇f +

∫
M
∇sng f is orthogonal to all these h, and

therefore, equal to zero.

1Any number of (0, 1) may be used instead of 1/2.
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Often f = uv where u, v both satisfy the conditions of Theorem 3b8.
Then ∇f = u∇v + v∇u (by the product rule), thus,

(3b12)

∫
RN\K

u∇v = −
∫
RN\K

v∇u−
∫
M

∇sng(uv) ;

this is a kind of multidimensional integration by parts. And, of course,

(3b13)

∫
RN

u∇v = −
∫
RN

v∇u

for u, v ∈ C1(RN) such that uv is compactly supported.
Often, a hypersurface M is a boundary ∂G = G \ G of an open set

G ⊂ RN . It may seem that in this case M must be orientable, with two sides
(globally), inner and outer; but this is generally wrong. A manifold M (not
just a hypersurface) is a boundary of some G if and only if M is a closed
set. Here is why. On one hand, ∂G is always closed. On the other hand,
given a closed M , we may take G = RN \M and get ∂G = M (even for
the non-orientable compact M of 2b13). Boundedness of G does not help; if
G = B \M where B ⊃ M is an open ball, then ∂G consists of M and the
sphere ∂B.

In fact, if a hypersurface is a closed set, then it is orientable;1 but even
in this case both sides may be inner for a given G (try G = RN \ M or
G = B \M again).

An open set G ⊂ RN is called regular, if (G)◦ = G; that is, the interior of
the closure of G is equal to G. (Generally it cannot be less than G, but can
be more than G; a simple example: G = R \ {0}.) Equivalently, G is regular
if (and only if) ∂G = ∂(RN \ G); that is, the boundary of the exterior of G
is equal to the boundary of G.

3b14 Definition. A bounded regular open set G ⊂ RN whose boundary ∂G
is a (necessarily compact) hypersurface (that is, n-manifold for n = N − 1)
will be called a smooth set.2

From now on (till the end of 3b), G ⊂ RN is a smooth set.
By 2d11(a), ∂G is of volume zero; thus, G is Jordan measurable. The

function

σ(x) =

{
−1 for x ∈ G,
+1 for x /∈ G

1See for instance “Orientability of hypersurfaces in Rn” by H. Samelson, Proc. Amer.
Math. Soc. 22:1 (1969) 301–302.

2Not a standard terminology.
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is a side indicator on the whole M . The corresponding outward unit normal
vector nx satisfies

x+ λnx ∈ G for small λ < 0 ,

x+ λnx /∈ G for small λ > 0 .

Let f ∈ C1(G), with ∇f bounded (on G). Then the function f̃ : RN \
M → R defined by

f̃(x) =

{
f(x) for x ∈ G,
0 for x /∈ G

is continuous up to M by Lemma 3b6. We extend f to G by continuity and
get

f̃(x− 0nx) = f(x) , f̃(x+ 0nx) = 0 ;

∇sng f̃(x) = −f(x)nx .

By Theorem 3b8 (applied to f̃ and K = M),

(3b15)

∫
G

∇f =

∫
M

fn .

In particular, for f(·) = 1,

(3b16)

∫
M

n = 0 ;

and for a linear function f : x 7→ 〈h, x〉,

(3b17)

∫
M

〈h, ·〉n = v(G)h for h ∈ RN .

Interestingly, (3b17) for N = 3 is basically Archimedes’ principle: the upward
buoyant force that is exerted on a body immersed in a fluid, is equal to
the weight of the fluid that the body displaces.1 Here is why. At a point
(x, y, z) ∈ R2 × (−∞, 0) ⊂ R3, the depth below the surface of water being
(−z), the hydrostatic pressure is ρg(−z), where ρ is the water density, and
g ≈ 9.8 m/s2 is the gravitational acceleration. Infinitesimally, the force per
unit area is ρg(−z)(−n(x,y,z)) = 〈h, (x, y, z)〉n(x,y,z) where h = ρg(0, 0, 1).
The total force is

∫
M
〈h, ·〉n = v(G)h = ρgv(G)(0, 0, 1), the weight of the

mass ρv(G) of the displaced water, directed upwards.

1Wikipedia:Archimedes’ principle.

http://en.wikipedia.org/wiki/Archimedes'_principle
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3c Curvilinear iterated integral

The iterated integral approach decomposes an integral over the plane into
integrals over parallel lines. It also decomposes an integral over 3-dimensional
space into integrals over parallel planes.1 We want to understand, whether
or not a 2-dimensional integral decomposes into integrals over curves ϕ(·) =
const; and what happens in dimension 3 (and more). Surprisingly, Theorem
3b8 helps to prove the following.

n=N−1
3c1 Theorem. Let G ⊂ RN be an open set, ϕ ∈ C1(G), ∀x ∈ G ∇ϕ(x) 6= 0,
and f ∈ C(G) compactly supported. Then for every c ∈ ϕ(G) the set
Mc = {x ∈ G : ϕ(x) = c} is an n-manifold in RN , the function c 7→

∫
Mc
f on

ϕ(G) is continuous and compactly supported, and∫
ϕ(G)

dc

∫
Mc

f =

∫
G

f |∇ϕ| .

3c2 Remark. The open sets G ⊂ RN and ϕ(G) ⊂ R need not be Jordan
measurable, but still, the integrals are well-defined, since f is supported by
some compact K ⊂ G, and the function c 7→

∫
Mc
f is supported by the

compact ϕ(K) ⊂ ϕ(G).

The new factor |∇ϕ| shows roughly, how many hypersurfaces Mc intersect
an infinitesimal neighborhood of a point.

The set Mc is an n-manifold, just because (G,ϕ(·) − c) is a co-chart of
the whole Mc. But continuity of the function c 7→

∫
Mc
f is a harder matter.

3c3 Remark. A function c 7→ v(Mc) need not be
continuous on ϕ(G). For a counterexample try G =
{(x, y) : y < g(x)} ⊂ R2 and ϕ(x, y) = y.

g

G

3c4 Lemma. The function c 7→
∫
Mc
f on ϕ(G) is continuous.

Proof. If x ∈ G satisfies (DNϕ)x 6= 0, then the mapping h : (x̃1, . . . , x̃N) 7→(
x̃1, . . . , x̃n, ϕ(x̃1, . . . , x̃N)

)
is a local diffeomorphism near x (recall the proof

of the implicit function theorem), and we may take open neighborhoods U of
x, V of (x1, . . . , xn) and W of ϕ(x) such that h is a diffeomorphism between
U and V ×W .

If (DNϕ)x = 0, we just use another coordinate in the same way.
Using a partition of unity (similarly to the proof of 3b11) we see that,

WLOG, f is supported by U such that h : U → V ×W is a diffeomorphism.

1Or alternatively, parallel lines. In this course we restrict ourselves to dimension n+1;
for dimension n+m see the “Coarea formula” in Encyclopedia of Math.

http://www.encyclopediaofmath.org/index.php/Coarea_formula
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Now, Mc∩U is the graph of the function gc defined by h−1(x1, . . . , xn, c) =(
x1, . . . , xn, gc(x1, . . . , xn)

)
. Using 2c20,∫

Mc

f =

∫
V

f
(
x1, . . . , xn, gc(x1, . . . , xn)

)√
1 + |∇gc(x1, . . . , xn)|2 dx1 . . . dxn .

The integrand is uniformly continuous on the relevant compact set, therefore
the integral is continuous.

3c5 Lemma. ∫
ϕ(G)

dc

∫
Mc

f

|∇ϕ|
∇ϕ =

∫
G

f∇ϕ

for G,ϕ, f and Mc as in Theorem 3c1.

Proof. Let K ⊂ G be a compact set that supports f . Clearly, ϕ is bounded
on K. WLOG, there exists C > 0 such that 0 < ϕ(·) < C on K (since we may
add a large constant to ϕ). WLOG, f ∈ C1(G), since it can be approximated
uniformly by functions of class C1 supported by a small neighborhood of K
(and the volume of the relevant part of Mc is bounded in c).

Given c ∈ (0, C) ∩ ϕ(G), we introduce Gc = {x ∈ G : ϕ(x) > c},
Kc = K ∩Mc (empty, if c /∈ ϕ(K)), and define fc : RN \Kc → R by

fc(x) =

{
f(x) if x ∈ Gc,

0 otherwise

for x ∈ RN \Kc. Clearly, fc is continuously differentiable (on RN \Kc), with
bounded gradient, and

∇fc(x) =

{
∇f(x) if x ∈ Gc,

0 otherwise

for x ∈ RN \Kc.
Using the side indicator

σ(x) =

{
−1 if ϕ(x) < c,

+1 if ϕ(x) > c

and the unit normal vector

nx =
1

|∇ϕ(x)|
∇ϕ(x) ,
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we see that fc is continuous up to Mc,

fc(x− 0nx) = 0 , fc(x+ 0nx) = f(x) ;

∇sng fc(x) = f(x)nx =
f(x)

|∇ϕ(x)|
∇ϕ(x) .

By Theorem 3b8, ∫
RN\Kc

∇fc +

∫
Mc

∇sng fc = 0 ,

that is, ∫
Gc

∇f +

∫
Mc

f

|∇ϕ|
∇ϕ = 0 .

Now we have to integrate it in c. We apply the iterated integral to the
function G × (0, C) → RN , (x, c) 7→ 1lGc(x)∇f(x), integrable since it is
discontinuous only on the set {

(
x, ϕ(x)

)
: x ∈ K} of volume zero; we get∫ C

0

dc

∫
Gc

dx∇f(x) =

∫
G

dx∇f(x)

∫ C

0

dc 1lGc(x)︸ ︷︷ ︸
ϕ(x)

=

∫
G

ϕ∇f .

By (3b13),
∫
G
ϕ∇f = −

∫
G
f∇ϕ. It remains to note that

∫
Gc
∇f = 0 for

c ∈ (0, C) \ ϕ(G), since in this case fc ∈ C1(G).

Proof of Theorem 3c1. Using a partition of unity (similarly to the proof of
3b11) we see that, WLOG, there exists h ∈ RN such that |h| = 1 and
Dhϕ > 0 on a compact K ⊂ G that supports f . Applying Lemma 3c5 to the
function f |∇ϕ|

〈h,∇ϕ〉 we get∫
ϕ(G)

dc

∫
Mc

f |∇ϕ|
〈h,∇ϕ〉

∇ϕ
|∇ϕ|

=

∫
G

f |∇ϕ|
〈h,∇ϕ〉

∇ϕ .

It remains to take the scalar product by h.

3c6 Exercise. Apply Theorem 3c1 to G = R2, ϕ(x, y) = y− sinx. Is it true
that

∫∫
f(x, y − sinx) dxdy =

∫∫
f(x, y) dxdy ?

3c7 Exercise. (a) Apply Theorem 3c1 to G = R2\{0}, ϕ(x) = |x|; compare
the result with integration in polar coordinates. Do they agree?

(b) The same for spherical coordinates.



Tel Aviv University, 2015/16 Analysis-IV 61

3c8 Exercise. (a)

∫ ∞
0

dr

∫
|·|=r

f =

∫
|·|>0

f

for all compactly supported f ∈ C(RN \ {0}).
(b) Generalize it (formulate accurately, and prove) for all integrable f on

RN .1

Taking f(x) = 1 for |x| < 1, otherwise 0, we get
∫ 1

0
v(Sr) dr = v(B1) =

2πN/2

NΓ(N/2)
(recall Sect. 0g), where Sr = {x : |x| = r} is a sphere, and B1 = {x :

|x| < 1} a ball. By 2d15, v(Sr) = rN−1v(S1). Thus, v(B1) =
∫ 1

0
rN−1v(S1) dr =

1
N
v(S1);

(3c9) v(S1) =
2πN/2

Γ(N/2)
.

3c10 Exercise. Find the (N − 1)-dimensional volume of the simplex M =
{x ∈ (0,∞)N : x1 + · · ·+ xN = 1} in RN . 2

3c11 Exercise. Integrate the function x 7→ xp11 . . . xpNN over the hypersurface
S+ = {x ∈ (0,∞)N : |x| = 1} (the positive part of the sphere) in RN for
p1, . . . , pN ∈ (−1,∞). 3

3c12 Exercise. Find

∫
Rn

dx

(1 + |x|2)p
for p ∈

(
n
2
,∞
)
. 4

3d Divergence: introduction

Here is a straightforward generalization of (3a2):

(3d1)

∫
Rn

Df = 0 if f ∈ C1(Rn → Rm) has a bounded support;

but this is rather trivial. Indeed, (Df)x may be thought of as a matrix whose
rows are gradients of the coordinate functions f1, . . . , fm ∈ C1(Rn) of f , and
(3d1) is just (3b1) applied rowwise. We cannot derive (3a3) from (3d1), since

1Hint: ϕ(x) = |x|.
2Answer:

√
N/(N −1)!. Hint: similar to (3c9); use the multidimensional beta integral

of Dirichlet (Sect. 0g) for p1 = · · · = pN = 1.

3Answer:
Γ(
p1+1

2 )...Γ(
pN+1

2 )

2N−1Γ(
p1+···+pN+N

2 )
. Hint:

∫
(0,∞)N

e−|x|
2

xp11 . . . xpNN dx.

4Answer: πn/2
Γ(p−n2 )

Γ(p) . Hint:
∫ π/2

0
cosα−1 θ sinβ−1 θ dθ = 1

2

Γ(α2 )Γ( β2 )

Γ(α+β
2 )

for α, β ∈ (0,∞).

Alternatively you can do it without manifolds, similarly to
∫
f(‖x‖) dx in Sect. 0g.
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the determinant is a nonlinear function of a matrix. A useful linear function
of a matrix is the trace. It follows from (3d1) (when m = n) that

(3d2)

∫
Rn

tr(Df) = 0 if f ∈ C1(Rn → Rn) has a bounded support.

Now the question is, what is tr(Df) good for?
Consider a one-parameter family of diffeomorphisms ϕt : Rn → Rn given

for t ∈ R; we assume that the mapping (x, t) 7→ ϕt(x) belongs to C2(Rn+1 →
Rn), and ϕ0(x) = x for all x ∈ Rn. Then (Dϕ0)0 = I and (Dϕt)0 =
I + tA + o(t) where A = d

dt

∣∣
t=0

(Dϕt)0; thus, det(Dϕt)0 = 1 + t trA + o(t)
for small t (recall Sect. 0f). If trA > 0, then det(Dϕt)0 > 1 for small t > 0,
which means that v

(
ϕt(U)

)
> v(U) for a small enough neighborhood U of 0

in Rn. Moreover, v
(
ϕt(U)

)
≈ (1 + t trA)v(U).

In mechanics, a flowing matter may be described this way; every point x
flows to another point ϕt(x) during the time interval (0, t). A small drop of
the flowing matter inflates if trA > 0 and deflates if trA < 0. The rate of
this inflation/deflation is trA.

The vector F (x) = d
dt

∣∣
t=0
ϕt(x) is the velocity of the flow at a point x and

the instant 0. This mapping F : Rn → Rn is called the velocity field of the
flow. We have

A =
d

dt

∣∣∣
t=0

(Dϕt)0 =
(
D
( d

dt

∣∣∣
t=0
ϕt

))
0

= (DF )0 ,

thus, the inflation/deflation rate at the origin is trA = tr(DF )0, and simi-
larly, at a point x it is tr(DF )x.

The velocity field is a vector field. The word “field” in “vector field” is
not related to the algebraic notion of a field. Rather, it is related to the
physical notion of a force field (gravitational, for example), or the velocity
field of a moving matter (usually liquid or gas). Mathematically, a vector
field formally is just a mapping Rn → Rn; less formally, a vector is attached
to each point.

Note that the determinant is well-defined in a (finite-dimensional) vector
space; metric is irrelevant. The same holds for the trace.

3d3 Definition. The divergence of a mapping (“vector field”) F ∈ C1(Rn →
Rn) is the function (“scalar field”) divF ∈ C(Rn),

divF = tr(DF ) .

That is, for F (x) =
(
F1(x), . . . , Fn(x)

)
we have

divF = D1F1 + · · ·+DnFn = (∇F1)1 + · · ·+ (∇Fn)n ;

divF (x1, . . . , xn) =
∂

∂x1

F1(x1, . . . , xn) + · · ·+ ∂

∂xn
Fn(x1, . . . , xn) .
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Once again: if F is a velocity field, then divF is the inflation/deflation rate.
For a vector field F ∈ C1(V → V ) on an n-dimensional vector space V ,

still, divF = tr(DF ); here (DF )x : V → V .
By (3d2),

(3d4)

∫
Rn

divF = 0 if F has a bounded support.

Similarly to the singular gradient (treated in Sect. 3b), we want to intro-
duce singular divergence; and then, similarly to Theorem 3b8, we want to
generalize (3d4) to a vector field continuous up to a surface.

3e Integrating the divergence
n=N−1

Similarly to Sect. 3b we consider a hypersurface, that is, an n-dimensional
manifold M in RN , N = n + 1. Similarly to 3b3, for a vector field F :
RN \M → RN we define the notion “continuous up to M”. Clearly, F =
(F1, . . . , FN) is continuous up to M if and only if F1, . . . , FN are continuous
up to M (as defined by 3b3). The one-sided limits F−, F+ are now vector-
valued, and the jump F+(x0)−F−(x0) is a vector; its sign depends on the side
indicator. Recall the unit normal vector nx ∈ RN ; its sign also depends on
the side indicator. Here is a definition similar to 3b5. As before, we denote
F (x− 0nx) = F−(x) and F (x+ 0nx) = F+(x).

3e1 Definition. The singular divergence1 divsng F (x) at x ∈M of a mapping
F : RN \M → RN continuous up to M is the number

divsng F (x) = 〈F (x+ 0nx)− F (x− 0nx),nx〉 .

As before, the singular divergence does not depend on the side indicator
(and nx). It is a continuous function divsng F : M → R.

Less formally, the singular divergence is the jump of the normal compo-
nent of the vector field.

Here is the singular counterpart of the formula

divF =
∑
k

(∇Fk)k .

3e2 Lemma.

divsng F =
N∑
k=1

(
∇sng Fk)k .

1Not a standard terminology.
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Proof.∑
k

(
∇sng Fk(x))k =

∑
k

((
Fk(x+ 0nx)− Fk(x− 0nx)

)
nx
)
k =

=
∑
k

(
F (x+ 0nx)− F (x− 0nx)

)
k(nx)k =

= 〈F (x+ 0nx)− F (x− 0nx),nx〉 = divsng F (x) .

A theorem, similar to 3b8, follows easily.
n=N−1

3e3 Theorem. Let M ⊂ RN be an n-manifold, K ⊂ M a compact subset,
and F : RN \K → RN a continuously differentiable mapping with a bounded
support and bounded derivative (on RN \K). Then∫

RN\K
divF +

∫
M

divsng f = 0 .

Proof. We have F (x) =
(
F1(x), . . . , FN(x)

)
, and Theorem 3b8 applies to

each Fk, giving ∫
RN\K

∇Fk +

∫
M

∇sng Fk = 0 .

It remains to take the k-th coordinate, and sum up over k.
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