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5 Pushforward, pullback,

and change of variables
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Change of variables need not be one-to-one, which is surprisingly useful
for the integral of Jacobian, divergence, and even topology.

5a Pushforward and pullback: introduction

5a1 Definition. (a) Let M ⊂ RN be a manifold (of some dimension n).
A mapping ϕ : M → RN2 , ϕ(x) =

(
ϕ1(x), . . . , ϕN2(x)

)
, is continuously

differentiable, in symbols ϕ ∈ C1(M → RN2), if ϕ1, . . . , ϕN2 ∈ C1(M).1

(b) Let M1 ⊂ RN1 , M2 ⊂ RN2 be manifolds (of some dimensions n1, n2).
A mapping ϕ : M1 → M2 is continuously differentiable, in symbols ϕ ∈
C1(M1 → M2), if ϕ is continuously differentiable as a mapping M1 → RN2 .
If, in addition, ϕ is invertible and ϕ−1 ∈ C1(M2 → M1), then ϕ is a diffeo-
morphism M1 →M2. 2

5a2 Exercise. If (G,ψ) is a chart of an n-dimensional manifold M ⊂ RN ,
then ψ is a diffeomorphism between the n-dimensional manifold G ⊂ Rn and
the n-dimensional manifold ψ(G) ⊂M ⊂ RN .

Prove it.3

5a3 Exercise. Let U, V ⊂ RN be open sets, ϕ : U → V a diffeomorphism,
and M ⊂ U a manifold. Then the set ϕ(M) ⊂ V is a manifold, and ϕ|M :
M → ϕ(M) is a diffeomorphism.

Prove it.

The set C1(M) is an algebra (recall 2b11); the set C1(M → RN2) is a
vector space; C1(M1 →M2) is not.

1Recall 2b10.
2If a diffeomorphism exists, M1 and M2 are called diffeomorphic. The condition n1 =

n2 is necessary and not sufficient.
3Hint: recall 2a9, 2b11.
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5a4 Exercise. If ϕ ∈ C1(M1 → M2) and ψ ∈ C1(M2 → M3), then ψ ◦ ϕ ∈
C1(M1 →M3).

Prove it.1

We’ll see soon that some mathematical objects related to M1 may be
transferred to M2 via a given ϕ ∈ C1(M1 → M2); this is “pushforward”,
denoted by ϕ∗. Some objects may be transferred from M2 to M1; this is
“pullback”, denoted by ϕ∗. Sometimes ϕ is required to be of class C2. And
some objects may be transferred by diffeomorphisms only (in both directions,
since ϕ−1 is also a diffeomorphism). Remarkably, the following universal
relations hold in all cases:

(5a5) (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗, (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ .

Points: pushforward. A point x ∈ M1 leads to the point ϕ(x) ∈ M2.
That is, ϕ∗(x) = ϕ(x) for x ∈ M1. But a point y ∈ M2 does not lead to a
point of M1 (unless ϕ is invertible); the inverse image {x : ϕ(x) = y} may
contain more than one point, and may be empty.

Functions: pullback. A function f ∈ C1(M2) leads to the function
f ◦ ϕ ∈ C1(M1). That is, ϕ∗(f) = f ◦ ϕ for f ∈ C1(M2). But a function
f ∈ C1(M1) does not lead to a function on M2 (unless ϕ is invertible).

Note that ϕ∗ is linear on C1(M2). A preserved relation:

f
(
ϕ∗(x)

)
=
(
ϕ∗(f)

)
(x)

for x∈M1 ,f∈C1(M2) .

x1
ϕ∗7−→ x2, f1

ϕ∗←−[ f2

f1(x1) = f2(x2)

Paths: pushforward. A path γ ∈ C1([t0, t1] → M1) leads to the path
ϕ ◦ γ ∈ C1([t0, t1]→M2). That is, ϕ∗(γ) = ϕ ◦ γ.

A preserved relation:(
ϕ∗(γ)

)
(t) = ϕ∗

(
γ(t)

)
for t∈[t0,t1], γ∈C1([t0,t1]→M1) .

γ1
ϕ∗7−→ γ2, x1

ϕ∗7−→ x2

γ1(t) = x1 =⇒ γ2(t) = x2

Universal relations (5a5) hold evidently in the three cases treated above.

Tangent vectors: pushforward. It is easy to guess that a vector
h ∈ Tx1M1 leads to the vector ϕ∗(h) ∈ Tx2M2 where x2 = ϕ(x1), and a
preserved relation holds:

ϕ∗
(
γ′(t)

)
=
(
ϕ∗(γ)

)′(t)
for t∈[a,b], γ∈C1([a,b]→M1) .

γ1
ϕ∗7−→ γ2, h1

ϕ∗7−→ h2

γ′1(t) = h1 =⇒ γ′2(t) = h2

1Hint: M2 is locally a graph.
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But note that the chain rule (from Analysis-3) does not apply to ϕ ◦ γ, since
ϕ is defined on M1, and M1 is not open (unless n1 = N1), thus, Dϕ is
undefined. Note also that the notation ϕ∗(h) ∈ Tx2M2 is flawed; rather, it
should be ϕ∗(x1, h1) = (x2, h2), where x2 = ϕ(x1) and h2 ∈ Tx2M2.

5a6 Definition. The tangent bundle TM of an n-manifold M ⊂ RN is the
set

TM = {(x, h) : x ∈M, h ∈ TxM} ⊂ R2N .

5a7 Example. Let M = {
(
t, f(t)

)
: t ∈ R} be the graph of a function

f ∈ C1(R); then (recall 2b20)

TM = {
(
t, f(t), λ, λf ′(t)

)
: t, λ ∈ R} ⊂ R4 .

If in addition f ∈ C2(R), then TM is a 2-manifold covered by a single chart
R2 3 (t, λ) 7→

(
t, f(t), λ, λf ′(t)

)
. Otherwise this mapping is a homeomor-

phism (think, why) but not a diffeomorphism.

5a8 Exercise. If (G,ψ) is a chart of M , then the mapping

(u, v) 7→
(
ψ(u), (Dψ)uv

)
is a homeomorphism from G× Rn onto a relatively open subset of TM .

Prove it.1

5a9 Lemma. Let M1 ⊂ RN1 , M2 ⊂ RN2 be manifolds (of some dimensions
n1, n2), and ϕ ∈ C1(M1 →M2). Then there exists one and only one mapping
Dϕ ∈ C(TM1 → TM2) such that(

(ϕ ◦ γ)(t), (ϕ ◦ γ)′(t)
)

= (Dϕ)
(
γ(t), γ′(t)

)
whenever γ ∈ C1([t0, t1]→M1) is a path, and t ∈ [t0, t1].

Proof. Given x1 ∈ M1, we consider a chart (G,ψ) of M1 around x1, and
the corresponding C1 mapping (not just chart) ξ = ϕ ◦ ψ : G → M2. Let
γ1 be a path in M1 such that γ1(0) = x1, and γ2 = ϕ ◦ γ1 the corresponding
path in M2; clearly, γ2(0) = x2 = ϕ(x1). Assuming that γ1 does not escape
ψ(G) (otherwise restrict γ1 to a smaller interval of t) we introduce the path
β = ψ−1 ◦ γ1 in G and note that γ1 = ψ ◦ β, γ2 = ξ ◦ β (since γ2 =
ϕ ◦ γ1 = ϕ ◦ ψ ◦ β = ξ ◦ β). It follows that γ′1(0) = (Dψ)β(0)β

′(0) and
γ′2(0) = (Dξ)β(0)β

′(0), therefore

γ′2(0) = (Dξ)β(0) (Dψ)β(0)

)−1γ′1(0) .

1Hint: |(Dψ)u2
h2 − (Dψ)u1

h1| ≥ |(Dψ)u2
(h2 − h1)| − ‖(Dψ)u2

− (Dψ)u1
‖ · |h1|, and

|(Dψ)u2(h2 − h1)| ≥ |h1 − h2|/‖
(
(Dψ)u2

)−1‖.
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Uniqueness of Dϕ follows: it must be

(5a10) (Dϕ)(x1, h1) = (x2, h2)

where x2 = ϕ(x1) and h2 = (Dξ)ψ−1(x1)

(
(Dψ)ψ−1(x1)

)−1h1 ,

since for every h1 ∈ Tx1M1 there exists a path γ1 in M1 such that γ1(0) = x1

and γ′1(0) = h1 (recall 2b19 and try a linear path β).
Locally, existence of Dϕ is ensured by (5a10); continuity follows via 5a8

from continuity of the mapping (u, v) 7→
(
ξ(u), (Dξ)uv

)
. For two charts, the

corresponding local mappings agree on the intersection (by the uniqueness).
Glued together, these local mappings give Dϕ.

It is tempting to say that ϕ = ξ◦ψ−1 and therefore Dϕ = (Dξ)◦(D(ψ−1)).
Really, it is; but this fact does not follow from the chain rule (of Analysis-3).

It is convenient to write h2 = (Dϕ)xh1 or h2 = (Dh1ϕ)x instead of
(ϕ(x), h2) = (Dϕ)(x, h1).

Note that the mapping (Dϕ)x : TxM1 → Tϕ(x)M2 is linear.
So, ϕ∗ = Dϕ on TM ; ϕ∗(x, h) = (Dϕ)(x, h) =

(
ϕ(x), (Dϕ)xh

)
. The

relevant universal relation (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ (recall (5a5)) holds for tan-
gent bundles, which follows from the corresponding relation for paths (think,
why). It means that

(5a11) D(ψ ◦ ϕ)xh = (Dψ)ϕ(x)(Dϕ)xh ,

the chain rule of Analysis-4!
Every f ∈ C1(M) may be treated as a C1 mapping from M to the

1-dimensional manifold R; in this case (Df)x : TxM → R, thus, Df is a
1-form on M .

Differential 1-forms: pullback. A 1-form ω on M2 leads to the
1-form ϕ∗(ω) on M1 defined by(

ϕ∗(ω)
)
(x, h) = ω

(
ϕ∗(x), ϕ∗(h)

)
= ω

(
ϕ(x), (Dϕ)xh

)
.

In order to get ϕ∗(ω) ∈ C1 one needs not only ω ∈ C1 but also ϕ ∈ C2.
Note that ϕ∗ is linear on the vector space of 1-forms on M2.
Preserved relations:

ϕ∗(fω) = ϕ∗(f)ϕ∗(ω)

for f∈C(M2) and 1-form ω on M2 .

f1
ϕ∗←−[ f2, ω1

ϕ∗←−[ ω2

f1ω1
ϕ∗←−[ f2ω2

(5a12)

D(ϕ∗f) = ϕ∗(Df)

for f∈C1(M2) .

f1
ϕ∗←−[ f2, ω1

ϕ∗←−[ ω2

Df2 = ω2 =⇒ Df1 = ω1

(5a13)
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Relation (5a12) follows immediately from the definition of ϕ∗(ω). Relation
(5a13) follows from the chain rule (5a11):

(
D(ϕ∗f)

)
(x, h) = D(f ◦ ϕ)xh =

(Df)ϕ(x)(Dϕ)xh =
(
ϕ∗(Df)

)
(x, h).

Treating a path γ in M as a C1 mapping from the 1-dimensional manifold
(t0, t1) ⊂ R to M , we introduce the 1-form γ∗(ω) on (t0, t1) and observe
that γ∗(ω) is equal to the volume form on (t0, t1) multiplied by the function
t 7→ ω

(
γ(t), γ′(t)

)
, whence∫

(t0,t1)

γ∗(ω) =

∫ t1

t0

ω
(
γ(t), γ′(t)

)
dt .

We see that a pullback lurks in the definition (1c10) of
∫
γ
ω:

(5a14)

∫
γ

ω =

∫
(t0,t1)

γ∗(ω) .

We get another preserved relation:

(5a15)

∫
γ

ϕ∗(ω) =

∫
ϕ∗(γ)

ω
γ1

ϕ∗7−→ γ2, ω1
ϕ∗←−[ ω2∫

γ1
ω1 =

∫
γ2
ω2

whenever γ is a path in M1, ω is a 1-form on M2, and ϕ ∈ C1(M1 → M2).
Proof: by (5a14),

∫
γ
ϕ∗(ω) =

∫
(t0,t1)

γ∗(ϕ∗(ω)); and, using (5a5),∫
ϕ∗(γ)

ω =

∫
ϕ◦γ

ω =

∫
(t0,t1)

(ϕ ◦ γ)∗(ω) =

∫
(t0,t1)

γ∗(ϕ∗(ω)) .

Singular boxes: pushforward. Similarly to paths, ϕ∗(Γ) = ϕ ◦ Γ for a
singular box Γ : B →M1.

Differential n-forms: pullback. Similarly to 1-forms,(
ϕ∗(ω)

)
(x, h1, . . . , hn) = ω

(
ϕ∗(x), ϕ∗(h1), . . . , ϕ∗(hn)

)
=

= ω
(
ϕ(x), (Dϕ)xh1, . . . , (Dϕ)xhn

)
.

In order to get ϕ∗(ω) ∈ C1 one needs not only ω ∈ C1 but also ϕ ∈ C2.
Note that ϕ∗ is linear on the vector space of n-forms on M2.
A preserved relation: similarly to (5a12),

(5a16)
ϕ∗(fω) = ϕ∗(f)ϕ∗(ω)

for f∈C(M2) and n-form ω on M2 .

f1
ϕ∗←−[ f2, ω1

ϕ∗←−[ ω2

f1ω1
ϕ∗←−[ f2ω2
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Similarly to (5a14), now (1e12) becomes (think, why)

(5a17)

∫
Γ

ω =

∫
B◦

Γ∗(ω) .

A preserved relation: similarly to (5a15),

(5a18)

∫
Γ

ϕ∗(ω) =

∫
ϕ∗(Γ)

ω
Γ1

ϕ∗7−→ Γ2, ω1
ϕ∗←−[ ω2∫

Γ1
ω1 =

∫
Γ2
ω2

whenever Γ is a singular n-box in M1, ω is an n-form on M2, and ϕ ∈
C1(M1 →M2).

Also, if ϕ : M1 →M2 is an orientation preserving diffeomorphism between
oriented n-dimensional manifolds (M1,O1), (M2,O2), and ω is an n-form on
M2, then we have another preserved relation: ϕ∗ω is integrable if and only if
ω is integrable, and in this case

(5a19)

∫
(M1,O1)

ϕ∗ω =

∫
(M2,O2)

ω .
M1 ↔M2, ω1 ↔ ω2∫

M1
ω1 =

∫
M2
ω2

5a20 Exercise. Prove (5a19)
(a) for a single-chart ω;
(b) for a compactly supported ω;
(c) in general.1

What do you think about the relation
∫
M1
ϕ∗f =

∫
M2
f for compactly

supported f ∈ C(M2)?

Vector fields: this is another story; see Sect. 5b.

When ϕ : M1 → M2 is a diffeomorphism, it is convenient to define both
pushforward and pullback in all cases; namely, when pushforward is already
defined, we define pullback by ϕ∗ = (ϕ−1)∗; and when pullback is already
defined, we define pushforward by ϕ∗ = (ϕ−1)∗. Two more relations (ϕ∗)

−1 =
ϕ∗, (ϕ∗)−1 = ϕ∗ follow from (5a5) and the universal relations (id)∗ = id,
(id)∗ = id that hold evidently in all cases. Here is how they follow: ϕ−1 ◦ϕ =
id = ϕ◦ϕ−1, therefore (ϕ−1)∗◦ϕ∗ = id = ϕ∗◦(ϕ−1)∗, that is, (ϕ∗)

−1 = (ϕ−1)∗.
Similarly, (ϕ∗)−1 = (ϕ−1)∗.

For example: a path γ1 in M1 leads to the path γ2 = ϕ∗(γ1) = ϕ◦γ1 in M2;
and a path γ2 in M2 leads to the path γ1 = ϕ∗(γ2) = (ϕ−1)∗(γ2) = ϕ−1 ◦ γ2

in M1; and ϕ∗
(
ϕ∗(γ1)

)
= ϕ−1 ◦ (ϕ ◦ γ1) = (ϕ−1 ◦ ϕ) ◦ γ1 = γ1.

We’ll often write ϕ∗f , ϕ∗h, ϕ∗ω etc. instead of ϕ∗(f), ϕ∗(h), ϕ∗(ω) etc.

1Hints: (a) similar to (5a17), use (2c2); (b) recall (2d4); (c) recall the paragraph before
2d7.
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5b Vector fields: three facets of one notion

By a vector field on a manifold M ⊂ RN one means (by default) a tangent
vector field, that is, a mapping F : M → RN such that

∀x ∈M F (x) ∈ TxM .

. . . . . . . . . . . . . . . . . . . . . . . . Facet 1: velocity field . . . . . . . . . . . . . . . . . . . . . . . .

Given two n-manifolds M1 ⊂ RN1 , M2 ⊂ RN2 , a diffeomorphism ϕ :
M1 →M2, and a vector field F of class C0 on M1, one may define the vector
field ϕ∗F of class C0 on M2 by

(5b1) (ϕ∗F )(y) = ϕ∗
(
F (ϕ∗(y))

)
= ϕ∗

(
F (ϕ−1(y))

)
=

= (Dϕ)ϕ−1(y)

(
F (ϕ−1(y))

)
= (Dϕ)x

(
F (x)

)
where x = ϕ−1(y)

for y ∈M2.

5b2 Exercise. If a path γ1 in M1 conforms to a vector field F1 on M1 in the
sense that

∀t ∈ [t0, t1] γ′1(t) = F1

(
γ(t)

)
,

then the path γ2 = ϕ∗(γ1) in M2 conforms (in the same sense) to the vector
field F2 = ϕ∗(F1) on M2.

Prove it.

We see that the transfer (5b1) is appropriate when vector fields are in-
terpreted as velocity fields.

5b3 Exercise (polar coordinates). Let M1 = (0,∞) × (−π, π), M2 = R2 \
(−∞, 0] × {0} (treated as 2-dimensional manifolds in R2), ϕ : M1 → M2,
ϕ
(
r
θ

)
=
(
r cos θ
r sin θ

)
. Then the relation F2 = ϕ∗F1 (or equivalently F1 = ϕ∗F2)

between vector fields F1 on M1 and F2 on M2 becomes

F1

(
r
θ

)
=

(
cos θ sin θ
−1
r

sin θ 1
r

cos θ

)
F2

(
r cos θ
r sin θ

)
.

Prove it.

In particular, a radial vector field F2

(
x
y

)
= g
(√

x2 + y2
)(

x
y

)
corresponds

to F1

(
r
θ

)
=
(
rg(r)

0

)
. Taking g(r) = 1/r2 we have divF2 = 0 (recall (4a7)),

and F1

(
r
θ

)
=
(

1/r
0

)
, divF1 6= 0.

If puzzled, recall the footnote on page 66: divergence 0 means preservation
of volume, not mass. The diffeomorphism ϕ does not preserve the area (the
2-dimensional volume).
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In contrast to numerous good news in Sect. 5a, now we face bad news:
the relation divF = f is not equivalent to div(ϕ∗F ) = ϕ∗f . Also, the flux of
F through a boundary is not preserved by diffeomorphisms.

Vector fields are nice to visualize, but not nice to transform.

. . . . . . . . . . . . . . Facet 2: gradient; visualization of 1-forms . . . . . . . . . . . . . .

Recall the gradient ∇f ∈ C0(U → Rn) of a function f ∈ C1(U) on an
open set U ⊂ Rn; ∇f is a vector field, generally not interpreted as a velocity
field. It is related to the 1-form Df : (x, h) 7→ (Df)xh by Df(x, h) =
〈∇f(x), h〉. More generally, every 1-form ω on U corresponds to a vector
field F on U such that ω(x, h) = 〈F (x), h〉.

What about the gradient of a function f ∈ C1(M) on an n-dimensional
manifold M ⊂ RN? We may define it by (f ◦ γ)′(t) = 〈∇f(γ(t)), γ′(t)〉 for
all paths γ in M and all t ∈ [t0, t1] and prove existence and uniqueness. But
we already have the 1-form Df on M . We may define ∇f by Df(x, h) =
〈∇f(x), h〉 for all x ∈ M , h ∈ TxM . For each x the vector ∇f(x) ∈ TxM
is thus well-defined, but is it continuous in x? And can we express it via a
chart? Yes; in fact,

(5b4) ∇f
(
ψ(u)

)
= (Dψ)u

(
(Dψ)t

u(Dψ)u
)−1∇(f ◦ ψ)(u) ;

here (Dψ)t
u(Dψ)u is the matrix

(
〈(Diψ)u, (Djψ)u〉

)
i,j seen before (in Sect. 2c;

the root from its determinant was denoted by Jψ(u)). The same approach
may be used for representing a given 1-form ω by a vector field F such that
ω(x, h) = 〈F (x), h〉.

5b5 Exercise (polar coordinates). Let M1,M2 and ϕ be as in 5b3.
(a) Prove, without using (5b4), that ∇(f ◦ϕ) =

(
cos θ sin θ
−r sin θ r cos θ

)(
(∇f) ◦ϕ

)
for all f ∈ C1(M2);

(b) check that (Dψ)t(Dψ) =
(

1 0
0 r2

)
. Does (5b4) hold in this case (for

ψ = ϕ)?

Denoting F1 = ∇(f◦ϕ), F2 = ∇f we have F1

(
r
θ

)
=
(

cos θ sin θ
−r sin θ r cos θ

)
F2

(
r cos θ
r sin θ

)
,

which is not the same as 5b3 (but for radial vector fields they are the same).
We see that the transfer (5b1) is inappropriate when vector fields are

interpreted as gradients (or, more generally, visualize 1-forms).

. . . . . . . . . . . . . Facet 3: visualization of (n− 1)-forms; flux . . . . . . . . . . . . .

Recall the linear one-to-one correspondence (4e6) between (N − 1)-forms
on RN and (continuous) vector fields on RN . More generally, we may in-
troduce a linear one-to-one correspondence between (n − 1)-forms ω on an
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n-dimensional oriented manifold (M,O) in RN and (tangent, continuous)
vector fields F on M by

ω(x, h1, . . . , hn−1) = µ(x, F (x), h1, . . . , hn−1)

whenever h1, . . . , hn−1 ∈ TxM ; here µ is the volume form on (M,O). But for
now we remain in the framework of (4e6); n = N − 1.

Recall also the adjugate matrix (Sect. 0f).
n=N−1

5b6 Lemma. Let U1, U2 ⊂ RN be open sets; ϕ ∈ C1(U1 → U2); and F1 ∈
C(U1 → RN), F2 ∈ C(U2 → RN) the vector fields that correspond to n-forms
ω1, ω2 such that ω1 = ϕ∗ω2. Then F1 = (adjDϕ)(F2 ◦ ϕ), that is,

F1(x) = adj(Dϕ)xF2(ϕ(x)) for all x ∈ U1 .
ω1
oo ϕ
∗ �

OO

��

ω2OO

��
F1
oo ϕ
∗ � F2

Proof. Denote for convenience A = (Dϕ)x, B = adjA, v1 = F1(x), v2 =
F2(ϕ(x)); we have to prove that v1 = Bv2.

The relation ω1 = ϕ∗ω2 at x, in terms of v1, v2, becomes

∀h1, . . . , hn ∈ RN det(v1, h1, . . . , hn) = det(v2, Ah1, . . . , Ahn) .

It is sufficient to prove that det(v1, h1, . . . , hn) = det(Bv2, h1, . . . , hn), that
is,

det(v2, Ah1, . . . , Ahn) = det(Bv2, h1, . . . , hn) ,

just an algebraic equality.
For fixed v1, v2 and h1, . . . , hn we treat both sides as functions of a matrix

A. These functions being continuous (and moreover, polynomial, of degree
≤ n), we may restrict ourselves to invertible matrices A. Introducing h0 =
A−1v2 we have

det(v2, Ah1, . . . , Ahn) = det(Ah0, Ah1, . . . , Ahn) =

= (detA) det(h0, h1, . . . , hn) ,

since the product of A by the matrix with the columns h0, . . . , hn is the
matrix with the columns Ah0, . . . , Ahn (think, why). Finally, (detA)h0 =
(detA)A−1v2 = Bv2.

Still another transfer (different from 5b3 and 5b5 even for radial vector
fields, see the next exercise).
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5b7 Exercise (polar coordinates). Let M1,M2 and ϕ be as in 5b3, 5b5.
Check that

F1

(
r
θ

)
=

(
r cos θ r sin θ
− sin θ cos θ

)
F2

(
r cos θ
r sin θ

)
.

5b8 Exercise (rotation). Let ϕ = L : RN → RN be a linear transformation
such that ∀x ∈ RN |Lx| = |x|, and detL = +1. Then the relation F1 =
(adjDϕ)(F2 ◦ ϕ) becomes

F1 = L−1 ◦ F2 ◦ L .

Prove it.

5b9 Proposition. For the constant vector field F2(x) = (1, 0, . . . , 0) and
arbitrary mapping ϕ : x 7→

(
ϕ1(x), . . . , ϕN(x)

)
of class C1, the corresponding

vector field F1 = (adjDϕ)(F2 ◦ ϕ) is ∇ϕ2 × · · · × ∇ϕN ; that is,

F1(x) = ∇ϕ2(x)× · · · × ∇ϕN(x) .

5b10 Lemma. For every N × N matrix A, the first column of the matrix
adjA is a2 × · · · × aN where a1, . . . , aN ∈ RN are the rows of A. 1

Proof. Denote the first column of the matrix adjA by b1. By the Laplace
expansion (recall Sect. 0f), 〈a1, b1〉 = detA. On the other hand, 〈a1, a2 ×
· · · × aN〉 = detA. Also, b1 does not depend on a1 (mind the minors). Thus,
〈a1, b1〉 = 〈a1, a2 × · · · × aN〉 for all a1, which implies b1 = a2 × · · · × aN .

Proof of Prop. 5b9. The rows of the matrixA = (Dϕ)x are∇ϕ1(x), . . . ,∇ϕN(x).
The vector (adjA)(1, 0, . . . , 0) is the first column of adjA; by Lemma 5b10
it is ∇ϕ2 × · · · × ∇ϕN .

5b11 Corollary (of 5b9). For the vector field F2(x1, . . . , xN) = (x1, 0, . . . , 0)
and arbitrary mapping ϕ : x 7→

(
ϕ1(x), . . . , ϕN(x)

)
of class C1, the corre-

sponding vector field F1 = (adjDϕ)(F2 ◦ ϕ) is ϕ1∇ϕ2 × · · · × ∇ϕN ; that
is,

F1(x) = ϕ1(x)∇ϕ2(x)× · · · × ∇ϕN(x) .

5b12 Corollary (of 5b6, 5a19 and 5a3). Let U1, U2 ⊂ RN be open sets,
ϕ : U1 → U2 a diffeomorphism, detDϕ > 0, F2 a continuous vector field on
U2, and V2 a smooth set such that V 2 ⊂ U2. Then V1 = ϕ−1(V2) is a smooth
set such that V 1 ⊂ U1, F1 : x 7→ adj(Dϕ)xF2(ϕ(x)) is a continuous vector
field on U1, and ∫

∂V1

〈F1,n1〉 =

∫
∂V2

〈F2,n2〉 .

1Similarly, the i-th column of adjA is (−1)i−1a1 × · · · × ai−1 × ai+1 × · · · × aN .
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5b13 Remark. But if detDϕ < 0, then
∫
∂V1
〈F1,n1〉 = −

∫
∂V2
〈F2,n2〉; think,

why. In general, U1 decomposes in two disjoint open sets. . .

5b14 Remark. Keeping in mind possible applications to the piecewise smooth
case, consider a bounded regular open (not necessarily smooth) set V2 such
that V 2 ⊂ U2, and a closed set Z2 ⊂ ∂V2 such that ∂V2 \Z2 is an n-manifold
of finite n-dimensional volume. Then V1 = ϕ−1(V2) is a bounded regular
open set such that V 1 ⊂ U1, Z1 = ϕ−1(Z2) ⊂ ∂V1 is a closed set such that
∂V1 \ Z1 = ϕ−1(∂V2 \ Z2) is an n-manifold of finite n-dimensional volume,
and ∫

∂V1\Z1

〈F1,n1〉 =

∫
∂V2\Z2

〈F2,n2〉

for every continuous vector field F2 on U2; here F1 = (adjDϕ)(F2 ◦ ϕ). This
is similar to 5b12.

5b15 Example. Find the flux of the radial vector field F (x) = x, x ∈ R2,
through the cardioid (x2 + y2 − 2x)2 = 4(x2 + y2).

We turn to polar coordinates.
The curve: (r2 − 2r cos θ)2 = 4r2; r2 − 2r cos θ = ±2r; r = 2(±1 + cos θ);

r = 2(1 + cos θ) for −π < θ < π.
The vector field: F1

(
r
θ

)
=
(
r cos θ r sin θ
− sin θ cos θ

)(
r cos θ
r sin θ

)
=
(
r2
0

)
.

The flux, via (4e6):
∫ π
−π det

(
F1

(
r(θ)
θ

)
,
(
r′(θ)

1

))
dθ =

∫ π
−π

∣∣ r2(θ) r′(θ)
0 1

∣∣ dθ =∫ π
−π 4(1 + cos θ)2 dθ = 12π.

Here is an important preserved relation, in two versions.

5b16 Corollary (of 5b12 and Sect. 0c). Let U1, U2 ⊂ RN be open sets,
ϕ : U1 → U2 a diffeomorphism, F2 a continuous vector field on U2, and
f2 ∈ C(U2). If∫

V2

f2 =

∫
∂V2

〈F2,n2〉 for all smooth sets V2 such that V 2 ⊂ U2 ,

then ∫
V1

f1 =

∫
∂V1

〈F1,n1〉 for all smooth sets V1 such that V 1 ⊂ U1 ,

where F1 = (adjDϕ)(F2 ◦ ϕ) and f1 = (detDϕ)(f2 ◦ ϕ).

5b17 Remark. No need to require detDϕ > 0, since the negative detDϕ
leads to −

∫
V1
f1 = −

∫
∂V1
〈F1,n1〉.
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5b18 Corollary (of 5b16 and 4a3). Let U1, U2, ϕ, F1, F2, f1, f2 be as in 5b16,
and in addition, ϕ ∈ C2, F2 ∈ C1; then also F1 ∈ C1, and

f1 = divF1 if and only if f2 = divF2 .
F1↔F2, f1↔f2

divF1=f1 ⇐⇒ divF2=f2

5b19 Exercise. Let U1, U2, ϕ be as in 5b18, ϕ : x 7→
(
ϕ1(x), . . . , ϕN(x)

)
.

Then
(a) div

(
∇ϕ2 × · · · × ∇ϕN

)
= 0;

(b) div
(
ϕ1∇ϕ2 × · · · × ∇ϕN

)
= det(Dϕ) (the Jacobian of ϕ).

Prove it.1

5b20 Exercise. Let U1, U2 ⊂ RN be open sets, and ϕ : U1 → U2 a dif-
feomorphism of class C2. Let V1 be a bounded regular open set, V 1 ⊂ U1,
and Z1 ⊂ ∂V1 a closed set such that the divergence theorem holds for V1

and ∂V1 \ Z1 (as defined by 4b4). Then the same holds for V2 = ϕ(V1) and
Z2 = ϕ(Z1).

Prove it.

5b21 Exercise. (a) Consider the truncated cone (conical frustum) V =
{(x, y, z) : a < z < b, x2 + y2 < cz2} ⊂ R3 for given a, b, c > 0, a < b. Prove
that the divergence theorem holds for V and ∂V \ Z where Z = {(x, y, a) :
x2 + y2 = ca2} ∪ {(x, y, b) : x2 + y2 = cb2}.

(b) Consider the cone V = {(x, y, z) : 0 < z < b, x2 + y2 < cz2} ⊂ R3 for
given b, c > 0. Prove that the divergence theorem holds for V and ∂V \ Z
where Z = {(x, y, b) : x2 + y2 = cb2} ∪ {(0, 0, 0)}. 2

5c Not just one-to-one 3

Interestingly, 5b16 and 5b18 can be generalized to mappings ϕ that are not
one-to-one. This generalization leads to divergence theorem for singular
cubes, and ultimately, to Stokes’ theorem. Surprisingly, main ideas may
be demonstrated without vector fields (and differential forms), proving (3a3)
and in addition, some famous topological results!

1Hint: 5b18, 5b9, 5b11.
2(b) take a→ 0 in (a).
3Based on: J. Milnor (1978) ‘Analytic proofs of the “Hairy ball theorem” and the

Brouwer fixed point theorem’, Amer. Math. Monthly 85 521–524;
C.A. Rogers (1980) “A less strange version of Milnor’s proof. . . ”, Amer. Math. Monthly
87 525–527;
K. Gröger (1981) “A simple proof of the Brouwer fixed point theorem”, Math. Nachr. 102
293–295.
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The first idea is, to connect a given mapping with a diffeomorphism. We
restrict ourselves to the simplest diffeomorphism id : x → x on a box or a
smooth set.

5c1 Assumption. (a) U ⊂ Rn is either an open box or a smooth set;
(b) ϕ ∈ C1(U → Rn), that is, Dϕ extends to U by continuity (and

therefore ϕ also extends to U by continuity).

5c2 Exercise. Prove that ϕ satisfies the Lipschitz condition:1 there exists
L ∈ [0,∞) such that

|ϕ(x)− ϕ(y)| ≤ L|x− y| for all x, y ∈ U .

We introduce

(5c3) ϕt(x) = x+ t
(
ϕ(x)−x

)
= (1− t)x+ tϕ(x) for x ∈ U and t ∈ [0, 1] .

Clearly, ϕt ∈ C1(U → Rn) for each t ∈ [0, 1]. It appears that ϕt must be
a diffeomorphism for t small enough.

5c4 Lemma. There exists ε ∈ (0, 1] such that for every t ∈ [0, ε] the mapping
ϕt is a homeomorphism U → ϕt(U), and ϕt|U is an orientation-preserving
diffeomorphism U → ϕt(U).

Proof. First, using 5c2, |ϕt(x)−ϕt(y)| = |(1− t)(x− y) + t(ϕ(x)−ϕ(y))| ≥
(1−t)|x−y|−t|ϕ(x)−ϕ(y)| ≥ (1−t)|x−y|−tL|x−y| =

(
1−(L+1)t

)
|x−y|;

for t < 1/(L + 1), ϕt is one-to-one and ϕ−1
t is continuous on ϕt(U), that is,

ϕt is a homeomorphism.
Second, supx∈U ‖(Dϕ)x‖ = C <∞; Dϕt = (1− t)I + tDϕ; ‖Dϕt − I‖ =

‖ − tI + tDϕ‖ ≤ (C + 1)t; for t < 1/(C + 1), detDϕt > 0. By the inverse
function theorem, ϕt is a local diffeomorphism. Being also a homeomorphism,
it is a diffeomorphism.

5c5 Exercise. Let U ⊂ Rn be a bounded open set, ψ : U → Rn continuous.
If ψ(U) is open, then ∂

(
ψ(U)

)
⊂ ψ(∂U).

Prove it.

5c6 Assumption. (c) U and Rn \ U are connected (for a box this holds, of
course);

(d) ϕ(x) = x for all x ∈ ∂U .

1Hint: for a box U use convexity; for smooth U assume the contrary, choose xn → x,
yn → y such that |ϕ(x)− ϕ(y)|/|x− y| → ∞ and note that x = y; in the case x ∈ ∂U do
similarly to the proof of 3b6.
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5c7 Lemma. ϕt(U) = U for all t small enough.

Proof. Denote V = Rn \ U and Ut = ϕt(U). For t small enough, by 5c4, Ut
is open; by 5c5, ∂Ut ⊂ ϕt(∂U); also, ϕt(∂U) = ∂U , and we get ∂Ut ⊂ ∂U .

We see that ∂Ut ∩ U = ∅ and ∂Ut ∩ V = ∅. By connectedness, Ut ∩ U is
either ∅ or U , and Ut ∩ V is either ∅ or V . But Ut is bounded, while V is
not. Thus, Ut ∩ V = ∅, that is, Ut ⊂ U ; by regularity, Ut ⊂ U ; and finally,
Ut = U .

The second idea is that

(5c8) the function t 7→
∫
U

detDϕt is a polynomial,

since for every x ∈ U the function t 7→ det(Dϕt)x = det
(
(1− t)I + t(Dϕ)x

)
is a polynomial (of degree ≤ n). And if a polynomial is constant on some
interval, then it is constant everywhere! Assuming 5c1 and 5c6 we have∫
U

detDϕt = v
(
ϕt(U)

)
= v(U) for all t small enough, therefore

(5c9)

∫
U

detDϕt = v(U) for all t ∈ R

(but generally not equal to v
(
ϕt(U)

)
).

Now we are in position to prove (3a3).

5c10 Proposition.∫
Rn

detDf = 0 if f ∈ C1(Rn → Rn) has a bounded support.

Proof. We take ϕ(x) = x + f(x), that is, ϕt(x) = x + tf(x). We also take
a “nice” U (say, a ball or a cube) such that f is compactly supported within
U . Assumptions 5c1, 5c6 are satisfied. By (5c9),

∫
U

detDϕt = v(U) for all
t;
∫
U

det(I + tDf) = v(U);
∫
U

det
(

1
t
I + Df

)
= 1

tn
v(U); take the limit as

t→∞.

. . . . . . . . . . . . . . . . . . . . . . . A digression to topology . . . . . . . . . . . . . . . . . . . . . . .

We can also prove some famous topological results. First, a retraction
theorem.

5c11 Proposition. For the unit ball U = {x : |x| < 1} ⊂ Rn there does not
exist a mapping ϕ of class C1 from U to ∂U such that ∀x ∈ ∂U ϕ(x) = x.
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Proof. Such ϕ satisfies 5c1 and 5c6. By (5c9),
∫
U

detDϕt = v(U) for all t.
In particular, for t = 1 we get

∫
U

detDϕ = v(U), which cannot happen, since
ϕ(U) ⊂ ∂U has empty interior, and therefore detDϕ = 0 everywhere.

Second, Brouwer fixed point theorem.

5c12 Proposition. For the unit ball U = {x : |x| < 1} ⊂ Rn, every mapping
ϕ : U → U of class C1 has a fixed point (that is, ∃x ∈ U ϕ(x) = x).

Proof. Otherwise, we define ψ : U → ∂U by ψ(x) = ϕ(x) + λx(x − ϕ(x))
where λx ≥ 1 is such that |ψ(x)| = 1, and apply 5c11 to ψ.

5c13 Remark. In topology, these facts are proved for continuous (rather
than C1) mappings. This is not our goal here, but anyway, a continuous ϕ :
U → U may be approximated by ϕk : U → U of class C1, then ϕk(xk) = xk,
xk → x (a subsequence. . . ), and finally ϕ(x) = x.

Now, generalized 5c12 implies generalized 5c11: if ϕ is a retraction, then
(−ϕ) has no fixed point.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Back to vector fields, pullbacks and differential forms.
In the rest of Sect. 5 we define the pullback of vector fields according to

“facet 3” of 5b, that is,

(5c14) ϕ∗F = (adjDϕ)(F ◦ ϕ) .

We also redefine the pullback of functions (“scalar fields”) as

(5c15) ϕ∗f = (detDϕ)(f ◦ ϕ) .

That is, we treat F as a visualization of an (N − 1)-form, and f as a visual-
ization of an N -form f · det. Now 5b18 becomes preserved relation

f = divF ⇐⇒ ϕ∗f = div(ϕ∗F ) ,

that is, ϕ∗(divF ) = div(ϕ∗F )

f1
oo //
OO

div_

f2OO
div_

F1
oo // F2

provided that ϕ is a diffeomorphism of class C2.
The notion of a polynomial RN → R generalizes readily to the notion of

a polynomial RN → RM or even RN → V where V is a finite-dimensional
vector space. In particular, we may speak about polynomial vector fields
RN → RN . 1

1For instance, F
( x
y

)
=
(
x10−5x7+11

−x8

)
.
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On the other hand, we may speak about a polynomial family (ϕt)t∈R of
mappings ϕt : U → RN ; in particular, (5c3) is such a family (of degree 1).
Of course, ϕt(x) is required to be polynomial in t, not in x.

5c16 Exercise. Let (ϕt)t∈R be a polynomial family of mappings ϕt ∈ C1(U →
RN). Then:

(a) For every polynomial f : RN → R, the family (ϕ∗tf)t of functions on
U is polynomial.

(b) For every polynomial vector fields F : RN → RN , the family (ϕ∗tF )t
of vector fields on U is polynomial.
Prove it.

5c17 Proposition. Let U ⊂ RN be an open set; ϕ ∈ C2(U → RN); F2 :
RN → RN a polynomial vector field; f2 = divF2; f1 = ϕ∗f2, and F1 = ϕ∗F2.
Then F1 ∈ C1(U → RN), and

divF1 = f1 .
f1
oo ϕ
∗ �

OO
div_

f2OO
div_

F1
oo ϕ
∗ � F2

Proof. We introduce a polynomial family of mappings ϕt ∈ C2(U → RN)
by ϕt(x) = x+ (2− t)

(
ϕ(x)−x

)
and note that ϕ1(x) = ϕ(x), ϕ2(x) = x. By

5c16, functions ft = ϕ∗tf2 are a polynomial family. The notation is consistent:
f1, f2 are as before. The same holds for vector fields Ft = ϕ∗tF2.

Clearly, Ft ∈ C1 for all t; we’ll prove that divFt = ft for all t. By the
divergence theorem,

∫
V

divFt =
∫
∂V
〈Ft,n〉 for every open ball1 V such that

V ⊂ U . It is sufficient to prove that
∫
V
ft =

∫
∂V
〈Ft,n〉 for all such V (since

two continuous functions with equal integrals over all balls must be equal).
Let such ball V be given.

The function t 7→
∫
V
ft −

∫
∂V
〈Ft,n〉 being a polynomial, we may restrict

ourselves to t close to 2. By 5c4, ϕt is an orientation-preserving diffeomor-
phism on a neighborhood of V . The set Vt = ϕt(V ) is smooth (since V
is). By 5b12,

∫
∂V
〈Ft,n〉 =

∫
∂Vt
〈F2,n〉. By the change of variable theorem,∫

V
ft =

∫
Vt
f2. The needed equality becomes

∫
Vt
f2 =

∫
∂Vt
〈F2,n〉; the latter

holds by the divergence theorem.

5c18 Exercise. The formulas of 5b19, div
(
∇ϕ2 × · · · × ∇ϕN

)
= 0 and

div
(
ϕ1∇ϕ2 × · · · × ∇ϕN

)
= det(Dϕ), hold for arbitrary ϕ1, . . . , ϕN of class

C2 (that is, ϕ need not be a diffeomorphism).
Prove it.2

1And moreover, for every smooth set V , of course.
2Hint: F2 of 5b9, 5b11 are polynomial; use 5c17.
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A wonder: on one hand, ϕ is required to be of class C2, since otherwise
F1 need not be of class C1 and divF1 need not exist; and on the other hand,
second derivatives of ϕ do not occur in the formula f1 = (detDϕ)(f2 ◦ϕ) for
divF1 !

We generalize Definition 3d3.

5c19 Definition. Let U ⊂ RN be an open set, F ∈ C(U → RN) a vector
field, and f ∈ C(U) a function.1 We say that f is the generalized divergence
of F and write f = divF , if ∫

V

f =

∫
∂V

〈F,n〉

for all smooth sets V such that V ⊂ U .

5c20 Remark. (a) The generalized divergence is unique (that is, f1 = divF
and f2 = divF imply f1 = f2);

(b) Def. 5c19 extends Def. 3d3; that is, if F ∈ C1 then tr(DF ) is the
generalized divergence of F .

5c21 Example. In one dimension, a smooth set is a finite union of (sep-
arated) intervals (think, why); the relation

∫
V
f =

∫
∂V
〈F,n〉 becomes just∫ b

a
f = F (b)− F (a); this equality (for all a, b such that a < b and [a, b] ⊂ U)

is necessary and sufficient for f to be the generalized divergence of F . If
F ∈ C1 then f exists and is the derivative, f = F ′; and if F /∈ C1 then f
does not exist.

We generalize Proposition 5c17.

5c22 Proposition. Let U ⊂ RN be an open set; ϕ ∈ C1(U → RN); F2 :
RN → RN a polynomial vector field; f2 = divF2; f1 = ϕ∗f2, and F1 = ϕ∗F2.
Then

f1 = divF1 .
f1
oo ϕ
∗ �

OO
div_

f2OO
div_

F1
oo ϕ
∗ � F2

Note that “f2 = divF2” may be interpreted classically, as f2 = tr(DF2),
but “f1 = divF1” is interpreted according to 5c19, since F1 need not be of
class C1 (for a counterexample see 5c26 below).

5c23 Exercise. Prove Prop. 5c22.2

1Still more generally, one may consider an equivalence class of (locally) improperly
integrable functions f .

2Hint: take the proof of Prop. 5c17 and throw away all unnecessary.
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5c24 Exercise. Generalize 5c18 to ϕ1, . . . , ϕN of class C1.

Prop. 5c22 is not yet a generalization of (the “if” part of) 5b18, since F2

is required to be polynomial; but the next result is such generalization.

5c25 Proposition. Let U, V ⊂ RN be open sets,
ϕ : U → V a mapping1of class C1, F : V → RN

a vector field of class C1. Then the generalized
divergence of ϕ∗F exists and is equal to ϕ∗(divF ).

f1
oo ϕ
∗ �

OO
div_

f2OO
div_

F1
oo ϕ
∗ � F2

Proof. First, assume in addition that F = ψ1∇ψ2 × · × ∇ψN for some
ψ1, . . . , ψN ∈ C1(V ). In this case we introduce the mapping ψ : V → RN ,
ψ(x) =

(
ψ1(x), . . . , ψN(x)

)
. By 5b11, F = ψ∗G where G : (x1, . . . , xN) 7→

(x1, 0, . . . , 0) is polynomial. Prop. 5c22 applies
both to ψ and ψ ◦ϕ, giving ψ∗(divG) = div(ψ∗G)
and (ψ ◦ ϕ)∗(divG) = div

(
(ψ ◦ ϕ)∗G

)
. Taking

into account that (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ we get
ψ∗(divG) = divF and ϕ∗(divF ) = div(ϕ∗F ).

f1
oo ϕ
∗ �

OO
div_

f2
oo ψ
∗ �

OO
div_

gOO
div_

F1
oo ϕ
∗ � F2

oo ψ
∗ � G

Second, if this claim holds for two vector fields, then it holds for their sum.
It remains to prove that arbitrary F is the sum of some vector fields of the
form ψ1∇ψ2×·×∇ψN . We note that F : x 7→

(
F1(x), . . . , FN(x)

)
is the sum

of N “parallel” vector fields, the first being x 7→
(
F1(x), 0, . . . , 0

)
, the last

x 7→
(
0, . . . , 0, FN(x)

)
. The first “parallel” vector field is ψ1∇ψ2 × · × ∇ψN

where ψ1 = F1 and ψk(x1, . . . , xN) = xk for k = 2, . . . , N . Other “parallel”
fields are treated similarly.

5c26 Example. Consider ϕ ∈ C1(R2 → R2) of the form ϕ
(
x
y

)
=
(
g(x)
y

)
for

g ∈ C1(R), and the constant vector field F2(·) =
(

0
1

)
. We have adjDϕ =(

1 0
0 g′
)
;

F1

(
x
y

)
=
(
ϕ∗F2

)(x
y

)
=

(
1 0
0 g′(x)

)(
0
1

)
=

(
0

g′(x)

)
.

By Prop. 5c25, such F1 has the generalized divergence equal 0 (since divF2 =
0). Every f ∈ C(R) is g′ for some g ∈ C1(R), therefore

divF = 0 for F :

(
x
y

)
→
(

0
f(x)

)
, f ∈ C(R) .

We may rotate the plane (recall 5b8), getting

divF = 0 for F :

(
x
y

)
→ f(x cos θ + y sin θ)

(
− sin θ
cos θ

)
, f ∈ C(R) .

1Note that ϕ(U) need not be open.
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The same holds for arbitrary linear combination of such vector fields (with
different θ and f). Clearly, D1F1 and D2F2 are generally ill-defined, and
nevertheless, D1F1 +D2F2 = 0 in some reasonable sense.

5d From smooth to singular

Recall the diffeomorphism invariance 5b20 of the notion “divergence theorem
holds for V and ∂V \ Z” defined by 4b4; there, the equality

∫
V

divF =∫
∂V \Z〈F,n〉 is required only for F continuously differentiable on V . Now,

what about the generalized divergence?

5d1 Proposition. Let U, V ⊂ RN be open sets, V ⊂ U , and Z ⊂ ∂V . If the
divergence theorem holds for V and ∂V \ Z, and a vector field F ∈ C(U →
RN) has the generalized divergence, then∫

V

divF =

∫
∂V \Z
〈F,n〉 .

The proof needs some preparations.
Given f ∈ C(RN) and a box B ⊂ RN , we introduce fB : RN → R by

fB(x) =
1

v(B)

∫
B+x

f ;

that is, fB(x) is the mean value of f on the shifted box B+x = {b+x : b ∈ B}.

5d2 Exercise. (a) Let N = 1 and B = [s, t]. Prove that fB ∈ C1(R) and
f ′B(x) = 1

t−s

(
f(x+ t)− f(x+ s)

)
.

(b) Let N = 2 and B = [s1, t1]× [s2, t2]. Prove that fB ∈ C1(R2) and

∂

∂x1

fB(x1, x2) =
1

t2 − s2

∫
[s2,t2]

1

t1 − s1

(
f(x1+t1, x2+y)−f(x1+s1, x2+y)

)
dy .

(c) Prove that fB ∈ C1(RN) in general.

5d3 Exercise. (a) For every f ∈ C(RN) there exist f1, f2, · · · ∈ C1(RN)
such that fk → f (as k →∞) uniformly on bounded sets.

(b) Let U ⊂ RN be an open set, and f ∈ C(U). Then there exist open
sets Uk ↑ U and functions fk ∈ C1(Uk) such that fk → f uniformly on
compact subsets of U .

(c) The same holds for vector fields.
Prove it.1

1Hint: (a) consider fB for a small B close to 0.
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5d4 Exercise. Let a vector field F ∈ C(RN → RN) have the generalized
divergence divF = f ∈ C(RN).

(a) For arbitrary a ∈ RN , the shifted vector field Fa : x 7→ F (x + a) and
function fa : x 7→ f(x+ a) satisfy divFa = fa.

(b) For arbitrary a ∈ RN and k = 1, 2, . . . the vector field F̃ = 1
k

∑k
i=1 F i

k
a

and function f̃ = 1
k

∑k
i=1 f i

k
a satisfy div F̃ = f̃ .

(c) For arbitrary a ∈ RN the vector field F̃ =
∫ 1

0
Fta dt and function

f̃ =
∫ 1

0
fta dt satisfy div F̃ = f̃ .

(d) For arbitrary box B ⊂ RN the vector field FB : x 7→ 1
v(B)

∫
B+x

F and

the function fB : x 7→ 1
v(B)

∫
B+x

f satisfy tr(DFB) = divFB = fB.
Prove it.

5d5 Corollary (of 5d2–5d4). Let U ⊂ RN be an open set, and F ∈ C(U →
RN) a vector field that has the generalized divergence. Then there exist open
sets Uk ↑ U and vector fields Fk ∈ C1(Uk → RN) such that Fk → F and
divFk → divF uniformly on compact subsets of U .

Proof of Prop. 5d1. Corollary 5d5 gives us Fk. By the divergence theorem
for V and ∂V \ Z we have1

∫
V

divFk =
∫
∂V \Z〈Fk,n〉, since Fk ∈ C1. On the

other hand,
∫
∂V \Z〈Fk,n〉 →

∫
∂V \Z〈F,n〉, since Fk → F uniformly on V , and

vn(∂V \ Z) < ∞ by 4d4. Also,
∫
V

divFk →
∫
V

divF , since divFk → divF

uniformly on V . Thus,
∫
V
f =

∫
∂V \Z〈F,n〉.

2

We generalize Prop. 5c25.

5d6 Theorem. Let U, V ⊂ RN be open sets, ϕ : U → V
a mapping of class C1, F : V → RN a vector field that
has the generalized divergence. Then the generalized
divergence of ϕ∗F exists and is equal to ϕ∗(divF ).

f1
oo ϕ
∗ �

OO
div_

f2OO
div_

F1
oo ϕ
∗ � F2

5d7 Exercise. Prove Theorem 5d6.3

Let B ⊂ RN be an open box; we know that the divergence theorem holds
for B and ∂B \ Z; here ∂B \ Z is the union of the 2N hyperfaces of B (and
Z is the union of boxes of dimensions smaller than N − 1), see 4b3 and the
text after it.

1For k large enough.
2The fact that fk are of class C1 was not used; accordingly, we do not really need

continuity of divF ; see the footnote to 5c19.
3Hint: similar to the proof of Prop. 5d1; pullback preserves the convergence uniform

on compacta.
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5d8 Theorem. Let a vector field F ∈ C(U → RN) on an open set U ⊂ RN

have the generalized divergence, and Γ ∈ C1(B → RN), Γ(B) ⊂ U . Then∫
B

Γ∗(divF ) =

∫
∂B\Z
〈Γ∗(F ),n〉 .

Here Γ∗ is interpreted according to (5c14), (5c15).
If Γ extends to a diffeomorphism on a neighborhood of B, then∫

∂B\Z〈Γ
∗(F ),n〉 =

∫
Γ(∂B\Z)

〈F,n〉 by 5b14, and
∫
B

Γ∗(divF ) =
∫

Γ(B)
divF

by the change of variable theorem.
In general, Γ need not be one-to-one. Treating Γ as a singular box, one

says that
∫
∂B\Z〈Γ

∗(F ),n〉 is the flux of F through ∂Γ, and
∫
B

Γ∗(divF ) is

the integral of divF over Γ. Now 5d8 becomes the divergence theorem for a
singular box.

Proof of Theorem 5d8. By Theorem 5d6, div(Γ∗F ) = Γ∗(divF ) on B (gen-
eralized divergence). We exhaust B by smaller boxes: B1 ⊂ B2 ⊂ . . . ,
Bk ⊂ B, ∪kBk = B. By Prop. 5d1,

∫
∂Bk\Zk

〈Γ∗F,n〉 =
∫
Bk

div(Γ∗F ) =∫
Bk

Γ∗(divF ); the limit as k →∞ completes the proof.

Index

Brouwer fixed point theorem, 96

chain rule, 85
continuously differentiable, 82

diffeomorphism, 82

generalized divergence, 98
gradient, 89

piecewise smooth, 92
polynomial, 96
pullback, 83

of form, 85, 86
of function, 83, 96
of vector, 96
under diffeomorphism, 87

pushforward, 83
of box, 86
of path, 83
of point, 83

of vector, 83
under diffeomorphism, 87

retraction theorem, 95

tangent bundle, 84
tangent vector field, 88

vector field
(n− 1)-form, flux, 89
gradient, 1-form, 89
velocity, 88

C1, 82
(Dϕ)xh, 85
(Dhϕ)x, 85
Dϕ, 84
Df , 85
ϕ∗, 83
ϕ∗, 83


	Pushforward, pullback, and change of variables
	Pushforward and pullback: introduction
	Vector fields: three facets of one notion
	Not just one-to-one
	From smooth to singular

	Index

