Analysis-IV

Solutions to selected exercises

2b24 Exercise (SURFACE OF REVOLUTION OR BODY OF REVOLUTION). Let M_1 be an *n*-manifold in \mathbb{R}^3 (here n = 1 or n = 2) such that

$$\forall (x, y, z) \in M_1 \ (0, -z, y) \notin T_{(x, y, z)} M_1.$$

Consider the set

$$M = \{ (x, cy - sz, sy + cz) : (x, y, z) \in M_1, (c, s) \in S \}$$

where $S = \{(c, s) \in \mathbb{R}^2 : c^2 + s^2 = 1\}$ (the circle). Assume that the mapping $((x, y, z), (c, s)) \mapsto (x, cy - sz, sy + cz)$ is a homeomorphism $M_1 \times S \to M$. Then

(a) M is an (n+1)-manifold in \mathbb{R}^3 ;

(b) if (G_1, ψ_1) is a chart of M_1 and (G_2, ψ_2) is a chart of S, then $(G_1 \times G_2, \psi)$ is a chart of M; here $\psi(u_1, u_2) = (x, cy - sz, sy + cz)$ whenever $\psi_1(u_1) = (x, y, z)$ and $\psi_2(u_2) = (c, s)$.

Prove it.

Solution. Item (a) follows from (b); here is (b).

We have $\psi = F \circ (\psi_1, \psi_2)$ where $F : \mathbb{R}^3 \times \mathbb{R}^2 \to \mathbb{R}^3$, F((x, y, z), (c, s)) = (x, cy - sz, sy + cz) and $(\psi_1, \psi_2) : G_1 \times G_2 \to M_1 \times S \subset \mathbb{R}^3 \times \mathbb{R}^2$, $(\psi_1, \psi_2)(u_1, u_2) = (\psi_1(u_1), \psi_2(u_2))$.

Similarly to 2b13 it is sufficient to consider a chart of S around the point (1,0) only, since the rotation $(x, y, z) \mapsto (x, cy - sz, sy + cz)$ of \mathbb{R}^3 sends F((x, y, z), (1, 0)) to F((x, y, z), (c, s)).

By 2b9, $M_1 \times S \subset \mathbb{R}^3 \times \mathbb{R}^2$ is an (n + 1)-manifold; and (from the solution of 2b9), $(G_1 \times G_2, (\psi_1, \psi_2))$ is a chart of $M_1 \times S$. Thus, (ψ_1, ψ_2) is a homeomorphism from $G_1 \times G_2$ onto the relatively open (in $M_1 \times S$) set $\psi_1(G_1) \times \psi_2(G_2)$. It is given that $F|_{M_1 \times S}$ is a homeomorphism $M_1 \times S \to M$. Thus, $\psi = F \circ (\psi_1, \psi_2)$ is a homeomorphism from $G_1 \times G_2$ onto the relatively open (in M) set $\psi(G_1 \times G_2)$. Also, $\psi \in C^1(G_1 \times G_2 \to \mathbb{R}^3)$, since $\psi_1 \in C^1(G_1 \to \mathbb{R}^3), \psi_2 \in C^1(G_2 \to \mathbb{R}^2)$, and $F \in C^1(\mathbb{R}^5 \to \mathbb{R}^3)$.

It remains to check that the linear operator $(D\psi)_{(u_1,u_2)} : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^3$ is one-to-one, assuming that $\psi_2(u_2) = (1,0)$. By the chain rule, $(D\psi)_{(u_1,u_2)} = (DF)_{((x,y,z),(1,0))} \circ (D(\psi_1,\psi_2))_{(u_1,u_2)}$ where $(x,y,z) = \psi_1(u_1)$. Also, $(D\psi_1)_{u_1} : \mathbb{R}^n \to T_{(x,y,z)}M_1$ is one-to-one, and $(D\psi_2)_{u_2} : \mathbb{R} \to T_{(1,0)}S$ is one-to-one. It remains to check that

$$(DF)_{((x,y,z),(1,0))}(h,k) = 0 \implies (h = 0, k = 0)$$

for $h \in T_{(x,y,z)}M_1$, $k \in T_{(1,0)}S$.

Analysis-IV

We note that

$$F((x, y, z), (1, 0)) = (x, y, z);$$

$$\frac{\partial}{\partial c}F((x, y, z), (c, s)) = (0, y, z);$$

$$\frac{\partial}{\partial s}F((x, y, z), (c, s)) = (0, -z, y).$$

Also, $T_{(1,0)}S = \{(0,\lambda) : \lambda \in \mathbb{R}\}$. Thus,

$$(DF)_{((x,y,z),(1,0))}(h,(0,\lambda)) = h + \lambda(0,-z,y);$$

if $\lambda \neq 0$ then $h + \lambda(0, -z, y) \neq 0$ since $(0, -z, y) \notin T_{(x,y,z)}M_1$.

Unfortunalety, the formulation of Exercise 2c33 is erroneous: the factor J_{ψ_2} is missing in the formula for J_{ψ} . I am sorry. Here is the corrected formulation.

2c33 Exercise (SURFACE OF REVOLUTION OR BODY OF REVOLUTION). Let $M_1, n, M, S, (G_1, \psi_1), (G_2, \psi_2), (G_1 \times G_2, \psi)$ be as in 2b24(b). Then

$$J_{\psi}(u_1, u_2) = J_{\psi_1}(u_1) J_{\psi_2}(u_2) \operatorname{dist}((0, -z, y), T_{(x,y,z)} M_1) \quad \text{where } (x, y, z) = \psi_1(u_1).$$

In particular, if $M_1 \subset \mathbb{R}^2 \times \{0\}$, then also $T_{(x,y,z)}M_1 \subset \mathbb{R}^2 \times \{0\}$; $(0, -z, y) = (0, 0, y) \perp \mathbb{R}^2 \times \{0\}$; thus,

$$J_{\psi}(u_1, u_2) = |y| J_{\psi_1}(u_1) J_{\psi_2}(u_2)$$
 where $(x, y, 0) = \psi_1(u_1)$.

Prove it.

Solution. Once again, it is sufficient to consider a chart of S around the point (1,0) only. Thus we assume that $\psi_2(0) = (1,0)$ and calculate $J_{\psi}(u_1,0)$.

Still, $\psi = F \circ (\psi_1, \psi_2)$ and $(DF)_{((x,y,z),(1,0))}(h, (0, \lambda)) = h + \lambda(0, -z, y)$. Also, $\psi'_2(0) = (0, \lambda)$ for some λ (since $T_{(1,0)}S = \{(0, \lambda) : \lambda \in \mathbb{R}\}$, still); and $J_{\psi_2}(0) = |\lambda|$.

 $D_{\psi_2}(0) = |\chi|.$

By the chain rule (of Analysis-3),

$$(D\psi)_{(u_1,0)} = (DF)_{((x,y,z),(1,0))} \circ (D(\psi_1,\psi_2))_{(u_1,0)} : (h,k) \mapsto (DF)_{((x,y,z),(1,0))} ((D\psi_1)_{u_1}h, (D\psi_2)_0 k) = (D\psi_1)_{u_1}h + \lambda k(0,-z,y)$$

for $h \in \mathbb{R}^n$ and $k \in \mathbb{R}$; here $(x, y, z) = \psi_1(u_1)$. In particular, $(D_k \psi)_{(u_1,0)} = (D_k \psi_1)_{u_1}$ for $1 \le k \le n$, and $(D_{n+1} \psi)_{(u_1,0)} = \lambda(0, -z, y)$.

The (n + 1)-dimensional volume of the parallelotope spanned by these n + 1 vectors $(D_1\psi)_{(u_1,0)}, \ldots, (D_{n+1}\psi)_{(u_1,0)}$ is $J_{\psi}(u_1,0)$, while the *n*-dimensional volume of its base, the parallelotope spanned by the first *n* vectors, is

 $J_{\psi_1}(u_1)$. The latter parallelotope (the base) spans $T_{(x,y,z)}M_1$; thus, the height of the (n+1)-dimensional parallelotope is $|\lambda| \operatorname{dist}((0,-z,y),T_{(x,y,z)}M_1)$. Taking into account that $J_{\psi_2}(0) = |\lambda|$ we get

$$J_{\psi}(u_1, u_2) = J_{\psi_1}(u_1) J_{\psi_2}(u_2) \operatorname{dist}((0, -z, y), T_{(x,y,z)} M_1).$$