Solutions to selected exercises

2b24 Exercise (surface of REvolution or body of Revolution). Let M_{1} be an n-manifold in \mathbb{R}^{3} (here $n=1$ or $n=2$) such that

$$
\forall(x, y, z) \in M_{1}(0,-z, y) \notin T_{(x, y, z)} M_{1}
$$

Consider the set

$$
M=\left\{(x, c y-s z, s y+c z):(x, y, z) \in M_{1},(c, s) \in S\right\}
$$

where $S=\left\{(c, s) \in \mathbb{R}^{2}: c^{2}+s^{2}=1\right\}$ (the circle). Assume that the mapping $((x, y, z),(c, s)) \mapsto(x, c y-s z, s y+c z)$ is a homeomorphism $M_{1} \times S \rightarrow M$. Then
(a) M is an $(n+1)$-manifold in \mathbb{R}^{3};
(b) if $\left(G_{1}, \psi_{1}\right)$ is a chart of M_{1} and $\left(G_{2}, \psi_{2}\right)$ is a chart of S, then $\left(G_{1} \times\right.$ $\left.G_{2}, \psi\right)$ is a chart of M; here $\psi\left(u_{1}, u_{2}\right)=(x, c y-s z, s y+c z)$ whenever $\psi_{1}\left(u_{1}\right)=$ (x, y, z) and $\psi_{2}\left(u_{2}\right)=(c, s)$.

Prove it.
Solution. Item (a) follows from (b); here is (b).
We have $\psi=F \circ\left(\psi_{1}, \psi_{2}\right)$ where $F: \mathbb{R}^{3} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, F((x, y, z),(c, s))=$ $(x, c y-s z, s y+c z)$ and $\left(\psi_{1}, \psi_{2}\right): G_{1} \times G_{2} \rightarrow M_{1} \times S \subset \mathbb{R}^{3} \times \mathbb{R}^{2},\left(\psi_{1}, \psi_{2}\right)\left(u_{1}, u_{2}\right)=$ $\left(\psi_{1}\left(u_{1}\right), \psi_{2}\left(u_{2}\right)\right)$.

Similarly to 2 b 13 it is sufficient to consider a chart of S around the point $(1,0)$ only, since the rotation $(x, y, z) \mapsto(x, c y-s z, s y+c z)$ of \mathbb{R}^{3} sends $F((x, y, z),(1,0))$ to $F((x, y, z),(c, s))$.

By $2 \mathrm{~b} 9, M_{1} \times S \subset \mathbb{R}^{3} \times \mathbb{R}^{2}$ is an $(n+1)$-manifold; and (from the solution of 2 b 9$)$, $\left(G_{1} \times G_{2},\left(\psi_{1}, \psi_{2}\right)\right)$ is a chart of $M_{1} \times S$. Thus, $\left(\psi_{1}, \psi_{2}\right)$ is a homeomorphism from $G_{1} \times G_{2}$ onto the relatively open (in $M_{1} \times S$) set $\psi_{1}\left(G_{1}\right) \times \psi_{2}\left(G_{2}\right)$. It is given that $\left.F\right|_{M_{1} \times S}$ is a homeomorphism $M_{1} \times S \rightarrow M$. Thus, $\psi=F \circ\left(\psi_{1}, \psi_{2}\right)$ is a homeomorphism from $G_{1} \times G_{2}$ onto the relatively open (in M) set $\psi\left(G_{1} \times G_{2}\right)$. Also, $\psi \in C^{1}\left(G_{1} \times G_{2} \rightarrow \mathbb{R}^{3}\right)$, since $\psi_{1} \in C^{1}\left(G_{1} \rightarrow \mathbb{R}^{3}\right), \psi_{2} \in C^{1}\left(G_{2} \rightarrow \mathbb{R}^{2}\right)$, and $F \in C^{1}\left(\mathbb{R}^{5} \rightarrow \mathbb{R}^{3}\right)$.

It remains to check that the linear operator $(D \psi)_{\left(u_{1}, u_{2}\right)}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ is one-to-one, assuming that $\psi_{2}\left(u_{2}\right)=(1,0)$. By the chain rule, $(D \psi)_{\left(u_{1}, u_{2}\right)}=$ $(D F)_{((x, y, z),(1,0))} \circ\left(D\left(\psi_{1}, \psi_{2}\right)\right)_{\left(u_{1}, u_{2}\right)}$ where $(x, y, z)=\psi_{1}\left(u_{1}\right)$. Also, $\left(D \psi_{1}\right)_{u_{1}}$: $\mathbb{R}^{n} \rightarrow T_{(x, y, z)} M_{1}$ is one-to-one, and $\left(D \psi_{2}\right)_{u_{2}}: \mathbb{R} \rightarrow T_{(1,0)} S$ is one-to-one. It remains to check that

$$
(D F)_{((x, y, z),(1,0))}(h, k)=0 \quad \Longrightarrow \quad(h=0, k=0)
$$

for $h \in T_{(x, y, z)} M_{1}, k \in T_{(1,0)} S$.

We note that

$$
\begin{gathered}
F((x, y, z),(1,0))=(x, y, z) \\
\frac{\partial}{\partial c} F((x, y, z),(c, s))=(0, y, z) \\
\frac{\partial}{\partial s} F((x, y, z),(c, s))=(0,-z, y)
\end{gathered}
$$

Also, $T_{(1,0)} S=\{(0, \lambda): \lambda \in \mathbb{R}\}$. Thus,

$$
(D F)_{((x, y, z),(1,0))}(h,(0, \lambda))=h+\lambda(0,-z, y)
$$

if $\lambda \neq 0$ then $h+\lambda(0,-z, y) \neq 0$ since $(0,-z, y) \notin T_{(x, y, z)} M_{1}$.

Unfortunalety, the formulation of Exercise 2c33 is erroneous: the factor $J_{\psi_{2}}$ is missing in the formula for J_{ψ}. I am sorry. Here is the corrected formulation.

2c33 Exercise (Surface of Revolution or body of revolution). Let $M_{1}, n, M, S,\left(G_{1}, \psi_{1}\right),\left(G_{2}, \psi_{2}\right),\left(G_{1} \times G_{2}, \psi\right)$ be as in 2b24(b). Then
$J_{\psi}\left(u_{1}, u_{2}\right)=J_{\psi_{1}}\left(u_{1}\right) J_{\psi_{2}}\left(u_{2}\right) \operatorname{dist}\left((0,-z, y), T_{(x, y, z)} M_{1}\right) \quad$ where $(x, y, z)=\psi_{1}\left(u_{1}\right)$.
In particular, if $M_{1} \subset \mathbb{R}^{2} \times\{0\}$, then also $T_{(x, y, z)} M_{1} \subset \mathbb{R}^{2} \times\{0\} ;(0,-z, y)=$ $(0,0, y) \perp \mathbb{R}^{2} \times\{0\} ;$ thus,

$$
J_{\psi}\left(u_{1}, u_{2}\right)=|y| J_{\psi_{1}}\left(u_{1}\right) J_{\psi_{2}}\left(u_{2}\right) \quad \text { where }(x, y, 0)=\psi_{1}\left(u_{1}\right) .
$$

Prove it.
Solution. Once again, it is sufficient to consider a chart of S around the point $(1,0)$ only. Thus we assume that $\psi_{2}(0)=(1,0)$ and calculate $J_{\psi}\left(u_{1}, 0\right)$.

Still, $\psi=F \circ\left(\psi_{1}, \psi_{2}\right)$ and $(D F)_{((x, y, z),(1,0))}(h,(0, \lambda))=h+\lambda(0,-z, y)$.
Also, $\psi_{2}^{\prime}(0)=(0, \lambda)$ for some λ (since $T_{(1,0)} S=\{(0, \lambda): \lambda \in \mathbb{R}\}$, still); and $J_{\psi_{2}}(0)=|\lambda|$.

By the chain rule (of Analysis-3),

$$
\begin{aligned}
& (D \psi)_{\left(u_{1}, 0\right)}=(D F)_{((x, y, z),(1,0)))} \circ\left(D\left(\psi_{1}, \psi_{2}\right)\right)_{\left(u_{1}, 0\right)}:(h, k) \mapsto \\
& \quad \mapsto(D F)_{((x, y, z),(1,0))}\left(\left(D \psi_{1}\right)_{u_{1}} h,\left(D \psi_{2}\right)_{0} k\right)=\left(D \psi_{1}\right)_{u_{1}} h+\lambda k(0,-z, y)
\end{aligned}
$$

for $h \in \mathbb{R}^{n}$ and $k \in \mathbb{R}$; here $(x, y, z)=\psi_{1}\left(u_{1}\right)$. In particular, $\left(D_{k} \psi\right)_{\left(u_{1}, 0\right)}=$ $\left(D_{k} \psi_{1}\right)_{u_{1}}$ for $1 \leq k \leq n$, and $\left(D_{n+1} \psi\right)_{\left(u_{1}, 0\right)}=\lambda(0,-z, y)$.

The $(n+1)$-dimensional volume of the parallelotope spanned by these $n+1$ vectors $\left(D_{1} \psi\right)_{\left(u_{1}, 0\right)}, \ldots,\left(D_{n+1} \psi\right)_{\left(u_{1}, 0\right)}$ is $J_{\psi}\left(u_{1}, 0\right)$, while the n-dimensional volume of its base, the parallelotope spanned by the first n vectors, is
$J_{\psi_{1}}\left(u_{1}\right)$. The latter parallelotope (the base) spans $T_{(x, y, z)} M_{1}$; thus, the height of the $(n+1)$-dimensional parallelotope is $|\lambda| \operatorname{dist}\left((0,-z, y), T_{(x, y, z)} M_{1}\right)$. Taking into account that $J_{\psi_{2}}(0)=|\lambda|$ we get

$$
J_{\psi}\left(u_{1}, u_{2}\right)=J_{\psi_{1}}\left(u_{1}\right) J_{\psi_{2}}\left(u_{2}\right) \operatorname{dist}\left((0,-z, y), T_{(x, y, z)} M_{1}\right) .
$$

