1e10 Definition. A differential form of order k and of class C™ on R” is a function
w:R™ x (R")* — R of class C™ such that for every z € R™ the function w(z,,...,) is
an antisymmetric multililear k-form on R™.

[ = [ ...

Antisymmetric multililear k-forms on R"™ are a vector space of dimension (Z)

(lel2) - (DiT)y,) du.

2b4 Proposition. The following three conditions on a set M C RY and a point zq € M
are equivalent:
(a) there exists an n-chart of M around zo;
(b) there exists an n-cochart of M around z;
(c) there exists a local diffeomorphism h : RY — RN near x( such that
(u,v) e M <= h(u,v) € R" x {On_p}
for all (u,v) € R™ x RN=" near x.

2b8 Definition. A nonempty set M C R is an n-dimensional manifold (or n-manifold)
if for every xg € M there exists an n-chart of M around z.

2b9 Exercise. Let M; be an nj-manifold in RM, and My an na-manifold in R™2; then
M x My is an (n; + ng)-manifold in RN1+Nz,

2b10 Definition. Let M C R¥ be an n-manifold; a function f : M — R is continuously
differentiable if for every chart (G, ¥) of M the function fo1) is continuously differentiable
on G.

2b19 Exercise. Let (G, 1) be a chart around xy = 9 (ug) and (U, ¢) a co-chart around
x9. The following three conditions on a vector h € RN are equivalent:
(a) h is a tangent vector (at zo);

(b) h belongs to the image of the linear operator (D),
(c) h belongs to the kernel of the linear operator (Dy)q,

:R” - RV,
‘RN 5 RN-n,

2c1 Definition. A differential form of order k (or k-form) on an n-manifold M C RV
is a continuous function w on the set {(z,hy,...,hg) : @ € M, hy,...,hy € T, M} such

that for every x € M the function w(z,-,...,-) is an antisymmetric multililear k-form
on T,M.

(2¢2) o (Dpt)y) du

/<G,w)“ = /Gw(w(u),wumu,

2¢3 Proposition. Let (G1,11), (G2, 12) be two charts of an oriented manifold (M, O).

If wl(‘;l) = ¢2(G2) then
/ w = / w
(G1,91) (G2,92)

for every n-form w on M; that is, either these two integrals converge and are equal, or
both integrals diverge.

2¢6 Definition. An n-form p on an oriented n-manifold (M, ) in R¥ is the volume
form, if for every x € M the antisymmetric multililear n-form p(x,-,...,-) on T, M is
normalized and O,-positive.

\/det ﬂﬁ ua jw)u>)i,j
(2¢17) / / f@ u) du where U = (@) and (G, ) is an n-chart.

2c¢20 Lemma. J, = /14 |V f|2.

2d3 Lemma. Let M C RY be an n-manifold and K C M a compact set. Then there

(The (generalized) Jacobian)

(Jacobian for a graph)

exist single-chart continuous functions p1,...,p; : M — [0,1] such that py +---4+p; =1
on K.
(245) [ 1= twcw= [ (rewr,

M (G,) G
(2d14) product v(My x My) = v(Mq)v(Ms).
(2d15) scaling v(sM) = s"v(M).
(2d16) motion v(T(M)) =v(M); fT(M) folT 1= S f
(2d17) cylinder v(M) = (b—a)|hlv(My).
(2d18) cone o(M) = 5 (b" Tt — g™ hu(My).
(2d19) revolution (M) =2m [, lyl.
(3b1) Vf=0 if f € C'(R™) has a bounded support.

R”L
(3b4) n, = ———==(—(D19),...,—(Dng),1) . (Unit normal vector to a graph)
V1+|Vyl?

(3b5) Veng f(2) = (f(z + 0ng) — f(z — Ong))n, .

3b8 Theorem. Let M C RY be an (N — 1)-manifold, K C M a compact subset, and
f:R¥N\ K — R a continuously differentiable function with a bounded support and
bounded gradient Vf (on RY \ K). Then

[ v+ [ Sugs=o.
RN\ K M

3b10 Lemma. Let (Uy,...,Up) be an open covering of a compact set K C RY. Then
there exist functions py,...,p; € C*(RY) such that p; + -+ p; = 1 on K and each p;
has a compact support within some U,,.

/ uVo = —/ vVu — / Veng (uv) .
RN\K RN\K M

(3b13) / uVv = —/ vVu for u,v € C*(RY), wv compactly supported.
RN RN

(3b12)

3b14 Definition. A bounded regular open set G C RY whose boundary G is a (nec-
essarily compact) hypersurface (that is, (N — 1)-manifold) will be called a smooth set.



(3b15) (Smooth G, bounded V f)

/GVf:/an.

3cl Theorem. Let G C R"! be an open set, p € C*(G), Vr € G Vp(z) #0, and f €
C(G) compactly supported. Then for every ¢ € ¢(G) the set M. = {z € G : p(z) = ¢}
is an n-manifold in R"*!, the function ¢ +— | M. f on ¢(G) is continuous and compactly

supported, and
[ e 1= nva
(@) M. G

) [Car[ g p @) e wis= o0
c r = ; C sphere: v(S1) = ———.
0 = |-1>0 I(N/2)

(3d3) divF = tt(DF) = D1Fy + -+ Dy Fy = (VE )1 + - + (VEy)n
(3d4) / divF =0 if F € C*(R™ — R") has a bounded support.
(3el) diveng F'(z) = (F(z + 0n,) — F(z — 0ng),n,) .

N
(3¢2) diveng F =Y (Ving Fi ) -

k=1

3e3 Theorem. Let M C RY be an (N — 1)-manifold, K C M a compact subset, and
F: RN\ K — R a continuously differentiable mapping with a bounded support and
bounded derivative (on RY \ K). Then

/ div F + divgng f = 0.
RN\ K M

4a3 Theorem (Divergence theorem). Let G C RY be a smooth set, F € C1(G — RY),
with DF bounded on G. Then the integral of div F' over G is equal to the (outward)

flux of F' through 0G: / div I :/ (F,n).
G oG

4a4 Exercise. div(fF) = fdiv F+(Vf, F) whenever f € C(G) and F € C}(G — RY).

/G (V1 F) =

1) = gllal), then Vf(z) = L0y,
|z[)a, then div F(x) = [z]¢'(|z]) + Ng(|z[);
g(|z|)x, then the (outward) flux of F through the boundary of the ball

F(TN//;) is the area of the unit sphere.

(4a5) Gf(F, n) —/ fdivF.

4a6 Exercise. (a) If
(b) if F(z) =
(c) if F(z) =

{x:|z| <r}is erVg(r), where ¢ =

QQ
A~

(4cl) Af=divVf; fis harmonic, if Af =0.
(4c2) / Af = / (Vf,n) / Dynf, first Green formula
G oG
(4c3) / (uAv + (Vu, Vv)) = / (uVv,n) = / uDnv, second Green formula
e lel lel
(4c4) / (uAv — vAu) = / (uDpv — vDyu), third Green formula
G le}

4b4 Def. Divergence theorem holds for G and 9G \ Z, if G C RY is bounded regular
open, Z C 9G closed, dG \ Z n-manifold of finite volume, and [, div F' = IBG\Z<F’ n)

for all F € C(G — RY) such that F|g € C(G — RY) and DF is bounded on G.

4d1 Lemma. For every N > 2 and f € C?(RY) with a compact support,

Af(x) . 27 N/2
/RN a2 47 = rvy -

4d2 Remark. For N = 2, / Af(z)log|z|dz = 27 f(0).
R2

~(N -2)

4d3 Proposition (Mean value property). For every harmonic function on a ball, with
bounded second derivatives, its value at the center of the ball is equal to its mean value
on the boundary of the ball.

4d7 Exercise (Maximum principle for harmonic functions).
Let u be a harmonic function on a connected open set G C RY. If sup, ¢ u(x) = u(zo)
for some xy € G then wu is constant.

1
(4d8) Af(xz) =2N lim —((mean of fon{y:|y—az|=¢}) — f(a:)) .
e—0
4d10 Exercise. (a) For every f integrable (properly) on {z : |z| < R},
Jicrd _ Rl F ar™
Ji<r? Ju=r1 BY

(b) For every bounded harmonic function on a ball, its value at the center of the ball is
equal to its mean value on the ball.

4d11 Proposition. (Liouville’s theorem for harmonic functions)
Every harmonic function RY — [0, 00) is constant.

(4e5) Vh (h,hyx---xhy,) = det(h,hy,...,h,) (Cross-product, orthogonal to h1,...

(4e6) w(@,hyy ..o hy) = (F(x),hy X -+ X hy) = det(F(x), hy, ..., ~hy),
a linear one-to-one correspondence between (N — 1)-forms w on RY and (continuous)
vector fields F on RY;

(4e7) / (F,n) = /(M O)w
(4e8/ (F,n) /det

4e10 Proposition. For every (N —
w’ on RY such that for every smooth set U C RV, / w= / W'
au

7h”)

for w of (4e6) and O conforming to n.

)y (D1¥)us -+, (Dptp)) du if det(n, D14, ..., Datp) >0

1)-form w of class C! on RY there exists an N-form



(Green’s theorem)

(4el7) ]iU(L dx + M dy) = // <W - 8L> dzdy.

5al Definition. (a) Let M C R" be a manifold (of some dimension n). A mapping
o M — RN o(x) = (1(2),...,0n,(x)), is continuously differentiable, in symbols
o€ CHM — RN2),if 1,..., 0N, € CH(M).

(b) Let M; C RN M, C R™ be manifolds (of some dimensions ny,n2). A mapping
@ 1 My — My is continuously differentiable, in symbols ¢ € CY(M; — M), if ¢ is
continuously differentiable as a mapping M; — RY2. If, in addition, ¢ is invertible and
o=t e CY(My — M), then ¢ is a diffeomorphism My — My.

5a2 Exercise. If (G,v) is a chart of an n-dimensional manifold M C RY, then 1 is
a diffeomorphism between the n-dimensional manifold G C R™ and the n-dimensional
manifold ¥(G) C M C RV,

5a3 Exercise. Let U,V C RY be open sets, ¢ : U — V a diffeomorphism, and M C U
a manifold. Then ¢(M) C V is a manifold, and ¢|p : M — ¢(M) is a diffeomorphism.

5a4 Exercise. Let o € CY(M; — Ma), 1 € C1(My — Ms), then oy € C1(M; — Ms).

(has) (Yow)s =thuops, (Yop) =¢ op™. (Always)

5a6 Definition. The tangent bundle TM of an n-manifold M C RY is the set
TM = {(z,h) :x € M, h € T,M} Cc R*V.

5a9 Lemma. Let M; C RV, M, C RM2 be manifolds (of some dimensions n1, ng), and
¢ € CY(M; — Msy). Then there exists one and only one mapping Dy € C(TM; — TM>)

e that (9o )(0). (907)(1)) = (D) (1(0),7' (1)
whenever v € C!([tg,t1] — My) is a path, and ¢ € [to,t1].

(5all) D(¢ 0 ©)zh = (DY) () (D)l - (The chain rule of Analysis-4)
(" (W) (z, h) = w(p«(x), s (h)) = w(p(z), (Dp)sh) . (Pullback of 1-form)

(5al2) P (fw) =" (fle"(w);  (5al3)  D(p"f) =" (Df).
al4d w= w a (w) = w.
Pullback of n—forms
(gp*(w))(w,hl,..., ( ) L)O*(hl) ..,(p*(h ) ( ( 7<D<p hla"'a(D(p)whn)'

(5al7)

Ay

(5a19) / Yrw :/ w.
(M71,04) (M2,05)

(5al8) / /w -

(For orientation preserving diffeomorphism ¢ : M7 — M>.)

5b6 Lemma. Let Uy, Us C RY be open sets; ¢ € CH(U; — Us); and F; € C(U; — RY),
Fy € C(Uy — RY) the vector fields that correspond (by (@e6]) to (N — 1)-forms wy, wy
such that wy = @*wy. Then F; = (adj Dp)(Fs o ¢).

r sin 9) jo} (r Cos 6) .

B <g> - (ii?flz cosd rsin 6

5b8 Exercise (rotation). Let p = L : RY — R be a linear transformation such that

Vz € RN |Lz| = |z|, and det L = +1. Then the relation F; = (adj Dp)(Fs o ¢) becomes
Fi=L"oFoL.

5b9 Proposition. For the constant vector field Fy(z) = (1,0,...,0) and a mapping ¢ :

— (¢1(2),...,on(x)) of class Ct, the vector field (adj Dy)(Fao¢) is Vo X -+ - X V.

5b11 Corollary. For the vector field Fy(z1,...,zn) = (21,0,...
p:ia e (¢1(2),...,on(x)) of class C* we have (adj Dy)(Faop) = o1 Vg X - - -

5b12 Corollary. Let U;,U; C RY be open sets, ¢ : Uy — U a diffeomorphism,
det Dy > 0, F5 a continuous vector field on Ug,iand V5 a smooth set such that Vo C Us.
Then V; = ¢~ 1(V3) is a smooth set such that Vi C Uy, Fy : 2 +— adj(Dp). Fa(p(z)) is a

<F2, Il2>.
V2

5b7 Exercise (polar coordinates).

,0) and a mapping
X V(pN.

continuous vector field on Uy, and / (Fy,ny) =
oV )

5¢10 Proposition. / det Df =0 if f € C'(R™ — R") has a bounded support.

(A digression to topology: no-retraction theorem and Brouwer fixed point theorem.)

In the rest of Sect. 5 we define the pullback of vector fields by p*F = (adj Dy)(F o), re-
define the pullback of functions by ¢* f = (det Dy)(foyp), and get for C?-diffeomorphisms
f=divF < ¢"f=div(e"F), that is, ©*(div F) = div(¢*F).
5c19 Definition. Let U C RY be an open set, ' € C(U — RY) a vector field, and
f € C(U) a function. We say that f is the generalized divergence of F and write

f=divF, if / f= / (F,n) for all smooth sets V such that V C U.
\%4 oV

5c20 Remark. (a) The generalized divergence is unique;
(b) if F € C*, then tr(DF) is the generalized divergence of F.

5c24 Exercise. Let U C RY be an open set and ¢ (2),...,pon € C1({U — RY). Then

div(e1 Vs x -+ x Vo) = det(Dey, ..., Don)).
5d1 Proposition. Let U,V C RN be open sets, V C U, and Z C 9V. If the divergence
theorem holds (see 4b4) for V and OV \ Z, and a vector field F' € C(U — R") has the

generalized divergence, then / div F = / (F,n).
1% ov\Z

5d6 Theorem. Let U,V C RY be open sets, ¢ : U — V a mapping of class C?,
F : V — R a vector field that has the generalized divergence. Then the generalized
divergence of p*F exists and is equal to ¢*(div F).

5d8 Theorem (divergence theorem for a singular box). Let a vector field F' € C(U —
RY) on an open set U C RY have the generalized divergence, and I' € C'(B — RY),

['(B) Cc U. Then
/ *(div F) :/ (T*(F),n).
B oB\Z




The generalized exterior derivative of an (N — 1)-form w on RY is an N-form dw such
that

(6al) / w = / dw for all smooth sets U,
ou

if such dw exists. ) )
In terms of the function f that corresponds to dw according to dw = fdet and the
vector field F' that corresponds to w according to (4e6) we have

(6a2) W=dv < f=divF.

6a3 Definition. Let U C RY be an open set, n € {1,..., N}, w an (n — 1)-form on

U. We say that an n-form w’ on U is the generalized exterior derivative of w, and
write w’ = dw, if p*w’ is the generalized exterior derivative of p*w (as defined by (6al))
whenever ¢ : V — U is a map of class C', and V C R" is an open set.

6a4 Exercise. A function f € C'(U), treated as a 0-form, has the generalized exterior
derivative df : (x,h) = (Dpf)s-

6a5 Remark. In the special case n = N — 1 Definition conforms to (6al)).

6a6 Lemma. If dw exists, then d(¢*w) exists and is equal to ¢*(dw).
CHRM — RN))

(Here ¢ €

6a8 Theorem. Every differential form of class C' has the exterior derivative.

6¢c2 Theorem (Stokes’ theorem).
Jre= L
ar
for every (n — 1)-form w of class C' on RY and singular n-box I' in R¥.

6¢c3 Remark. The theorem still holds when dw is the generalized exterior derivative of
an (n — 1)-form w of class C°.

/dso - / (o) (B dt = p(y(t)) — p(y(te)) = /8 0.

hl S0 hn7i1
(6b3) (daiy A--- Ndag,)) (b, .. hy) = i . (Notation)
1,in N,in
where h; ; is the j-th coordinate of h;.
w= Z Fmaroimn () ATy A=+ A dTyy,,
(6b5) 1<my < <mn <N (For every n-form w on R")
fmh mn( ) - w(x)eml7 T '7€7nn) .
In particular, the volume form on R™ is det =dxy A --- Adz,.
(6b6) dpr N Ndpn = @ (dzy A -+~ Ndxy,) (Notation)
for p: x— (1(z),...,0n(2)), p € CLRY — R™).
6b10 Proposition. d(det) =0.
6b13 Corollary. d(dpi A---Adp,) =0 for all ¢q,...,p, € CHRY).
(6b17)  dw = > Afoy s ATy A= Ady,, . (See (6b5))

1<mi<---<mnp_1<N

6b19 Corollary. (a) d(¢*w) = ¢*(dw) whenever dw exists and ¢ € C;
(b) if w, € C1, then dw is classical, but d(p*w) is (generally) not;
(c) if w € C' and ¢ € C?, then dw and d(¢*w) are classical.

6b20 Corollary. d(dw) = 0 for all n-forms w of class C*.

/w —/ "(t))dt when w(z,h) = (F(x),h).
tU
(2t 90( (to )| < ((max|V(y(1))] ) length()
dw = df1 A dl’l + -+ di A dSCN = Z(sz] - D]fl) dﬁCl A dl‘j . (FOI‘ 1—fOI‘H1)
i<j
Dimension 2: w = F; dxy + Fydxs = ’g; legxc; :

dw = (DzEl) dro N dri + (D1E2) dri N\ dre =

t1
/ wz/(—H2d$1+H1dJU2)=/ (Hyvh — Hayy) dt = flux
or

to

(D1E2 — D2E1) d.]?l A dl‘g .

(El dx + E2 dy) = /(D1E2 — DgEl) d[L‘dy .
or I
Dimension 3: w = F;dx1 + Fydxo + E3drs; H = curl B

dw = (D1E2 - D2E1) dl‘l /\dl’g + (D2E3 - D3E2) dl’g /\dIg + (D3E1 - D1E3) dl‘g /\dIl .
| —
Hs H;y H>
(6el) The circulation of E around 0T is equal to the flux of curl £ through I'.
(6€2) ‘% E‘ < (max | curl E|)area(T) .
ar
id function
\Y
“Facet 2” ‘% vector field (E) ‘
(6e3) Jcurl
“Facet, 3” ‘# vector field (H) ‘
w = fdxy Ndxo N dzs (fhv
function
(6e4) curl(Vf) =0, div(curl E) = 0.




