
1e10 Definition. A differential form of order k and of class Cm on Rn is a function
ω : Rn × (Rn)k → R of class Cm such that for every x ∈ Rn the function ω(x, ·, . . . , ·) is
an antisymmetric multililear k-form on Rn.

(1e12)

∫
Γ

ω =

∫
B

ω
(
Γ(u), (D1Γ)u, . . . , (DkΓ)u

)
du .

Antisymmetric multililear k-forms on Rn are a vector space of dimension
(
n
k

)
.

2b4 Proposition. The following three conditions on a set M ⊂ RN and a point x0 ∈M
are equivalent:

(a) there exists an n-chart of M around x0;
(b) there exists an n-cochart of M around x0;
(c) there exists a local diffeomorphism h : RN → RN near x0 such that

(u, v) ∈M ⇐⇒ h(u, v) ∈ Rn × {0N−n}
for all (u, v) ∈ Rn × RN−n near x0.

2b8 Definition. A nonempty set M ⊂ RN is an n-dimensional manifold (or n-manifold)
if for every x0 ∈M there exists an n-chart of M around x0.

2b9 Exercise. Let M1 be an n1-manifold in RN1 , and M2 an n2-manifold in RN2 ; then
M1 ×M2 is an (n1 + n2)-manifold in RN1+N2 .

2b10 Definition. Let M ⊂ RN be an n-manifold; a function f : M → R is continuously
differentiable if for every chart (G,ψ) of M the function f◦ψ is continuously differentiable
on G.

2b19 Exercise. Let (G,ψ) be a chart around x0 = ψ(u0) and (U,ϕ) a co-chart around
x0. The following three conditions on a vector h ∈ RN are equivalent:

(a) h is a tangent vector (at x0);
(b) h belongs to the image of the linear operator (Dψ)u0 : Rn → RN ;
(c) h belongs to the kernel of the linear operator (Dϕ)x0 : RN → RN−n.

2c1 Definition. A differential form of order k (or k-form) on an n-manifold M ⊂ RN
is a continuous function ω on the set {(x, h1, . . . , hk) : x ∈ M, h1, . . . , hk ∈ TxM} such
that for every x ∈ M the function ω(x, ·, . . . , ·) is an antisymmetric multililear k-form
on TxM .

(2c2)

∫
(G,ψ)

ω =

∫
G

ω
(
ψ(u), (D1ψ)u, . . . , (Dnψ)u

)
du .

2c3 Proposition. Let (G1, ψ1), (G2, ψ2) be two charts of an oriented manifold (M,O).
If ψ1(G1) = ψ2(G2) then ∫

(G1,ψ1)

ω =

∫
(G2,ψ2)

ω

for every n-form ω on M ; that is, either these two integrals converge and are equal, or
both integrals diverge.

2c6 Definition. An n-form µ on an oriented n-manifold (M,O) in RN is the volume
form, if for every x ∈ M the antisymmetric multililear n-form µ(x, ·, . . . , ·) on TxM is
normalized and Ox-positive.

Jψ(u) =
√

det
(
〈(Diψ)u, (Djψ)u〉

)
i,j (The (generalized) Jacobian)

(2c17)

∫
U

f =

∫
G

f(ψ(u))Jψ(u) du where U = ψ(G) and (G,ψ) is an n-chart.

2c20 Lemma. Jψ =
√

1 + |∇f |2. (Jacobian for a graph)

2d3 Lemma. Let M ⊂ RN be an n-manifold and K ⊂ M a compact set. Then there
exist single-chart continuous functions ρ1, . . . , ρi : M → [0, 1] such that ρ1 + · · ·+ ρi = 1
on K.

(2d8)

∫
M

f =

∫
(G,ψ)

fµ(G,ψ) =

∫
G

(f ◦ ψ)Jψ .

product v(M1 ×M2) = v(M1)v(M2) .(2d14)

scaling v(sM) = snv(M) .(2d15)
motion v(T (M)) = v(M) ;

∫
T (M)

f ◦ T−1 =
∫
M
f .(2d16)

cylinder v(M) = (b− a)|h|v(M1) .(2d17)

cone v(M) = c
n+1 (bn+1 − an+1)v(M1) .(2d18)

revolution v(M) = 2π
∫
M1
|y| .(2d19)

(3b1)

∫
Rn

∇f = 0 if f ∈ C1(Rn) has a bounded support.

(3b4) nx =
1√

1 + |∇g|2
(
−(D1g), . . . ,−(Dng), 1

)
. (Unit normal vector to a graph)

(3b5) ∇sng f(x) =
(
f(x+ 0nx)− f(x− 0nx)

)
nx .

3b8 Theorem. Let M ⊂ RN be an (N − 1)-manifold, K ⊂ M a compact subset, and
f : RN \ K → R a continuously differentiable function with a bounded support and
bounded gradient ∇f (on RN \K). Then∫

RN\K
∇f +

∫
M

∇sng f = 0 .

3b10 Lemma. Let (U1, . . . , U`) be an open covering of a compact set K ⊂ RN . Then
there exist functions ρ1, . . . , ρi ∈ C1(RN ) such that ρ1 + · · ·+ ρi = 1 on K and each ρj
has a compact support within some Um.

(3b12)

∫
RN\K

u∇v = −
∫
RN\K

v∇u−
∫
M

∇sng(uv) .

(3b13)

∫
RN

u∇v = −
∫
RN

v∇u for u, v ∈ C1(RN ), uv compactly supported.

3b14 Definition. A bounded regular open set G ⊂ RN whose boundary ∂G is a (nec-
essarily compact) hypersurface (that is, (N − 1)-manifold) will be called a smooth set.



(3b15)

∫
G

∇f =

∫
M

fn . (Smooth G, bounded ∇f)

3c1 Theorem. Let G ⊂ Rn+1 be an open set, ϕ ∈ C1(G), ∀x ∈ G ∇ϕ(x) 6= 0, and f ∈
C(G) compactly supported. Then for every c ∈ ϕ(G) the set Mc = {x ∈ G : ϕ(x) = c}
is an n-manifold in Rn+1, the function c 7→

∫
Mc

f on ϕ(G) is continuous and compactly

supported, and ∫
ϕ(G)

dc

∫
Mc

f =

∫
G

f |∇ϕ| .

(3c8)

∫ ∞
0

dr

∫
|·|=r

f =

∫
|·|>0

f ; (3c9) sphere: v(S1) =
2πN/2

Γ(N/2)
.

(3d3) divF = tr(DF ) = D1F1 + · · ·+DnFn = (∇F1)1 + · · ·+ (∇Fn)n .

(3d4)

∫
Rn

divF = 0 if F ∈ C1(Rn → Rn) has a bounded support.

(3e1) divsng F (x) = 〈F (x+ 0nx)− F (x− 0nx),nx〉 .

(3e2) divsng F =

N∑
k=1

(
∇sng Fk)k .

3e3 Theorem. Let M ⊂ RN be an (N − 1)-manifold, K ⊂ M a compact subset, and
F : RN \K → RN a continuously differentiable mapping with a bounded support and
bounded derivative (on RN \K). Then∫

RN\K
divF +

∫
M

divsng f = 0 .

4a3 Theorem (Divergence theorem). Let G ⊂ RN be a smooth set, F ∈ C1(G→ RN ),
with DF bounded on G. Then the integral of divF over G is equal to the (outward)

flux of F through ∂G:

∫
G

divF =

∫
∂G

〈F,n〉.

4a4 Exercise. div(fF ) = f divF+〈∇f, F 〉 whenever f ∈ C1(G) and F ∈ C1(G→ RN ).

(4a5)

∫
G

〈∇f, F 〉 =

∫
∂G

f〈F,n〉 −
∫
G

f divF .

4a6 Exercise. (a) If f(x) = g(|x|), then ∇f(x) = g′(|x|)
|x| x;

(b) if F (x) = g(|x|)x, then divF (x) = |x|g′(|x|) +Ng(|x|);
(c) if F (x) = g(|x|)x, then the (outward) flux of F through the boundary of the ball

{x : |x| < r} is crNg(r), where c = 2πN/2

Γ(N/2) is the area of the unit sphere.

4b4 Def. Divergence theorem holds for G and ∂G \ Z, if G ⊂ RN is bounded regular
open, Z ⊂ ∂G closed, ∂G \ Z n-manifold of finite volume, and

∫
G

divF =
∫
∂G\Z〈F,n〉

for all F ∈ C(G→ RN ) such that F |G ∈ C1(G→ RN ) and DF is bounded on G.

(4c1) ∆f = div∇f ; f is harmonic, if ∆f = 0.

(4c2)

∫
G

∆f =

∫
∂G

〈∇f,n〉 =

∫
∂G

Dnf , first Green formula

(4c3)

∫
G

(u∆v + 〈∇u,∇v〉) =

∫
∂G

〈u∇v,n〉 =

∫
∂G

uDnv , second Green formula

(4c4)

∫
G

(u∆v − v∆u) =

∫
∂G

(uDnv − vDnu) , third Green formula

4d1 Lemma. For every N > 2 and f ∈ C2(RN ) with a compact support,∫
RN

∆f(x)

|x|N−2
dx = −(N − 2)

2πN/2

Γ(N/2)
f(0) .

4d2 Remark. For N = 2,

∫
R2

∆f(x) log |x|dx = 2πf(0).

4d3 Proposition (Mean value property). For every harmonic function on a ball, with
bounded second derivatives, its value at the center of the ball is equal to its mean value
on the boundary of the ball.

4d7 Exercise (Maximum principle for harmonic functions).
Let u be a harmonic function on a connected open set G ⊂ RN . If supx∈G u(x) = u(x0)
for some x0 ∈ G then u is constant.

(4d8) ∆f(x) = 2N lim
ε→0

1

ε2

((
mean of f on {y : |y − x| = ε}

)
− f(x)

)
.

4d10 Exercise. (a) For every f integrable (properly) on {x : |x| < R},∫
|·|<R f∫
|·|<R 1

=

∫ R

0

∫
|·|=r f∫
|·|=r 1

drN

RN
.

(b) For every bounded harmonic function on a ball, its value at the center of the ball is
equal to its mean value on the ball.

4d11 Proposition. (Liouville’s theorem for harmonic functions)
Every harmonic function RN → [0,∞) is constant.

(4e5) ∀h 〈h, h1×· · ·×hn〉 = det(h, h1, . . . , hn) (Cross-product, orthogonal to h1, . . . , hn)

(4e6) ω(x, h1, . . . , hn) = 〈F (x), h1 × · · · × hn〉 = det(F (x), h1, . . . , hn) ,

a linear one-to-one correspondence between (N − 1)-forms ω on RN and (continuous)
vector fields F on RN ;

(4e7)

∫
M

〈F,n〉 =

∫
(M,O)

ω for ω of (4e6) and O conforming to n.

(4e8)

∫
M

〈F,n〉=
∫
G

det
(
F (ψ(u)), (D1ψ)u, . . . , (Dnψ)u

)
du if det(n, D1ψ, . . . ,Dnψ) > 0.

4e10 Proposition. For every (N −1)-form ω of class C1 on RN there exists an N -form

ω′ on RN such that for every smooth set U ⊂ RN ,

∫
∂U

ω =

∫
U

ω′.



(4e17)

∮
∂U

(Ldx+M dy) =

∫∫
U

(
∂M

∂x
− ∂L

∂y

)
dxdy . (Green’s theorem)

5a1 Definition. (a) Let M ⊂ RN be a manifold (of some dimension n). A mapping
ϕ : M → RN2 , ϕ(x) =

(
ϕ1(x), . . . , ϕN2

(x)
)
, is continuously differentiable, in symbols

ϕ ∈ C1(M → RN2), if ϕ1, . . . , ϕN2
∈ C1(M).

(b) Let M1 ⊂ RN1 , M2 ⊂ RN2 be manifolds (of some dimensions n1, n2). A mapping
ϕ : M1 → M2 is continuously differentiable, in symbols ϕ ∈ C1(M1 → M2), if ϕ is
continuously differentiable as a mapping M1 → RN2 . If, in addition, ϕ is invertible and
ϕ−1 ∈ C1(M2 →M1), then ϕ is a diffeomorphism M1 →M2.

5a2 Exercise. If (G,ψ) is a chart of an n-dimensional manifold M ⊂ RN , then ψ is
a diffeomorphism between the n-dimensional manifold G ⊂ Rn and the n-dimensional
manifold ψ(G) ⊂M ⊂ RN .

5a3 Exercise. Let U, V ⊂ RN be open sets, ϕ : U → V a diffeomorphism, and M ⊂ U
a manifold. Then ϕ(M) ⊂ V is a manifold, and ϕ|M : M → ϕ(M) is a diffeomorphism.

5a4 Exercise. Let ϕ ∈ C1(M1 →M2), ψ ∈ C1(M2 →M3), then ψ◦ϕ ∈ C1(M1 →M3).

(5a5) (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗, (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ . (Always)

5a6 Definition. The tangent bundle TM of an n-manifold M ⊂ RN is the set

TM = {(x, h) : x ∈M, h ∈ TxM} ⊂ R2N .

5a9 Lemma. Let M1 ⊂ RN1 , M2 ⊂ RN2 be manifolds (of some dimensions n1, n2), and
ϕ ∈ C1(M1 →M2). Then there exists one and only one mapping Dϕ ∈ C(TM1 → TM2)
such that (

(ϕ ◦ γ)(t), (ϕ ◦ γ)′(t)
)

= (Dϕ)
(
γ(t), γ′(t)

)
whenever γ ∈ C1([t0, t1]→M1) is a path, and t ∈ [t0, t1].

(5a11) D(ψ ◦ ϕ)xh = (Dψ)ϕ(x)(Dϕ)xh . (The chain rule of Analysis-4)(
ϕ∗(ω)

)
(x, h) = ω

(
ϕ∗(x), ϕ∗(h)

)
= ω

(
ϕ(x), (Dϕ)xh

)
. (Pullback of 1-form)

(5a12) ϕ∗(fω) = ϕ∗(f)ϕ∗(ω) ; (5a13) D(ϕ∗f) = ϕ∗(Df) .

(5a14)

∫
γ

ω =

∫
(t0,t1)

γ∗(ω) ; (5a15)

∫
γ

ϕ∗(ω) =

∫
ϕ∗(γ)

ω .

Pullback of n-forms:(
ϕ∗(ω)

)
(x, h1, . . . , hn)=ω

(
ϕ∗(x), ϕ∗(h1), . . . , ϕ∗(hn)

)
=ω
(
ϕ(x), (Dϕ)xh1, . . . , (Dϕ)xhn

)
.

(5a17)

∫
Γ

ω =

∫
B◦

Γ∗(ω) ; (5a18)

∫
Γ

ϕ∗(ω) =

∫
ϕ∗(Γ)

ω .

(5a19)

∫
(M1,O1)

ϕ∗ω =

∫
(M2,O2)

ω . (For orientation preserving diffeomorphism ϕ : M1 →M2.)

5b6 Lemma. Let U1, U2 ⊂ RN be open sets; ϕ ∈ C1(U1 → U2); and F1 ∈ C(U1 → RN ),
F2 ∈ C(U2 → RN ) the vector fields that correspond (by (4e6)) to (N − 1)-forms ω1, ω2

such that ω1 = ϕ∗ω2. Then F1 = (adjDϕ)(F2 ◦ ϕ).

5b7 Exercise (polar coordinates). F1

(
r
θ

)
=
(
r cos θ r sin θ
− sin θ cos θ

)
F2

(
r cos θ
r sin θ

)
.

5b8 Exercise (rotation). Let ϕ = L : RN → RN be a linear transformation such that
∀x ∈ RN |Lx| = |x|, and detL = +1. Then the relation F1 = (adjDϕ)(F2 ◦ ϕ) becomes

F1 = L−1 ◦ F2 ◦ L .
5b9 Proposition. For the constant vector field F2(x) = (1, 0, . . . , 0) and a mapping ϕ :
x 7→

(
ϕ1(x), . . . , ϕN (x)

)
of class C1, the vector field (adjDϕ)(F2◦ϕ) is ∇ϕ2×· · ·×∇ϕN .

5b11 Corollary. For the vector field F2(x1, . . . , xN ) = (x1, 0, . . . , 0) and a mapping
ϕ : x 7→

(
ϕ1(x), . . . , ϕN (x)

)
of class C1 we have (adjDϕ)(F2 ◦ϕ) = ϕ1∇ϕ2×· · ·×∇ϕN .

5b12 Corollary. Let U1, U2 ⊂ RN be open sets, ϕ : U1 → U2 a diffeomorphism,
detDϕ > 0, F2 a continuous vector field on U2, and V2 a smooth set such that V 2 ⊂ U2.
Then V1 = ϕ−1(V2) is a smooth set such that V 1 ⊂ U1, F1 : x 7→ adj(Dϕ)xF2(ϕ(x)) is a

continuous vector field on U1, and

∫
∂V1

〈F1,n1〉 =

∫
∂V2

〈F2,n2〉.

5c10 Proposition.

∫
Rn

detDf = 0 if f ∈ C1(Rn → Rn) has a bounded support.

(A digression to topology: no-retraction theorem and Brouwer fixed point theorem.)

In the rest of Sect. 5 we define the pullback of vector fields by ϕ∗F = (adjDϕ)(F ◦ϕ), re-
define the pullback of functions by ϕ∗f = (detDϕ)(f◦ϕ), and get for C2-diffeomorphisms

f = divF ⇐⇒ ϕ∗f = div(ϕ∗F ) , that is, ϕ∗(divF ) = div(ϕ∗F ) .

5c19 Definition. Let U ⊂ RN be an open set, F ∈ C(U → RN ) a vector field, and
f ∈ C(U) a function. We say that f is the generalized divergence of F and write

f = divF , if

∫
V

f =

∫
∂V

〈F,n〉 for all smooth sets V such that V ⊂ U .

5c20 Remark. (a) The generalized divergence is unique;
(b) if F ∈ C1, then tr(DF ) is the generalized divergence of F .

5c24 Exercise. Let U ⊂ RN be an open set and ϕ1(x), . . . , ϕN ∈ C1(U → RN ). Then
div
(
ϕ1∇ϕ2 × · · · × ∇ϕN

)
= det(Dϕ1, . . . , DϕN )).

5d1 Proposition. Let U, V ⊂ RN be open sets, V ⊂ U , and Z ⊂ ∂V . If the divergence
theorem holds (see 4b4) for V and ∂V \ Z, and a vector field F ∈ C(U → RN ) has the

generalized divergence, then

∫
V

divF =

∫
∂V \Z

〈F,n〉.

5d6 Theorem. Let U, V ⊂ RN be open sets, ϕ : U → V a mapping of class C1,
F : V → RN a vector field that has the generalized divergence. Then the generalized
divergence of ϕ∗F exists and is equal to ϕ∗(divF ).

5d8 Theorem (divergence theorem for a singular box). Let a vector field F ∈ C(U →
RN ) on an open set U ⊂ RN have the generalized divergence, and Γ ∈ C1(B → RN ),
Γ(B) ⊂ U . Then ∫

B

Γ∗(divF ) =

∫
∂B\Z

〈Γ∗(F ),n〉 .



The generalized exterior derivative of an (N − 1)-form ω on RN is an N -form dω such
that

(6a1)

∫
∂U

ω =

∫
U

dω for all smooth sets U ,

if such dω exists.
In terms of the function f that corresponds to dω according to dω = f det and the

vector field F that corresponds to ω according to (4e6) we have

(6a2) ω′ = dω ⇐⇒ f = divF .

6a3 Definition. Let U ⊂ RN be an open set, n ∈ {1, . . . , N}, ω an (n − 1)-form on
U . We say that an n-form ω′ on U is the generalized exterior derivative of ω, and
write ω′ = dω, if ϕ∗ω′ is the generalized exterior derivative of ϕ∗ω (as defined by (6a1))
whenever ϕ : V → U is a map of class C1, and V ⊂ Rn is an open set.

6a4 Exercise. A function f ∈ C1(U), treated as a 0-form, has the generalized exterior
derivative df : (x, h) 7→ (Dhf)x.

6a5 Remark. In the special case n = N − 1 Definition 6a3 conforms to (6a1).

6a6 Lemma. If dω exists, then d(ϕ∗ω) exists and is equal to ϕ∗(dω). (Here ϕ ∈
C1(RM → RN ).)

6a8 Theorem. Every differential form of class C1 has the exterior derivative.

(6b3)
(
dxi1 ∧ · · · ∧ dxin

)
(h1, . . . , hn) =

∣∣∣∣∣h1,i1 . . . hn,i1
. . . . . . . . .
h1,in . . . hn,in

∣∣∣∣∣ (Notation)

where hi,j is the j-th coordinate of hi.

(6b5)
ω =

∑
1≤m1<···<mn≤N

fm1,...,mn(x) dxm1 ∧ · · · ∧ dxmn ,

fm1,...,mn(x) = ω(x, em1 , . . . , emn) .

(For every n-form ω on RN )

In particular, the volume form on Rn is det = dx1 ∧ · · · ∧ dxn.

(6b6) dϕ1 ∧ · · · ∧ dϕn = ϕ∗(dx1 ∧ · · · ∧ dxn) (Notation)

for ϕ : x 7→
(
ϕ1(x), . . . , ϕn(x)

)
, ϕ ∈ C1(RN → Rn).

6b10 Proposition. d(det) = 0.

6b13 Corollary. d(dϕ1 ∧ · · · ∧ dϕn) = 0 for all ϕ1, . . . , ϕn ∈ C1(RN ).

(6b17) dω =
∑

1≤m1<···<mn−1≤N

dfm1,...,mn−1
∧ dxm1

∧ · · · ∧ dxmn−1
. (See (6b5))

6b19 Corollary. (a) d(ϕ∗ω) = ϕ∗(dω) whenever dω exists and ϕ ∈ C1;
(b) if ω, ϕ ∈ C1, then dω is classical, but d(ϕ∗ω) is (generally) not;
(c) if ω ∈ C1 and ϕ ∈ C2, then dω and d(ϕ∗ω) are classical.

6b20 Corollary. d(dω) = 0 for all n-forms ω of class C1.

6c2 Theorem (Stokes’ theorem). ∫
Γ

dω =

∫
∂Γ

ω

for every (n− 1)-form ω of class C1 on RN and singular n-box Γ in RN .

6c3 Remark. The theorem still holds when dω is the generalized exterior derivative of
an (n− 1)-form ω of class C0.∫

γ

dϕ =

∫ t1

t0

(ϕ ◦ γ)′(t) dt = ϕ(γ(t1))− ϕ(γ(t0)) =

∫
∂γ

ϕ .∫
γ

ω =

∫ t1

t0

〈F (γ(t)), γ′(t)〉dt when ω(x, h) = 〈F (x), h〉 .∣∣ϕ(γ(t1)
)
− ϕ

(
γ(t0)

)∣∣ ≤ (max
t
|∇ϕ(γ(t))|

)
length(γ) .

dω = df1 ∧ dx1 + · · ·+ dfN ∧ dxN =
∑
i<j

(Difj −Djfi) dxi ∧ dxj . (For 1-form)

Dimension 2: ω = E1 dx1 + E2 dx2 =
∣∣∣H1 dx1
H2 dx2

∣∣∣;
dω = (D2E1) dx2 ∧ dx1 + (D1E2) dx1 ∧ dx2 = (D1E2 −D2E1) dx1 ∧ dx2 .∫

∂Γ

ω =

∫
γ

(−H2 dx1 +H1 dx2) =

∫ t1

t0

(H1γ
′
2 −H2γ

′
1) dt = flux∮

∂Γ

(E1 dx+ E2 dy) =

∫
Γ

(D1E2 −D2E1) dxdy .

Dimension 3: ω = E1 dx1 + E2 dx2 + E3 dx3; H = curlE;

dω = (D1E2 −D2E1)︸ ︷︷ ︸
H3

dx1∧dx2 +(D2E3 −D3E2)︸ ︷︷ ︸
H1

dx2∧dx3 +(D3E1 −D1E3)︸ ︷︷ ︸
H2

dx3∧dx1 .

(6e1) The circulation of E around ∂Γ is equal to the flux of curlE through Γ.

(6e2)

∣∣∣∣ ∮
∂Γ

E

∣∣∣∣ ≤ (max | curlE|
)
area(Γ) .

(6e3)

0-form oo id //

d��

function

∇��
1-form oo “Facet 2” //

d��

vector field (E)

curl��
2-form oo “Facet 3” //

d��

vector field (H)

div��
3-form oo

ω = f dx1 ∧ dx2 ∧ dx3 // function

(6e4) curl(∇f) = 0 , div(curlE) = 0 .


