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2a No derivatives

We consider random trigonometric sums of the form

X(t) =
N∑
k=1

akRe
(
(X2k−1 + iX2k)e

iλkt
)

=
N∑
k=1

ak(X2k−1 cosλkt−X2k sinλkt)

where a1, . . . , aN > 0, 0 < λ1 < · · · < λN < ∞, and X1, . . . , X2N are
independent standard normal (that is, distributed N(0, 1)) random variables.

The distribution of X(·) is shift-invariant. In other words, X(·) is a
stationary random process.

It may happen that all λk/(2π) are integers, and then X(t + 1) = X(t),
but generally X(·) need not be periodic.

Assumption A:
N∑
k=1

a2k = 1 .

That is, X(0) ∼ N(0, 1). Otherwise we may rescale X.

Assumption An: assumption A holds, and in addition,

∀λ ∈ [0,∞)
∑

k:λk∈[λ,λ+1]

a2k ≤
1

n
.

The correlation function

E
(
X(0)X(t)

)
=

N∑
k=1

a2k cosλkt

1This section is, to a large extent, a one-dimensional counterpart of the work:
F. Nazarov, M. Sodin (2009), “On the number of nodal domains of random spherical
harmonics”, American Journal of Mathematics 131:5, 1337–1357.



Tel Aviv University, 2010 Gaussian measures : results formulated 8

need not decay in n exponentially. For example, N � n, λk = nk/N ,
ak = 1/

√
N ; then

E
(
X(0)X(t)

)
≈ 1

n

∫ n

0

cosλt dλ =
sinnt

nt
;

another example gives

E
(
X(0)X(t)

)
≈ 2

n2

∫ n

0

(n− λ) cosλt dλ =

(
sinnt/2

nt/2

)2

.

In amazing contrast, many interesting probabilities decay in n exponentially.

2a1 Lemma. Let X satisfy assumption A, and a measurable function ϕ :
R→ R be γ1-integrable (that is,

∫
|ϕ| dγ1 <∞). Then the random variable

ξ =

∫ 1

0

ϕ
(
X(t)

)
dt

is integrable, and

E ξ =

∫
ϕ dγ1 .

2a2 Theorem. Let X satisfy assumption An, and a function ϕ : R→ R be
continuous almost everywhere, and

sup
x

|ϕ(x)|
1 + |x|

<∞ .

Then the random variable ξ introduced above satisfies, for every ε > 0,

P
(
|ξ − E ξ| ≥ ε

)
≤ 2e−cε,ϕn

for some cε,ϕ > 0 (dependent on ε and ϕ only, not on n).

The same holds for Rd-valued processes X(·) provided that X(0) ∼ γd.
For f ∈ C[0, 1] denote

T (f) = inf
g

∫ 1

0

|f(t)− g(t)| dt

where the infimum is taken over all measurable g : (0, 1) → R that send
Lebesgue measure to γ1.

2a3 Theorem. Let X satisfy assumption An. Then

P
(
T (X(·)) ≥ ε

)
≤ 2e−cεn

for some cε > 0 dependent on ε only.
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The same holds for Rd-valued processes X(·) (with γd in place of γ).
A trivial rescaling of t by arbitrary L > 0 turns Assumption An, Lemma

2a1 and Theorem 2a2 into the following.

Assumption An,L: assumption A holds, and in addition,

∀λ ∈ [0,∞)
∑

k:λk∈[λ,λ+ 1
L
]

a2k ≤
1

n
.

2a4 Lemma. Let X satisfy assumption A, and a measurable function ϕ :
R→ R be γ1-integrable. Then the random variable

ξ =
1

L

∫ L

0

ϕ
(
X(t)

)
dt

is integrable, and

E ξ =

∫
ϕ dγ1 .

2a5 Theorem. Let X satisfy assumption An,L, and a function ϕ : R → R
be continuous almost everywhere, and

sup
x

|ϕ(x)|
1 + |x|

<∞ .

Then the random variable ξ introduced above satisfies, for every ε > 0,

P
(
|ξ − E ξ| ≥ ε

)
≤ 2e−cε,ϕn

for some cε,ϕ > 0.

2b One derivative

Assumption B:
N∑
k=1

a2k = 1 and
N∑
k=1

λ2ka
2
k = 1 .

That is, X(0) ∼ N(0, 1) and X ′(0) ∼ N(0, 1). Otherwise we may rescale
t. In fact, X(0) and X ′(0) are independent; thus,

(
X(0), X ′(0)

)
∼ γ2.

Assumption Bn,L: assumption B holds, and in addition,

∀λ ∈ [0,∞)
∑

k:λk∈[λ,λ+ 1
L
]

(1 + λ2k)a
2
k ≤

1

n
.
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IfX satisfiesBn,L then the 2-dimensional process (X,X ′) satisfiesAn,L.Thus,
Theorem 2a2 (2-dim version) may be applied to random variables of the form

1

L

∫ L

0

ϕ
(
X(t), X ′(t)

)
dt .

But now we turn to a more interesting random variable.

2b1 Theorem. Let X satisfy assumption B, and a measurable function
ϕ : R→ R satisfy

∫
|ϕ(y)||y|e−y2/2 dy <∞. Then the random variable

ξ =
1

L

∑
t∈[0,L],X(t)=0

ϕ
(
X ′(t)

)
is integrable, and

E ξ =
1

2π

∫
ϕ(y)|y|e−y2/2 dy .

(Assumption B does not contain L, but anyway, the theorem above holds
for all L > 0.)

In particular (for ϕ(·) = 1), the expected number of zeroes per unit time
is equal to 1/π.1

The expected number (per unit time) of zeroes t such that |X ′(t)| ≤ ε is
O(ε2) as ε→ 0+.

2c Two derivatives

Assumption CM :

N∑
k=1

a2k = 1,
N∑
k=1

λ2ka
2
k = 1 , and

N∑
k=1

λ4ka
2
k ≤M .

Thus,
(
X(0), X ′(0)

)
∼ γ2, and E |X ′′(0)|2 ≤M . In fact, X ′(0) and X ′′(0)

are independent, but E
(
X(0)X ′′(0)

)
= −1.

Assumption CM,n,L: assumption CM holds, and in addition,

∀λ ∈ [0,∞)
∑

k:λk∈[λ,λ+ 1
L
]

(1 + λ2k)
2a2k ≤

1

n
.

Clearly, CM,n,L implies Bn,L.

1“Rice’s formula” (Kac 1943, Rice 1945, Bunimovich 1951, Grenander and Rosenblatt
1957, Ivanov 1960, Bulinskaya 1961, Itô 1964, Ylvisaker 1965 et al. See [1, Sect. 10.3]).
“. . . the famous Rice formula, undoubtedly one of the most important results in the appli-
cations of smooth stochastic processes” (R.J. Adler and J.E. Taylor, “Random fields and
geometry”, Springer 2007; see Preface, page viii).
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2c1 Theorem. Let X satisfy assumption CM,n,L, and a function ϕ : R→ R
be continuous almost everywhere, ϕ(0) = 0, and

sup
x 6=0

|ϕ(x)|
|x|

<∞ .

Then the random variable

ξ =
1

L

∑
t∈[0,L],X(t)=0

ϕ
(
X ′(t)

)
is integrable,

E ξ =
1

2π

∫
ϕ(y)|y|e−y2/2 dy ,

and
P
(
|ξ − E ξ| ≥ ε

)
≤ 2e−cM,ε,ϕn

for some cM,ε,ϕ > 0.
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