
Tel Aviv University, 2005 Gaussian measures and Gaussian processes 1

1 Basic notions

1a Why be normal? . . . . . . . . . . . . . . . . 1

1b The two-dimensional normal distribution . 4

1c Gaussian spaces . . . . . . . . . . . . . . . . . 7

1d The standard n-dimensional Gaussian measure 9

1e Gaussian random vectors . . . . . . . . . . . 10

1f Gaussian measures . . . . . . . . . . . . . . . 11

1g Gaussian processes . . . . . . . . . . . . . . . 13

1a Why be normal?

1a1 Definition. Functions f, g ∈ L2(0, 1) are identically distributed, if they
satisfy the following equivalent conditions:

(a)
∫ 1

0
α
(
f(ω)

)
dω =

∫ 1

0
α
(
g(ω)

)
dω for all bounded continuous functions

α : R → R;
(b)

∫ 1

0
exp

(
iλf(ω)

)
dω =

∫ 1

0
exp

(
iλg(ω)

)
dω for all λ ∈ R;

(c) mes{ω ∈ (0, 1) : f(ω) ≤ a} = mes{ω ∈ (0, 1) : g(ω) ≤ a} for all
a ∈ R.

By ‘mes’ I denote Lebesgue measure.

1a2 Exercise. Functions f(ω) = cos(2πω) and g(ω) = sin(2π · 2005ω) are
identically distributed. Prove it by checking each of 1a1(a), (b), (c) sepa-
rately.

Hint: cos(x + 2π) = cos x; sin(π
2

+ x) = cos x.

1a3 Exercise. Prove that 1a1(a)⇐⇒(b).
Hint. Show that it is sufficient to prove (a) for periodic α. Use the

fact that every periodic function is the uniform limit of some trigonometric
polynomials.

1a4 Exercise. Prove that 1a1(a)⇐⇒(c).
Hint. Recall the bounded convergence theorem. Approximate continuous

functions by step functions, and the other way round.

1a5 Exercise. Consider two functions

f(ω) = cos 2πω, g(ω) = 1√
2
sin 2πω + 1√

2
sin(4πω) .
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(a) Check that the equality
∫
α(f) =

∫
α(g) holds for all quadratic poly-

nomials α, however, f and g are not identically distributed.
(b) Show that the functions ψf (λ) =

∫
eiλf , ψg(λ) =

∫
eiλg are different,

however, ψf (0) = ψg(0), ψ′
f (0) = ψ′

g(0) and ψ′′
f (0) = ψ′′

g (0).

We see that different functions f ∈ L2(0, 1) satisfying ‖f‖ = 1 and
∫
f = 0 lead to different functions ψf (λ) =

∫
eiλf . What about a typicalf?

Let us try

(1a6) f(x) =
1√
n

(
± cos(2πω)± sin(2πω)± · · · ± cos(2πnω)± sin(2πnω)

)
;

we have a finite set of 22n functions. Here are some examples; the signs are
chosen at random.

�

�

2

1

ψf

n=2

�

�

2

1

ψf

n=5

�

�

2

1

ψf

n=10

�

�

2

1

ψf

n=20

�

�

2

1

ψf

n=50

�

�

2

1

ψf

n=100

For large n the typical ψf becomes close to exp(− 1
2
λ2). Only the real part

of ψf is plotted above, but the imaginary part is taken into account in the
table of |ψf (λ) − exp(−1

2
λ2)| given below; as before, f is chosen at random.

λ 0 0.4 0.8 1.2 1.6 2
n = 2 0 0.006 0.04 0.1 0.2 0.3
n = 100 0 0.0003 0.003 0.01 0.02 0.03

We feel that the most typical distribution of a function f ∈ L2(0, 1) satisfying
‖f‖ = 1 and

∫
f = 0 should be as follows.

1a7 Definition. A function f ∈ L2(0, 1) has the standard normal distribu-

tion (symbolically, f ∼ N(0, 1)), if

∫ 1

0

exp
(
iλf(ω)

)
dω = exp

(
−1

2
λ2

)

for all λ ∈ R.

All such f must be identically distributed (recall 1a1(b)).
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1a8 Exercise. If f ∼ N(0, 1) then (−f) ∼ N(0, 1). Prove it.

We see that the limiting distribution is symmetric, unlike the distribution
of a typical f of the form (1a6).

�

�

1

1 f

n=2

�

�

1

1
f

n=100

What about existence of f ∼ N(0, 1)? A naive hope to get such f by taking
the limit of (1a6) as n→ ∞ is dashed by the following observation.

1a9 Exercise. 〈fn, g〉 → 0 as n→ ∞ for all g ∈ L2, if each fn is of the form
(1a6), no matter how the signs are chosen. Prove it.

Hint: first, check it for all trigonometric polynomials g.

A function cannot oscillate infinitely fast. However, why oscillate? The
intuition tells us that every function is distributed like some increasing func-
tion (just because every array of real numbers may be sorted). Let us try to
find an increasing function f with the standard normal distribution.

1a10 Exercise. Let f : (0, 1) → R be a strictly increasing function that
satisfies f(0+) = −∞, f(1−) = +∞ and has a derivative f ′ continuous on
(0, 1). Then

∫ 1

0

exp
(
iλf(ω)

)
dω =

∫ +∞

−∞
eiλxg′(x) dx ,

where g : R → (0, 1) is the inverse function to f . Prove it.

In order to get f ∼ N(0, 1), the inverse Fourier transform of g ′ should be
exp(−1

2
λ2). However, the latter is well-known to be the Fourier transform of

itself (up to a constant),

∫ +∞

−∞
eiλxe−x

2/2 dx =
√

2π e−λ
2/2 for all λ ∈ R .
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Thus, we take

g′(x) =
1√
2π

e−x
2/2 dx

︸ ︷︷ ︸

ϕ(x)

; g(x) =
1√
2π

∫ x

−∞
e−u

2/2 dx

︸ ︷︷ ︸

Φ(x)

; f(ω) = Φ−1(ω)

ϕ

Φ

Φ−1

and get f ∼ N(0, 1).
The function ϕ is called the standard normal density, and Φ is the stan-

dard normal c.d.f. (cumulative distribution function).
If f ∼ N(0, 1) then for any a, b ∈ R the function af + b (that is, af + b ·1)

is said to be distributed normally with the mean b and the variance a2 (or,
the standard deviation |a|); symbolically, af + b ∼ N(b, a2).

1b The two-dimensional normal distribution

A pair of functions f1, f2 ∈ L2(0, 1) may be treated as a single vector-function
f ∈ L2

(
(0, 1) → R2

)
.

1b1 Definition. Vector-functions f, g ∈ L2

(
(0, 1) → R2

)
are identically

distributed, if they satisfy the following equivalent conditions:
(a)

∫ 1

0
α
(
f(ω)

)
dω =

∫ 1

0
α
(
g(ω)

)
dω for all bounded continuous functions

α : R2 → R;
(b)

∫ 1

0
exp

(
i〈λ, f(ω)〉

)
dω =

∫ 1

0
exp

(
i〈λ, g(ω)〉

)
dω for all λ ∈ R2;

(c) mes{ω ∈ (0, 1) : f(ω) ≤ a} = mes{ω ∈ (0, 1) : g(ω) ≤ a} for all
a ∈ R2.

Here 〈λ, f(ω)〉 = λ1f1(ω)+λ2f2(ω), and the inequality f(ω) ≤ a is treated
coordinate-wise, f1(ω) ≤ a1 and f2(ω) ≤ a2.

Equivalence of 1b1(a),(b),(c) can be proven similarly to 1a3, 1a4.

1b2 Exercise. Vector-functions f(ω) = (cos 2πω, cos 4πω) and g(ω) =
(sin 2πω, sin 4πω) are not identically distributed, even though f1, g1 are
identically distributed and f2, g2 are identically distributed, too. However,
h(ω) =

(
cos(2π · 2005ω), cos(4π · 2005ω)

)
is distributed like f . Prove it all.
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Let us try vector-functions f = (f1, f2), where f1, f2 are of the form (1a6)
each; there are 24n such f . Each leads to ψf : R2 → C,

ψf (λ) =

∫ 1

0

exp
(
i〈λ, f(ω)〉

)
dω .

(Do not confuse ψf(λ) and ψf1(λ1)ψf2(λ2).) For large n the typical ψf be-
comes close to exp

(
−1

2
|λ|2

)
= exp

(
−1

2
λ2

1 − 1
2
λ2

2

)
. Here are typical values of

|ψf (λ) − exp
(
−1

2
|λ|2

)
.

λ1 0 0 0.4 0 0.4 0.8 0.8 0.8 1.6 1.6
λ2 0 0.4 0 0.8 0.4 0 0.4 0.8 0 1.6

n = 3 0 0.01 0.003 0.06 0.02 0.03 0.06 0.1 0.2 0.4
n = 100 0 0.002 0.0005 0.01 0.02 0.006 0.02 0.05 0.04 0.07

1b3 Definition. A vector-function f ∈ L2

(
(0, 1) → R2

)
has the 2-dimen-

sional standard normal distribution, if
∫ 1

0

exp
(
i〈λ, f(ω)〉

)
dω = exp

(
−1

2
|λ|2

)

for all λ ∈ R2.

All such f must be identically distributed.

1b4 Exercise. If (f1, f2) has the 2-dimensional standard normal distribu-
tion, then

(a) f1 ∼ N(0, 1) and f2 ∼ N(0, 1);
(b) 1√

2
(f1 + f2) ∼ N(0, 1);

(c) moreover, f1 cosα + f2 sinα ∼ N(0, 1) for every α ∈ R;
(d) for every α ∈ R the vector-function

(
f1 cosα + f2 sinα, −f1 sinα +

f2 cosα
)

has the 2-dimensional standard normal distribution.
Prove it.

We see that the limiting distribution is symmetric under rotations, unlike
the distribution of a typical f . It is difficult to plot the distribution of f , but
we can plot its support, the image, f

(
(0, 1)

)
= {(f1(ω), f2(ω)) : ω ∈ (0, 1)}:

�

�

1
1

n=3
n=100
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What about existence of f satisfying 1b3? The condition f1 ∼ N(0, 1),
f2 ∼ N(0, 1) is necessary but not sufficient (just try f1 = f2).

1b5 Definition. Functions f, g ∈ L2(0, 1) are independent, if they satisfy
the following equivalent conditions:

(a)
∫ 1

0
α
(
f(ω)

)
β
(
g(ω)

)
dω =

(∫ 1

0
α
(
f(ω)

)
dω

)(∫ 1

0
β
(
g(ω)

)
dω

)
for all bounded

continuous functions α, β : R → R;
(b)

∫ 1

0
exp

(
iλf(ω)+iµg(ω)

)
dω =

(∫ 1

0
exp

(
iλf(ω)

)
dω)

(∫ 1

0
exp

(
iµg(ω)

)
dω)

for all λ, µ ∈ R;
(c) mes{ω ∈ (0, 1) : f(ω) ≤ a, g(ω) ≤ b} = mes{ω ∈ (0, 1) : f(ω) ≤

a} · mes{ω ∈ (0, 1) : g(ω) ≤ b} for all a ∈ R.

Equivalence of 1b5(a),(b),(c) can be proven similarly to 1a3, 1a4.

1b6 Exercise. Functions f, g of the form (1a6) cannot be independent.
Prove it.

Hint. 0 = mes{ω : a < f(ω) < b, c < g(ω) < d} 6= mes{ω : a < f(ω) <
b} · mes{ω : c < g(ω) < d} for some a, b, c, d.

In fact, continuously differentiable functions on (0, 1) cannot be indepen-
dent, unless one (or both) of them is constant. However, two non-constant
continuous functions can be independent! The famous Peano curve gives an
example.

x

y

t

x

t

y

x( t
4
) = y(t)

2
; x(1+t

4
) = x(t)

2
; x(2+t

4
) = 1+x(t)

2
; x(3+t

4
) = 2−y(t)

2
;

y( t
4
) = x(t)

2
; y(1+t

4
) = 1+y(t)

2
; y(2+t

4
) = 1+y(t)

2
; y(3+t

4
) = 1−x(t)

2

for 0 ≤ t ≤ 1.

However, continuity of these functions is of no interest to us; discontinuous
independent functions are easier to construct:

u
(
β1

2
+ β2

4
+ β3

8
+ . . .

)
= β1

2
+ β3

4
+ β5

8
+ . . . ,

v
(
β1

2
+ β2

4
+ β3

8
+ . . .

)
= β2

2
+ β4

4
+ β6

8
+ . . . ,

where β1, β2, · · · ∈ {0, 1} are binary digits. These functions u, v are in-
dependent. Each of the two is uniformly distributed on (0, 1), that is,
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mes{ω : u(ω) ≤ x} = x for 0 ≤ x ≤ 1, and the same for v. Therefore
functions f = Φ−1 ◦ u and g = Φ−1 ◦ v are distributed N(0, 1) each, and
independent; thus, the vector-function (f, g) has the 2-dimensional standard
normal distribution.

The vector-function constructed above looks rather clumsy, since its two-
dimensional values are ascribed to one-dimensional points ω in a tricky way.
However, the distribution of its values is very nice; in some sense, it is the
most typical distribution of a pair of functions f, g ∈ L2(0, 1) such that
‖f‖ = 1, ‖g‖ = 1. (The restrictions

∫
f = 0,

∫
g = 0 may be dropped;

these properties emerge naturally in the limit, as well as
∫
fg = 0 and many

others.)

1c Gaussian spaces

1c1 Definition. A (closed linear) subspace G ⊂ L2(0, 1) is Gaussian, if
g ∼ N(0, 1) for every g ∈ G such that ‖g‖ = 1.

1c2 Exercise. There exists a 2-dimensional Gaussian subspace of L2(0, 1).
Prove it.

Hint: use 1b4(c).

1c3 Definition. (a) A finite sequence f1, . . . , fn of functions fk ∈ L2(0, 1) is
orthogaussian, if

∫ 1

0

exp
(
iλ1f1(ω) + · · ·+ iλnfn(ω)

)
dω = exp

(
−1

2
λ2

1 − · · · − 1
2
λ2
n

)

for all λ1, . . . , λn ∈ R.
(b) An infinite sequence f1, f2, . . . of functions fk ∈ L2(0, 1) is orthogaus-

sian, if

∫ 1

0

exp
(
iλ1f1(ω) + · · ·+ iλnfn(ω)

)
dω = exp

(
−1

2
λ2

1 − · · · − 1
2
λ2
n

)

for all n = 1, 2, . . . and λ1, . . . , λn ∈ R.

1c4 Exercise. A pair f1, f2 is orthogaussian if and only if f1 ∼ N(0, 1),
f2 ∼ N(0, 1) and f1, f2 are independent. Prove it.

1c5 Exercise. If a pair f1, f2 is orthogaussian then it is orthonormal, that
is,

‖f1‖ = 1, ‖f2‖ = 1, 〈f1, f2〉 = 0 .

Prove it.
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Similarly to 1b5 we define independence of f1, . . . , fn. Similarly to 1c4, a
finite sequence f1, . . . , fn is orthogaussian if and only if f1 ∼ N(0, 1), . . . , fn ∼
N(0, 1) and f1, . . . , fn are independent.

Pairwise independence does not suffice! A hint toward a counterexample:
take f1, f2, f3 orthogaussian and restrict them to the set {ω : f1(ω)f2(ω)f3(ω) > 0}.

1c6 Exercise. The following three conditions are equivalent for every n-di-
mensional subspace G ⊂ L2(0, 1):

(a) some orthonormal basis f1, . . . , fn of G is orthogaussian;
(b) every orthonormal basis f1, . . . , fn of G is orthogaussian;
(c) G is Gaussian.

Prove it.
Hint: (a)=⇒(c)=⇒(b).

For every n we may decompose the countable set of binary digits into n
countable subsets, construct n independent functions distributed uniformly
on (0, 1) each, and transform them into an orthogaussian sequence (via Φ−1).
Thus, an n-dimensional Gaussian subspace of L2(0, 1) exists for every n.

1c7 Exercise. The set {f ∈ L2(0, 1) : f ∼ N(0, 1)} is a closed subset of
L2(0, 1).

Prove it.
Hint: |eiλa − eiλb| ≤ |λ||a− b|.

1c8 Exercise. Generalize 1c6 to infinite sequences.
Hint: use 1c7 for proving (a)=⇒(c).

Using the fact that countable union of countable sets is countable, we get
the following result.

1c9 Proposition. There exists a infinite-dimensional Gaussian subspace of
L2(0, 1).

A Gaussian subspace is a paradise! Here,

• functions of equal norms are always identically distributed;

• orthogonal functions are always independent;

• independence is equivalent to pairwise independence.

These are the simplest manifestations of an amusing harmony between ge-
ometry and probability, inherent to Gaussian measures and processes.
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1d The standard n-dimensional Gaussian measure

If f ∼ N(0, 1) then

(1d1)

∫ 1

0

exp
(
iλf(ω)

)
dω =

∫ +∞

−∞
eiλxϕ(x) dx for all λ ∈ R ,

where ϕ(x) =
1√
2π

e−x
2/2 dx

(recall 1a10 and the argument after it). We may say that two functions are
identically distributed, one function being f : (0, 1) → R, the other function
being just g : R → R, g(x) = x (the identical map); however, the domain R

of g is equipped with the measure ϕ(x) dx rather than Lebesgue measure dx.

	 


In this sense, ϕ is the density of (the distribution of) f .
More formally, we may consider the Hilbert space L2(R, ϕ) of all (equiv-

alence classes of) measurable functions g : R → R with

‖g‖2 =

∫ +∞

−∞
g2(x)ϕ(x) dx <∞ ,

and generalize 1a1 accordingly.

1d2 Definition. Functions f ∈ L2(0, 1), g ∈ L2(R, ϕ) are identically dis-

tributed, if they satisfy the following equivalent conditions:
(a)

∫ 1

0
α
(
f(ω)

)
dω =

∫ +∞
−∞ α

(
g(x)

)
ϕ(x) dx for all bounded continuous

functions α : R → R;
(b)

∫ 1

0
exp

(
iλf(ω)

)
dω =

∫ +∞
−∞ exp

(
iλg(x)

)
ϕ(x) dx for all λ ∈ R;

(c) mes{ω ∈ (0, 1) : f(ω) ≤ a} = γ1{x ∈ R : g(x) ≤ a} for all a ∈ R.

Here

(1d3) γ1(A) =

∫

A

ϕ(x) dx for any measurable A ⊂ R .

Equivalence of 1d2(a),(b),(c) can be proven similarly to 1a3, 1a4. We may
write L2(R, ϕ) or L2(R, γ

1), it is the same.
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1d4 Exercise. (a) Similarly to 1a7 define the notion ‘g ∼ N(0, 1)’ for g ∈
L2(R, ϕ).

(b) Check that g ∼ N(0, 1) for the identical function g(x) = x treated as
an element of L2(R, ϕ)

1d5 Exercise. (a) Whether L2(R, ϕ) contains two independent f, g dis-
tributed N(0, 1) each, or not?

(b) The same but g(x) = x for all x.
Hints. (a): pass from L2(R, ϕ) to L2(0, 1) using Φ : R → (0, 1). (b): f should
be orthogonal to all bounded continuous functions.

1d6 Exercise. If f ∈ L2

(
(0, 1) → R2

)
has the 2-dimensional standard nor-

mal distribution, then
∫ 1

0

exp
(
i〈λ, f(ω)〉

)
dω =

∫

R2

exp
(
i〈λ, x〉

)
ϕ2(x) dx ,

where ϕ2(x) =
1

2π
exp

(
−1

2
|x|2

)
for x ∈ R

2 .

Prove it.
Hint: factor the integral.

The corresponding measure γ2 is rotation-invariant (since its density ϕ2

is).

1d7 Exercise. Define a Gaussian subspace of L2(R
2, ϕ2) and prove that the

space of linear functions R2 → R is a 2-dimensional Gaussian subspace of
L2(R

2, ϕ2).

For every n = 1, 2, . . . we have a probability measure γn on R
n,

γn(dx) = (2π)−n/2 exp
(
−1

2
|x|2

)

︸ ︷︷ ︸

ϕn(x)

dx ,

γn(dx1 . . .dxn) = γ1(dx1) . . . γ
1(dxn) .

Linear functions Rn → R are an n-dimensional Gaussian subspace of L2(R
n, γn).

Coordinate functions fk(x1, . . . , xn) = xk are an orthogonal, therefore or-
thogaussian, basis of this subspace. The measure γn is rotation-invariant
(since its density ϕn is).

1e Gaussian random vectors

Various definitions are in use of Gaussian random vectors in Hilbert, Banach,
linear topological, linear measurable and other spaces. As far as I understand,
all ‘good’ definitions are special cases of the following one.
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1e1 Definition. Let E be a linear space. A function ξ : (0, 1) → E is a
Gaussian random vector,1 if

(a) all measurable functions of the form f ◦ ξ, where f : E → R is linear,
are contained in a Gaussian subspace of L2(0, 1);2

(b) there exist linear functions f1, f2, · · · : E → R such that fk ◦ ξ are
measurable, and fk separate points of E, that is, ∀e ∈ E \{0} ∃k fk(e) 6= 0.

The dimension (finite, or ∞) of the least possible Gaussian subspace used
in (a) is called the dimension of the random vector.

1e2 Exercise. The general form of a one-dimensional Gaussian random
vector is

ξ(ω) = ζ(ω)e

for ζ ∈ L2(0, 1), ζ ∼ N(0, 1) and e ∈ E, e 6= 0.
Prove it.
Hint: fk(ξ(ω)) = ckζ(ω) for some ck, except for a negligible set of ω.

Therefore 1
ζ(ω)

ξ(ω) does not depend on ω.

1e3 Exercise. The general form of a n-dimensional Gaussian random vector
is

ξ(ω) = ζ1(ω)e1 + · · ·+ ζn(ω)en

for orthogaussian sequence ζ1, . . . , ζn and linearly independent vectors e1, . . . , en ∈
E.

Prove it.
Hint: fk(ξ(ω)) = ck,1ζ1(ω)+· · ·+ck,nζn(ω); therefore any ξ(ω1), . . . , ξ(ωn+1)

must be linearly dependent.

1f Gaussian measures

1f1 Definition. (a) The distribution of a Gaussian random vector ξ : (0, 1) →
E is the measure γ defined by

γ(A) = mes{ω : ξ(ω) ∈ A} = mes ξ−1(A)

for all A ∈ E such that ξ−1(A) is a measurable subset of (0, 1). These A are
called γ-measurable.

(b) Two Gaussian random vectors (0, 1) → E are identically distributed,

if their distributions are equal.3

1Or rather, a centered Gaussian random vector. However, I assume them all to be
centered, unless otherwise stated.

2That is, the equivalence class of the function f ◦ ξ belongs to the Gaussian subspace.
3In particular, defined on the same class of sets.
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(c) Distributions of (all possible) Gaussian random vectors ξ : (0, 1) → E
are called Gaussian measures1 on E.

Clearly, all γ-measurable sets are a σ-field, and every subset of a mea-
surable negligible set is a measurable negligible set (that is, of γ measure
0).

1f2 Exercise. Let ξ1, ξ2 : (0, 1) → E be identically distributed Gaussian
random vectors. Then ξ1, ξ2 are of the same dimension (finite or infinite).

Prove it.
Hint: ‖f ◦ ξ1‖ = ‖f ◦ ξ2‖.

Now we may define the dimension (finite or infinite) of a Gaussian mea-
sure as the dimension of any corresponding Gaussian random vector.

Especially, γn is an n-dimensional Gaussian measure on Rn. The proof is
straightforward, except for one point explained below. We take ξ : (0, 1) →
Rn as in 1e3 (e1, . . . , en being the standard basis). Every Lebesgue measur-
able set A ⊂ Rn is γ-measurable (think, why), but we need also the converse:
every γ-measurable set A ⊂ R

n is Lebesgue measurable. This is a special case
of a general theorem well-known in the theory of standard measure spaces.
Sketch of a proof: for every ε > 0 there exists a compact set C ⊂ ξ−1(A) such
that mesC ≥ mes ξ−1(A) − ε and the restriction ξ|C is continuous (Lusin’s
theorem). Then the set ξ(C) ⊂ A is compact, therefore, Lebesgue measur-
able. It remains to take εn → 0 and get ξ(C1) ∪ ξ(C2) ∪ · · · = A up to a
γ-negligible set.

In other words, a finite orthogaussian sequence leads to an isomorphism

between probability spaces
(
(0, 1),mes

)
and (Rn, γn).

1f3 Exercise. An n-dimensional Gaussian measure on a linear space E may
be defined equivalently as the image of γn under a linear embedding Rn → E.

Prove it.

In particular, an n-dimensional Gaussian measure γ on Rn is the image of
γn under an invertible linear transformation Rn → Rn; such γ has a density
pγ (thus, γ(A) =

∫

A
pγ(x) dx), and pγ(x) = const · exp

(
−Q(x)

)
for a strictly

positive quadratic form Q on Rn.
For m < n, an m-dimensional Gaussian measure on Rn is concentrated

on an m-dimensional linear subspace of Rn.

1Or rather, centered Gaussian measures. However, I assume them all to be centered,
unless otherwise stated.
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1f4 Exercise. A measure γ on Rn is Gaussian if and only if the function

ψγ(λ) =

∫

Rn

exp
(
i〈λ, x〉

)
γ(dx)

satisfies the condition: (− lnψγ) is a positive (maybe, not strictly positive)
quadratic form on Rn.

Prove it.
Hint: every positive quadratic form on Rn can be written as x 7→ 〈x, y1〉2+

· · · + 〈x, ym〉2 for some linearly independent y1, . . . , ym ∈ Rn.

1f5 Exercise. Describe explicitly all 1-dimensional Gaussian measures γ on
R2 and their quadratic forms (− lnψγ).

1g Gaussian processes

1g1 Definition. (a) A Gaussian (random) process1 on a set T is a map
Ξ : T → L2(0, 1) such that all Ξ(t) for t ∈ T are contained in a Gaussian
subspace of L2(0, 1);

(b) two Gaussian processes Ξ1,Ξ2 : T → L2(0, 1) are identically dis-

tributed, if for every n and t1, . . . , tn ∈ T , two vector-functions
(
Ξk(t1), . . . ,Ξk(tn)

)
:

(0, 1) → Rn (for k = 1, 2) are identically distributed.

A Gaussian process Ξ on a single-point set T = {t1} is just a function
(or rather, equivalence class) Ξ(t1) ∈ L2(0, 1), Ξ(t1) ∼ N(0, 1). A Gaussian
process Ξ on a finite set T = {t1, . . . , tn} is the same as a Gaussian random
vector

(
Ξ(t1), . . . ,Ξ(tn)

)
: (0, 1) → RT . The same holds for a countable T .

(However, for uncountable T the situation is more complicated.)
The covariance function of a Gaussian process Ξ : T → L2(0, 1) is the

function T × T → R,

(s, t) 7→ Cov
(
Ξ(s),Ξ(t)

)
= 〈Ξ(s),Ξ(t)〉 =

∫ 1

0

Ξ(s)(ω) · Ξ(t)(ω) dω .

1g2 Exercise. Two Gaussian processes on T are identically distributed if
and only if their covariance functions are equal.

Prove it.

In other words, the distribution of a Gaussian process is uniquely deter-
mined by its covariance function. Especially, if ‖Ξ(t)‖ = 1 for all t ∈ T (that

1Or rather, centered Gaussian process. However, I assume them all to be centered,
unless otherwise stated.
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is, Ξ maps T into the unit sphere of L2(0, 1)) then the distribution of Ξ is
uniquely determined by the corresponding metric on T ,

(s, t) 7→ ‖Ξ(s) − Ξ(t)‖ .

In general, it is determined by the metric together with the function t 7→
‖Ξ(t)‖.

1g3 Exercise. Whether there exists a Gaussian process Ξ on the four-
element set {1, 2, 3, 4} such that

‖Ξ(1) − Ξ(2)‖ = 1, ‖Ξ(2) − Ξ(3)‖ = 1, ‖Ξ(3) − Ξ(4)‖ = 1, ‖Ξ(4) − Ξ(1)‖ = 1,

‖Ξ(1) − Ξ(3)‖ = 2, ‖Ξ(2) − Ξ(4)‖ = 2,

or not?
Hint: think about 〈Ξ(1) − Ξ(2),Ξ(2) − Ξ(3)〉.

Stationary examples

As the first example let us consider the Gaussian random vector ζ1 cos t +
ζ2 sin t in the space of 2π-periodic continuous functions R → R, and the
corresponding Gaussian process. More exactly, the former is ω 7→ (t 7→
ζ1(ω) cos t + ζ2(ω) sin t), while the latter is t 7→ (ω 7→ . . . ).

1g4 Definition. A Gaussian process Ξ : R → L2(0, 1) is stationary (in other
words, homogeneous, or shift-invariant) if for every s ∈ R the two processes
t 7→ Ξ(t) and t 7→ Ξ(s+ t) are identically distributed.

1g5 Exercise. The process ζ1 cos t+ ζ2 sin t is stationary.
Prove it.

According to 1g2, a Gaussian process is stationary if and only if its co-
variance function depends only on the time interval,

Cov
(
Ξ(s),Ξ(t)

)
= Cov

(
Ξ(0),Ξ(t− s)

)
.

More generally, the process
∑n

k=1 ck(ζ2k−1 cos kt+ ζ2k sin kt) is stationary
for any n and c1, . . . , cn. Still more generally, we may try

(1g6) Ξ(t) =
∞∑

k=1

ck(ζ2k−1 cos kt+ ζ2k sin kt)

for some c1, c2, · · · ∈ R.
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1g7 Exercise. (a) If
∑
c2k < ∞ then the series (1g6) converges in L2(0, 1)

for every t ∈ R.
(b) If

∑
c2k = ∞ then the series (1g6) diverges in L2(0, 1) for every t ∈ R.

Prove it.
Hint: ζ1, ζ2, . . . are orthonormal.

We see that (1g6) defines a Gaussian process on R, provided that
∑
c2k <

∞.

1g8 Exercise. If
∑
c2k <∞ then Ξ is a continuous map R → L2(0, 1).

Prove it.

Hint:
∑∞

1 ‖fk−gk‖2 ≤ ∑n
1 ‖fk−gk‖2+

(√
∑∞

n+1 ‖fk‖2+
√

∑∞
n+1 ‖gk‖2

)2

.

We see that (1g6) defines a continuous curve in a Gaussian space, provided
that

∑
c2k <∞. What about the corresponding Gaussian random vector,

(1g9) ξ(ω) =

(

t 7→
∞∑

k=1

ck(ζ2k−1(ω) cos kt + ζ2k(ω) sin kt) ,

when is it well-defined?

1g10 Exercise. If
∑
c2k < ∞ then the series (1g9) converges in L2(0, 2π)

for almost every ω ∈ (0, 1).
Prove it.
Hint:

∑
c2k

(
ζ2
2k−1(ω)+ζ2

2k(ω)
)
<∞ for almost all ω, since

∑
c2k

∫ 1

0

(
ζ2
2k−1(ω)+

ζ2
2k(ω)

)
dω <∞.

We see that (1g9) defines a Gaussian random vector in L2(0, 2π), provided
that

∑
c2k <∞.

1g11 Exercise. If
∑

|ck| < ∞ then the series (1g9) converges in the space
of 2π-periodic continuous functions R → R (that is, uniformly in t).

Prove it.
Hint:

∑
|ck|

(
|ζ2k−1| + |ζ2k|

)
< ∞ almost everywhere on (0, 1), since

∑
|ck|

∫ 1

0

(
|ζ2k−1(ω)| + |ζ2k(ω)|

)
dω <∞.

We see that (1g9) defines a Gaussian random vector in C[0, 2π], provided
that

∑
|ck| <∞. It does not follow from 1g8! Do not think that

∑
c2k <∞

is enough!
What happens if

∑
|ck| = ∞ but

∑
c2k < ∞ (for instance, ck = 1/k)?

In fact, the condition c2k = O(1/k1+ε) is sufficient (and not necessary) for
convergence of (1g9) in C[0, 2π], which is far from being evident. However,
the condition

∑
c2k < ∞ is not sufficient for uniform, and even pointwise

convergence of (1g9) (which also is far from being evident); for some coef-
ficients we have a random equivalence class of functions, but not a random
function.
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Examples with independent increments

In discrete time we may produce a Gaussian random walk

Ξ(n) = ζ1 + · · ·+ ζn

from an orthogaussian sequence ζ1, ζ2, . . . We get a Gaussian random process
on T = {0, 1, 2, . . .}, or equivalently, a Gaussian random vector in the linear
space R∞ = R{0,1,2,... } of all (infinite) sequences. The increments Ξ(n) −
Ξ(n− 1) are independent. But what about continuous time?

1g12 Definition. A Gaussian random process Ξ on [0,∞) such that Ξ(0) =
0 has independent increments, if

Ξ(t2) − Ξ(t1), . . . ,Ξ(tn) − Ξ(tn−1) are independent

whenever 0 ≤ t1 < · · · < tn <∞.

Here is a boring example: Ξ(t) = ζ1 + · · ·+ ζn for n ≤ t < n+ 1. How to
construct an interesting example?

1g13 Exercise. A Gaussian process Ξ on [0,∞) such that Ξ(0) = 0 has
independent increments if and only if

Cov
(
Ξ(s) − Ξ(r), Ξ(u) − Ξ(t)

)
= 0

whenever 0 ≤ r < s ≤ t < u <∞.
Prove it.

1g14 Exercise. The distribution of a Gaussian process Ξ on [0,∞) with
independent increments (such that Ξ(0) = 0) is uniquely determined by the
increasing function t 7→ ‖Ξ(t)‖2.

Prove it.

The increasing function is a step function for the boring example men-
tioned above. How to make it strictly increasing? According to 1g13, we need
a curve in a Gaussian space G, that satisfies a geometric property (namely,
has orthogonal increments). Being geometric, the property is unrelated to
G. Having such a curve in some Hilbert space, we may transfer it to G using
the fact that all Hilbert spaces (of the same dimension) are geometrically the
same.

It is easy to find the needed curve in L2(0,∞); just indicators,

t 7→ 1(0,t) .
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Now, any linear isometric embedding Ξ̃ : L2(0,∞) → G (called isonormal

process on L2(0,∞)) gives us

Ξ(t) = Ξ̃
(
1(0,t)

)
,

a Gaussian process with independent increments, satisfying ‖Ξ(t)‖ =
√
t.

Such a process is called Brownian motion1 (or the Wiener process) and de-
noted by B (or W ) rather than Ξ. It is unique in distribution. It corresponds
to a Gaussian random continuous function [0,∞) → R (which is not evident),
also called Brownian motion.

1g15 Exercise. (a) ‘scaling’ For any c ∈ (0,∞), the Gaussian process

t 7→ 1

c
B(c2t)

is also a Brownian motion.
(b) ‘time reversal’ For any T ∈ (0,∞), the following two Gaussian pro-

cesses on [0, T ] are identically distributed:

t 7→ B(t) and t 7→ B(T ) − B(t) .

Prove it.

1g16 Exercise. ‘Ornstein-Uhlenbeck process’ Prove that the Gaussian pro-
cess

t 7→ e−tB(e2t)

on R is stationary, and its covariance function is (s, t) 7→ e−|s−t|.

More examples: large T

On the set T = {−1,+1}n consider the Gaussian process

Ξ(σ1, . . . , σn) = − 1√
n

∑

k<l

ζk,lσkσl ,

where (ζk,l)k<l is a family of n(n−1)/2 orthogaussian functions. They model
disorder in a system of n spins σ1, . . . , σn = ±1; namely, Ξ(σ1, . . . , σn) is

1By probabilists, not by physicists.
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the energy of the spin configuration σ1, . . . , σn. That is the Sherrington-
Kirkpatrick model for spin glasses, well-known in statistical physics. It ig-
nores the geometric location of atoms, assuming that all pairs interact in the
same way (‘mean field approximation’).1

Consider now the random analytic function on the complex plane C,
defined by

ξ(z) =

∞∑

k=0

1√
k!

ζ2k + iζ2k+1√
2

zk

where ζ0, ζ1, . . . are orthogaussian. Points z such that ξ(z) = 0 are a random
discrete set in C, well-known to physicists as the flat CAZP (chaotic analytic
zero points) model. It is invariant under shifts and rotations of the plane
(even though the Gaussian process is not stationary).

Various stationary isotropic (that is, rotation-invariant in distribution)
Gaussian random process (called also random fields) on Rn may be con-
structed as

Ξ(x) = Ξ̃
(
y 7→ ϕ(‖x+ y‖)

)
,

where ϕ is a (good enough) function on [0,∞) and Ξ̃ is the isonormal process
on L2(R

n) (that is, a linear isometric map from L2(R
n) to a Gaussian space);

it is applied to the rotation-invariant function y 7→ ϕ(‖y‖), shifted by x.
By the white noise on Rn some people mean just the isonormal process on

L2(R
n); others mean its restriction to (the set of all) indicators of measurable

subsets of R
n,

Ξ(A) = Ξ̃(1A) ;

note that Ξ(A ]B) = Ξ(A) + Ξ(B), the summands being independent.

Index

Brownian motion, 17

centered, 11–13
covariance function, 13

dimension, 11, 12
distribution, 11

Gaussian (sub)space, 7
Gaussian measure, 12
Gaussian process, 13
Gaussian random vector, 11

identically distributed, 1, 4, 9, 11, 13

independent, 6

independent increments, 16
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measurable, 11

negligible, 12

1This is one of several interesting models discussed in:
M. Talagrand, “Huge random structures”, Proc. Intern. Congress Math. 1998, Vol. 1,
507–536.
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Ornstein-Uhlenbeck process, 17
orthogaussian, 7
orthonormal, 7

pairwise independence, 8

standard normal c.d.f., 4
standard normal density, 4
standard normal distribution, 2, 5
stationary, 14

vector-function, 4

white noise, 18

B, Brownian motion, 17
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γn, 10

mes, Lebesgue measure, 1

N(0, 1), 2, 10

ϕ, 4
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