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3a Introduction

The theory of random matrices makes the

hypothesis that the characteristic energies of

chaotic systems behave locally as if they were

the eigenvalues of a matrix with randomly dis-

tributed elements.

. . . but when the complications increase beyond

a certain point the situation becomes hopeful

again, for we are no longer required to explain

the characteristics of every individual state but

only their average properties, which is much

simpler.

M.L. Mehta1

Nothing is random in the famous number π = 3.1415926535897932384 . . . ;
nevertheless, for the best of our knowledge, statistical properties of its (dec-
imal) digits do not differ from statistical properties of independent uniform
random digits.2

Similarly, nothing is random in the energy levels of (say) the U 239 nucleus;
nevertheless, their statistical properties appear to be reasonably close to
statistical properties of random matrices, considered below (in 3e).

See the introduction to a recent survey [2] for random matrices appear-
ing in problems of statistics, physics, number theory, operator algebras and
combinatorics.

Maintaining the tradition, I speak about random matrices, but in fact I
think about random (linear) operators in an n-dimensional Euclidean space.
If we choose an orthonormal basis in this space, then the operators become

1See Preface and Introduction to the book “Random matrices”, second edition, Aca-
demic Press, 1991.

2Still, no one is able to prove even a small part of this observation.
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n × n-matrices M ∈ Mn(R). A different basis leads to a different matrix
O−1MO, where O ∈ O(n) is an orthogonal matrix (that is, |Ox| = |x| for
x ∈ R

n, or equivalently, O−1 = O∗).
The unique (up to a coefficient) O(n)-invariant (that is, invariant under

M 7→ O−1MO for O ∈ O(n)) linear form (functional) on Mn(R) is the trace,

trace(M) = m1,1 + · · · + mn,n .

The so-called Hilbert-Schmidt norm ‖ · ‖HS (denoted also ‖ · ‖2),

‖M‖HS =
√

trace(M∗M) =
( ∑

k,l

m2
k,l

)1/2

(mentioned also in 2a) is the square root of an O(n)-invariant quadratic form
on Mn(R). In contrast to the usual operator norm ‖M‖ = sup{|Mx| : |x| ≤
1}, the HS norm turns Mn(R) into a Euclidean (not just normed) space. The
corresponding Gaussian measure (of dimension n2) on Mn(R) is especially
important: on one hand, it is O(n)-invariant,1 and on the other hand, it
turns the matrix elements mk,l of the random matrix into independent (and
identically distributed) random variables. A coefficient 1/

√
n is convenient,

as we will see:

(3a1) mk,l =
1√
n

ζk,l ,

where (ζk,l)k,l=1,...,n are n2 orthogaussian functions (on (0, 1), or (Rn2

, γn2

),
or another probability space).

The symmetric matrix (that is, self-adjoint operator)

A =
1

2
(M∗ + M)

is distributed according to the standard Gaussian measure on the Euclidean
space of all symmetric matrices (equipped with the norm

√
n‖ · ‖HS);

(3a2) ak,k =
1√
n

ζk,k , ak,l = al,k =
1√
2n

ζk,l

for 1 ≤ l < k ≤ n; here ζk,l are n(n+1)
2

orthogaussian functions.

1Moreover, it is in fact invariant under M 7→ MO and M 7→ OM separately (for all
O ∈ O(n)), not only M 7→ O−1MO.
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3b Estimating the norm

Let M be a random n × n-matrix distributed according to (3a1).
The distribution of Mx does not depend on the choice of a unit vector

x ∈ R
n (due to the O(n)-invariance) and is equal to γn

1/
√

n
. Thus,

(3b1) |Mx| = 1 + O
( 1√

n

)

in the sense that

(3b2) P

(

1 − c√
n
≤ |Mx| ≤ 1 +

c√
n

)

→ 1 as c → ∞, uniformly in n

(recall 2c4, (2c5)). Using the fact that
√

n(|Mx| − 1) is more concentrated
than N(0, 1) it is easy to see that max(|Me1|, . . . , |Men|) typically is close
to 1; however, it does not mean that ‖M‖ is close to 1. In fact, it is not!
Rather, ‖M‖ = 2 + O(n−2/3), and moreover, the limiting distribution of
n2/3(‖M‖ − 2) exists.1 The following weaker result is proven below.

3b3 Proposition. For every ε > 0,

P
(
‖M‖ ≤ 4 + ε

)
→ 1 as n → ∞ .

Here is the idea of the proof. For a given x, |Mx| typically is close to
1. Therefore, it holds for most pairs (x, M). Therefore, for a typical M , it
holds for most points x. Therefore, ‖M‖ is not too large.

We start the proof with the latter argument: if ‖M‖ is large then |Mx|
is large for many x.

3b4 Exercise. For every Z ∈ Mn(R) and c ∈ (0,∞),

γn{x : |Zx| ≥ c} ≥ 2Φ
(

− c

‖Z‖
)

.

Prove it.
Hint: take y ∈ R

n such that |y| = 1 and |Z∗y| = ‖Z‖, then |Zx| ≥
|〈Zx, y〉| and 〈Zx, y〉 = 〈x, Z∗y〉 ∼ N(0, ‖Z‖2) for x ∼ γn.

Now we estimate |Mx| from above for random independent x ∼ γn and
M ∼ βn, where βn is the relevant Gaussian measure on Mn(R). We note that

|Mx| =
√

n
|Mx|
|x|

|x|√
n

,

1The limiting distribution of 4n2/3(‖M‖ − 2) is the Tracy-Widom law of order 1, see
I.M. Johnstone, “On the distribution of the largest eigenvalue in principal components
analysis”, Ann. Statist. 29:2, 295–327 (2001).
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|x|/√n is concentrated near 1, and |Mx|/|x| is (independent of x and) dis-
tributed like |x|/√n (think, why).

By the Gaussian isoperimetry, |x| is more concentrated than N(0, 1).
Also, the median of |x| does not exceed

√
n (I did not prove it, but I use it

anyway; you may prove easily that the median does not exceed
√

n + 1, and
correct the proof accordingly). Thus,

(3b5) γn{x : |x| ≥ 2
√

n} ≤ Φ(−
√

n) .

3b6 Exercise. Prove that

(γn × βn){(x, Z) : |Zx| ≥ 4
√

n} ≤ e−n/2

for large n.
Hint: |Zx| ≥ 4

√
n implies |Zx|

|x| ≥ 2 or |x|√
n
≥ 2 (or both); use the Fubini

theorem, and note that Φ(−√
n) ∼ const√

n
e−n/2.

3b7 Exercise. Prove that
∫

Φ
(

− 4
√

n

‖Z‖
)

βn(dZ) ≤ e−n/2

for large n.
Hint: integrate 3b4 in Z and use 3b6.

3b8 Exercise. Prove Proposition 3b3.

Hint: P
(
‖M‖ ≥ 4 + ε

)
= P

(
Φ(−4

√
n

‖Z‖ ) ≥ Φ(−4
√

n
4+ε

)
)
≤ E Φ(− 4

√
n

‖Z‖ )

Φ(− 4
√

n

4+ε
)
→ 0.

The threshold, 4, in Proposition 3b3 can be improved to 2
√

2 ≈ 2.82
by replacing the crude estimate |Mx|

|x|
|x|√

n
≤

(
max( |Mx|

|x| , |x|√
n
)
)
2 with a better

estimate |Mx|
|x|

|x|√
n
≤ 1

4

( |Mx|
|x| + |x|√

n

)
2. Moreover, it can be improved to 2.51 by

replacing the Gaussian distribution of x/
√

n with the uniform distribution on
the unit sphere. However, the true threshold, 2, needs a different approach.

In fact, our proof shows that the convergence in Proposition 3b3 is ex-
ponentially fast. However, it could not be slow, because of the following
concentration property.

3b9 Exercise. The distribution of
√

n‖M‖ is more concentrated than N(0, 1).
Prove it.
Hint: Z 7→ √

n‖Z‖ is a 1-Lipschitz function w.r.t. the metric Z 7→√
n‖Z‖HS, since ‖Z‖ ≤ ‖Z‖HS for all Z.
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Some numerics, — sorted values of ‖M‖ for samples of 5 matrices M :

n ‖M‖
2 0.61 1.19 1.51 1.54 2.34
10 1.55 1.71 1.81 1.82 1.89
100 1.90 1.90 1.96 1.97 1.98
500 1.97 1.98 1.98 1.98 2.00

3c Orbit geometry: randomness disappears

By orbits I mean here such objects as the sequence (x, Ax, A2x, . . . ), where
A is a random symmetric matrix as in (3a2) and x is a unit vector. Another
example is (x, Mx, M 2x, . . . ), where M is a random matrix as in (3a1). A
more complicated case (for the same M) is the family of vectors Wx where
W runs over arbitrary monomials (words) built from M and M ∗ (say, W =
MMM∗M∗M∗MM∗M).

By geometry of the orbit (x, Ax, A2x, . . . ) I mean scalar products 〈Akx, Alx〉
for all k, l (or just 〈Akx, x〉, since 〈Akx, Alx〉 = 〈Ak+lx, x〉). Similarly, geom-
etry of the orbit (x, Mx, M 2x, . . . ) consists of 〈Mkx, M lx〉 = 〈(M∗)lMkx, x〉.
Geometry of the (complicated) word-indexed orbit consists of the numbers
〈Wx, x〉. For any given dimension n the orbit geometry is random (its dis-
tribution does not depend on x due to O(n)-invariance), but for large n the
orbit geometry becomes nearly deterministic due to measure concentration,
as we will see.

It is easy (but useless) to apply measure concentration to the linear func-
tion Z 7→ 〈Zx, x〉. What about Z 7→ 〈Zkx, x〉 ? This is a polynomial of
degree k, definitely not a Lipschitz function!

3c1 Exercise. Let f : R
n → R be a measurable function and B ⊂ R

n a
measurable set such that |f(x)− f(y)| ≤ |x− y| for all x, y ∈ B. Then there
exists a ∈ R such that

γn{x ∈ R
n : |f(x) − a| ≥ c} ≤ 2Φ(−c) + γn(Rn \ B)

for all c ∈ (0,∞).
Prove it.
Hint: there exists a 1-Lipschitz function g : R

n → R such that g(x) =
f(x) for all x ∈ B, for example, g(x) = supy∈B(f(y) − |x − y|).

We may choose B = {Z ∈ Mn(R) : ‖Z‖ ≤ 5}, then βn(Mn(R) \ B) → 0
as n → ∞ by Proposition 3b3. The function (say) Z 7→ Z3 is continuously
differentiable,

(Z + Y )3 = Z3 + Z2Y + ZY Z + Y Z2 + o(‖Y ‖)
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as ‖Y ‖ → 0; we may estimate the gradient of the function Z 7→ 〈Z3x, x〉 (for
a given unit vector x):

lim
ε→0

〈(Z + εY )3x, x〉 − 〈Z3x, x〉
ε

= 〈(Z2Y + ZY Z + Y Z2)x, x〉 ≤

≤ ‖Z2Y + ZY Z + Y Z2‖ ≤ 3‖Z‖2‖Y ‖ .

For Z ∈ B we get 75‖Y ‖ ≤ 75‖Y ‖HS, thus, the function Z 7→ 〈Z3x, x〉
restricted to B is 75-Lipschitz w.r.t. ‖ · ‖HS, therefore (75/

√
n)-Lipschitz

w.r.t.
√

n‖ · ‖HS; by 3c1 (and 3b3),

βn{Z ∈ Mn(R) : |〈Z3x, x〉 − r3,n| ≥ ε} → 0 as n → ∞

(for some numbers r3,n), and the same for any 〈Zkx, x〉. We see that

(3c2) 〈Mkx, x〉 − rk,n → 0 in probability as n → ∞

for some rk,n ∈ R. The choice of unit vector x ∈ R
n does not matter (due to

O(n)-invariance). It is tempting to take

(3c3) rk,n = E 〈Mkx, x〉 =

∫

Mn(R)

〈Zkx, x〉 βn(dZ) .

To this end, we need L1-convergence rather than convergence in probabil-
ity in (3c2). No doubt, the integral (3c3) exists for any k, l (indeed, in
finite dimension, every polynomial is integrable w.r.t. every Gaussian mea-
sure); the problem is that

∫

Mn(R)\Z〈Zkx, x〉 βn(dZ) could be large even though

βn(Mn(R) \ B) is small. Fortunately, it is forbidden by 3b9 (together with
3b3); these imply

sup
n

E ‖M‖p < ∞ for all p ∈ (0,∞) .

3c4 Exercise. Fill in the gaps in the arguments above, thus proving that
(3c2) holds for rk,n of (3c3) and moreover, the convergence in (3c2) holds in
all Lp (p < ∞).

3c5 Exercise. Prove that

1

n
trace(Mk) − rk,n → 0 in probability as n → ∞ .

Hint: all said above about the function Z 7→ 〈Zkx, x〉 holds also for the
function Z 7→ 1

n

(
〈Zke1, e1〉 + · · ·+ 〈Zken, en〉

)
= 1

n
trace(Zk).
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The formula

(3c6) rk,n =
1

n
E trace(Mk) =

1

n

∫

Mn(R)

trace(Zk) βn(dZ)

is equivalent to (3c3), since trace(Z) = 〈Ze1, e1〉+ · · ·+ 〈Zen, en〉 for any Z.
Moreover,

(3c7) E Mk =

∫

Mn(R)

Zk βn(dZ) = rk,n1n ,

since the O(n)-invariant (that is, commuting with O(n)) operator E M k must
be a scalar multiple of the identity operator 1n ∈ Mn(R).

3d Orbit geometry via random rotations

Let M be a random matrix as in (3a1). The geometry of the orbit (M kx)k=0,1,...

remains intact if we replace M with O−1MO for any O ∈ O(n) such that
Ox = x. For large n the geometry is nearly nonrandom, which means that
one can choose O (dependent on M) such that the orbit

(
(O−1MO)kx

)

k =
(O−1MkOx)k = (O−1Mkx)k is nearly nonrandom. We will do it via an ex-
plicit construction that reveals the orbit geometry.

3d1 Exercise. There exist measurable maps On : R
n → O(n) for n =

1, 2, . . . such that

|x − On(x)e1| → 0 in probability as n → ∞, for x ∼ γn
1/

√
n .

Prove it.
Hint: try the rotation by the right angle in the plane spanned by e1 and

x; namely,

On(x)e1 = x1, On(x)x1 = −e1,

On(x)y = y for all y orthogonal to e1, x1,

where x1 = (x − 〈x, e1〉e1)/|x − 〈x, e1〉e1|. That is,

On(x)y = 〈y, e1〉x1 − 〈y, x1〉e1 + y − 〈y, e1〉e1 − 〈y, x1〉x1 .

(Alternatively, one may use the rotation by the angle between e1 and x,
that is, On(x)e1 = x/|x|.)

We denote x2:n = x − 〈x, e1〉e1 =
∑n

k=2〈x, ek〉ek, x3:n =
∑n

k=3〈x, ek〉ek

and so on. Also, we denote by O2:n(x2:n) the construction of 3d1 applied on
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the (n − 1)-dimensional subspace R
2:n ⊂ R

1:n = R
n spanned by e2, . . . , en.

We have
O2:n(x2:n)e1 = e1 , |x2:n − O2:n(x2:n)e2| → 0

despite the (small) distinction between γn−1
1/

√
n

and γn−1
1/

√
n−1

. We use this rota-

tion for transforming the random matrix M as follows:

O1 = O2:n

(
(Me1)2:n

)
,

M1 = O−1
1 MO1 .

We have |O1e2 − (Me1)2:n| → 0, which may be written as O1e2 = (Me1)2:n +
o(1). However, (Me1)2:n = Me1 + o(1), thus O1e2 = Me1 + o(1), therefore
O−1

1 Me1 = e2 + o(1), and so,

M1e1 = O−1
1 Me1 = e2 + o(1) .

The first column of the random matrix M1 typically is close to (0, 1, 0, 0, . . . , 0),
which shows that the distribution of M1 differs from βn. However, the dis-
tinction affects the first column only, as we will see soon.

Denote by M2:n columns 2 . . . n of M ; that is, M2:ne1 = 0 and M2:nek =
Mek for k = 2, . . . , n. The distribution β2:n of M2:n is invariant under Z 7→
OZ for all O ∈ O(n) and under Z 7→ ZO for all O ∈ O(2 : n) = {O ∈
O(n) : Oe1 = e1}, therefore, under Z 7→ O−1ZO for O ∈ O(2 : n). Note
that O1 ∈ O(2 : n) depends only on the first column M1:1 of M (independent
of M2:n). For every bounded continuous (or just measurable) function fn :
Mn(R) → R,

∫

f
(
(M1)2:n

)
βn(dM) =

∫

β1:1(dM1:1)

∫

β2:n(dM2:n)f
(
(O−1

1 MO1)2:n
︸ ︷︷ ︸

=O−1

1
M2:nO1

)
=

=

∫

β1:1(dM1:1)

∫

β2:n(dM2:n)f(M2:n) =

∫

f dβ2:n ,

which means that (M1)2:n is distributed β2:n.
We continue the process recursively,

M0 = M ,

Ok = Ok+1:n

(
(Mk−1ek)k+1:n

)
,

Mk = O−1
k Mk−1Ok

0 0
1 0
0

0

�

ra
nd

om

for k = 1, 2, . . . and prove by induction that

Mkek = ek+1 + o(1) ,

(Mk)k+1:n is distributed βk+1:n.
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Also, Mk+1ek = ek+1 + o(1), Mk+2ek = ek+1 + o(1) and so on; indeed, ek and
ek+1 are invariant under Ok+1, O

−1
k+1, Ok+2, O

−1
k+2, . . .

The relations Mke1 = e2 +o(1), Mke2 = e3 +o(1), . . . , Mkek = ek+1 +o(1)
imply Mk

k e1 = ek+1+o(1). Therefore 〈Mk
k e1, e1〉 → 0, that is, 〈O−1MkOe1, e1〉 →

0 where O = O1 . . . Ok satisfies Oe1 = e1; we get

〈Mke1, e1〉 → 0 in probability as n → ∞

for k = 1, 2, . . . In terms of the numbers rk,n (recall (3c2)–(3c7)) it means
that

rk,n → 0 as n → ∞, for k = 1, 2, . . .

Similarly, 〈Mke1, M
le1〉 → 0 for k 6= l (and 1 for k = l); the limiting orbit

geometry describes just an orthonormal sequence. (Still, for now we have no
information about 〈Wx, x〉 in general, where W is a word build from M and
M∗.)

Some numerics:

n 2 10 100 500
〈Me1, e1〉 0.20 −0.05 0.08 0.03

|Me1|2 = 〈M∗Me1, e1〉 0.38 1.19 1.00 0.95
〈M2e1, e1〉 −0.42 −0.01 −0.03 0.02

|M2e1|2 = 〈M∗2M2e1, e1〉 0.26 0.92 1.11 0.95
〈M2e1, Me1〉 = 〈M∗M2e1, e1〉 0.09 −0.37 0.02 0.01

3e Wigner’s semi-circle law

Let A be a symmetric random matrix as in (3a2). We may use the same
rotation O1 = O2:n

(
(Ae1)2:n

)
as in 3d and get A1 = O−1

1 AO1 such that A1e1 =
e2 + o(1). However, the distribution of (A1)2:n differs from the distribution
of A2:n. Indeed, A1 = O∗

1AO1 is symmetric; its first row, being equal to its
first column, is close to (0, 1, 0, 0, . . . , 0).

Consider the matrix A2:n,2:n consisting of ak,l for k > 1, l > 1. Its distri-
bution β2:n,2:n is invariant under Z 7→ ZO and Z 7→ OZ for all O ∈ O(2:n).
Similarly to 3d we conclude that (A1)2:n,2:n is distributed β2:n,2:n.

Similarly to 3d we continue the process,

A0 = A ,

Ok = Ok+1:n

(
(Ak−1ek)k+1:n

)
,

Ak = O−1
k Ak−1Ok

0
1√
2 0 0

1√
2

0

0

0

�

�

ra
nd

om
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and prove that

A∗
k = Ak ,

√
2Akek = ek−1 + ek+1 + o(1) , (e0 = 0)

(Ak)k+1:n,k+1:n is distributed βk+1:n,k+1:n ;

as before,
√

2Ak+1ek = ek−1 +ek+1 +o(1),
√

2Ak+2ek = ek−1 +ek+1 +o(1) and
so on. The limiting (as n → ∞) geometry of the random orbit

(
(
√

2A)ke1

)

k

is the geometry of the nonrandom orbit
(
(S∗ + S)ke1

)

k, where S is the one-
sided shift operator in l2 = {(x1, x2, . . . ) :

∑
x2

k < ∞}, that is, Sek = ek+1

for k = 1, 2, . . . ; of course, S∗ek = ek−1 for k = 2, 3, . . . and S∗e1 = 0. Thus,
for example, (S∗ + S)2e1 = e1 + e3 and (S∗ + S)3e1 = 2e2 + e4. In terms of
the numbers rk,n (as in (3c2)–(3c7) but for A instead of M) we have

(3e1) rk,n → rk = 2−k/2〈(S∗ + S)ke1, e1〉 as n → ∞ .

In fact, r2k−1 = 0 and 2kr2k =
(
2k
k

)
−

(
2k

k−1

)
= (2k)!

k!(k+1)!
, but we do not need it

now.
Instead of S we may use the two-sided shift operator T on the space

l2(Z) of all two-sided sequences (xk)k∈Z such that
∑+∞

−∞ x2
k < ∞. That is,

Tek = ek+1 and T ∗ek = ek−1 for all k ∈ Z.

3e2 Exercise. The orbit
(
(T ∗ + T )k(e1 − e−1)/

√
2
)

k in l2(Z) has the same
geometry as the orbit

(
(S∗ + S)ke1

)

k in l2.
Prove it.
Hint: 〈(T ∗+T )k(e1−e−1)/

√
2, e±l〉 = ± 1√

2
〈(S∗+S)ke1, el〉 for l = 1, 2, . . .

(and for l = 0 the left-hand side vanishes).

Combining (3e1) and 3c5 (for A instead of M) we get

(3e3)
1

n
trace(Ak) → rk in probability as n → ∞

for k = 0, 1, 2, . . . However, 1
n

trace(Ak) = 1
n
(λk

1 + · · ·+λk
n) where (λ1, . . . , λn)

is the spectrum of A (recall 2a). Thus,

(3e4)
1

n
(λk

1 + · · ·+ λk
n) → rk in probability as n → ∞

for k = 0, 1, 2, . . . We may hope that the spectrum converges (in probability
as n → ∞) to a (nonrandom) distribution µ whose moments are equal to rk.
First of all we want to find such a distribution.

We need
∫

λk µ(dλ) = rk, that is, 〈Λk1, 1〉 = rk, where Λ is the mul-
tiplication operator, (Λf)(λ) = λf(λ), in the space L2(µ), and 1 ∈ L2(µ),
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1(λ) = 1 for all λ. In other words, the geometry of the orbit (Λk1)k in L2(µ)
should be (described by rk, therefore) the same as the geometry of the orbit
((

T ∗+T√
2

)
k e1−e−1√

2

)

k
in l2(Z).

The shift operator T is diagonalized by Fourier transform F : l2(Z) →
L2

(
(0, 2π), mes

2π

)
,

F(x)(u) =
∑

k∈Z

〈x, ek〉eiku , ‖F(x)‖ = ‖x‖ ,

F(Tx)(u) = eiuF(x)(u) ,

F
(

T ∗+T√
2

x
)
(u) =

√
2 cos u · F(x)(u) .

Taking into account that F
(

e1−e−1√
2

)
(u) =

√
2 i sin u we see that the orbit

((
T ∗+T√

2

)
k e1−e−1√

2

)

k
in l2(Z) is isometric to the orbit

(
(
√

2 cos u)k
√

2 i sin u
)

k

in L2

(
(0, 2π), mes

2π

)
, that is,

rk =
1

2π

∫ 2π

0

(
√

2 cos u)k|
√

2 i sin u|2 du .

3e5 Exercise. Prove that

rk =
1

π

∫ +
√

2

−
√

2

λk
√

2 − λ2 dλ

for k = 0, 1, 2, . . .
Hint: λ =

√
2 cos u.

The measure µ is found,

µ(dλ) =
1

π

√

(2 − λ2)+ dλ =

{
1
π

√
2 − λ2 dλ for −

√
2 < λ <

√
2,

0 otherwise;

it is the well-known Wigner’s semi-circle law on (−
√

2,
√

2). It has a compact
support (as it should in the light of 3b3). Therefore it is uniquely determined
by its moments rk,

1 and for any sequence of distributions µ1, µ2, . . . , conver-
gence of their moments to rk ensures µn → µ.2 The latter may be written
as

sup
λ∈R

|µn((−∞, λ]) − µ((−∞, λ])| → 0 as n → ∞ ,

since the measure µ is nonatomic.3

1See for instance [1], XV.4 (Appendix).
2See for instance [1], VIII.6 (Example b).
3For the general case see [1], VIII.10 (Problem 11).
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3e6 Theorem.

sup
a∈R

∣
∣
∣
∣

1

n
#{k : λk ≤ a}− 1

π

∫ a

−∞

√

(2 − λ2)+ dλ

∣
∣
∣
∣
→ 0 in probability as n → ∞ ,

where (λ1, . . . , λn) is the spectrum of a Gaussian random matrix distributed
according to (3a2).

3e7 Exercise. Prove the theorem.
Hint: for any ε there exist k and δ such that δ-closeness of the first k

moments to r1, . . . , rk ensures ε-closeness between the cumulative distribution
functions; use (3e4).

3e8 Exercise. Prove that

P
(
‖A‖ ≥

√
2 − ε

)
→ 1 as n → ∞ .

Hint: the norm of a symmetric matrix is equal to the highest eigenvalue; use
Theorem 3e6.

Do not think that P
(
‖A‖ ≤

√
2 + ε

)
→ 1 by Theorem 3e6; it does not

follow! The distribution of ‖A‖ is concentrated near some point (similarly
to 3b9), and the point can be chosen from [

√
2, 4] according to 3e8 and 3b3.

In fact, it can be chosen at
√

2, and moreover, the limiting distribution of
n2/3(‖A‖ −

√
2) exists.1

Some numerics. The two cumulative distribution functions, empirical
a 7→ 1

n
#{k : λk ≤ a} and theoretical a 7→ 1

π

∫ a

−∞
√

(2 − λ2)+ dλ = 1
2

+
1
π

arcsin λ√
2

+ 1
2π

λ
√

2 − λ2 for |λ| <
√

2.

�

�

1

1
n=2

�

�

1

1
n=10

�

�

1

1

n=100

1The limiting distribution of
√

2n2/3(‖A‖ −
√

2) is the Tracy-Widom law of order 1,
see C.A. Tracy and H. Widom, “Distribution functions for largest eigenvalues and their
applications”, Proceedings of the International Congress of Mathematicians (2002), Vol. 1,
587–596. arXiv:math-ph/0210034.
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