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A glass is essentially a frozen fluid in which the

atoms are disordered as in a liquid, but they do

not move, as in a solid.

G. Parisi1

4a Atmosphere over a random relief

The density of the air on the sea-level is about 1.2 kg/m3, but 1 km higher
it is about 1.1 kg/m3. All that results from an equilibrium between the
pressure and the weight of the air. We use, on one hand, the equation of state
p = Cρ, where p is the pressure, ρ is the density, and C is a constant (about
83·103 m2/sec2); on the other hand, the equilibrium equation gρ(z) = −p′(z),
where z is the altitude, and g the acceleration of gravity on Earth (about
9.8 m/sec2). We get the differential equation ρ′(z) = −(g/C)ρ(z) and its
solution ρ(z) = const · e−(g/C)z . We may use C/g (about 8.4 km) as the unit
of altitude, then2

ρ(z) = const · e−z .

However, it holds in the domain

z > H(x, y) ;

1See page 298 of the book “Field theory, disorder and simulations”, World Scientific,
1992.

2In fact, a crude approximation, because the temperature of the air depends on the
altitude.
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the function H describes the relief.
Projecting the 3-dimensional distribution of (the mass of) the air to the

horizontal plane (x, y) we get the 2-dimensional measure

const · e−H(x,y) dxdy .

The constant is determined by the relation const·
∫∫

e−H(x,y) dxdy = m, where
m is the total mass of the air. In order to keep m finite we either restrict
ourselves to a bounded region of the plane or assume that H(x, y) → ∞ (not
too slowly) as x2 + y2 → ∞. Thus, we consider the measure

(4a1)

m

ZH

e−H(x,y) dxdy = me−(H(x,y)−FH ) dxdy ,

where ZH =

∫∫

e−H(x,y) dxdy and FH = − ln ZH .

4a2 Exercise. Prove the Lipschitz property of F ,

|FH1
− FH2

| ≤ sup
x,y

|H1(x, y) − H2(x, y)| .

Hint: recall 2a3 and 2d7.

4a3 Exercise. Let H be a finite-dimensional Gaussian random function,

H(x, y, ω) = f0(x, y) + ζ1(ω)f1(x, y) + · · ·+ ζn(ω)fn(x, y) ,

where (ζ1, . . . , ζn) is an orthogaussian sequence, and f0, . . . , fn are bounded
continuous functions on a bounded region of R

2. Prove that the random
variable (1/σmax)FH is more concentrated than N(0, 1); here

σmax = sup
x,y

√

f 2
1 (x, y) + · · ·+ f 2

n(x, y) .

Hint: recall the phrase after 2d7; use 4a2.

4b A molecule over a random relief

The air is a mix of gases, but still, it is convenient to speak about a ‘molecule
of air’ of the averaged mass m1 = 48 · 10−27 kg (29 atomic mass units). A
randomly chosen molecule of air is distributed in the domain {(x, y, z) :
z > H(x, y)} according to the measure 1

ZH
e−z dxdydz = e−(z−FH) dxdydz,

which follows from formulas of 4a derived for the air treated as a continuous
medium (rather than a system of molecules). Recall that our unit of the
altitude z is 8.4 km. Being at this altitude, the molecule has the potential
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energy m1gh = 48 · 10−27 kg · 9.8 m/sec2 · 8.4 · 103 m = 4.0 · 10−21 J equal to
kBT , where T = 288 K is the temperature and kB = 1.38 · 10−23 J/K is the
so-called Boltzmann constant. That is not a coincidence! Thermal motion
endows each degree of freedom with the energy kBT (on the average).1 No
need to choose the molecule at random; each molecule moves randomly and
visits all locations according to the distribution 1

ZH
e−z dxdydz.

The Boltzmann constant is not specific for the air (nor even for gases),
it is one of the universal physical constants. Nevertheless we can get our
special altitude 8.4 km as (kBT )/(m1g). Here we use a parameter of the
molecule (m1), Earth (g) and the air (T ). However, the temperature is the
only relevant parameter of the air! The constant C = 83 ·103 m2/sec2 used in
4a for describing the air as a continuous medium is no more needed. What
does it mean?

It means that we face a very general physical principle. The air is just
a ‘heat bath’ (reservoir), — a large system at some temperature T . The
molecule is in (thermal) equilibrium with the heat bath. This is enough in
order to determine uniquely statistical properties of the molecule! We could
put the single molecule to a high vessel at the temperature T = 288 K and
get the same distribution (const · e−z dxdydz).2

4c The meaning of temperature

A finite quantum system (for instance, a finite system of interacting spins)
is described by a Hermitian operator H (the Hamiltonian) on an n-dimen-
sional Hilbert space; its eigenvalues E1, . . . , En ∈ R are energy levels.3 The
tiny portion of quantum theory, needed here, deals only with commuting
operators that may be represented by diagonal matrices,

H = diag(E1, . . . , En) .

The very general physical principle mentioned in 4b states the following. If
the system is in thermal equilibrium with a heat bath at temperature T , then
its energy takes on each value Ek with the corresponding probability4

const · exp
(

− Ek

kBT

)

;

1However, see 4c9, 4c10.
2The vessel is void of gas, but full of infrared radiation.
3The time evolution of a state vector (of isolated system) is described by the Schrödinger

equation i~ψ′(t) = Hψ(t) and its solution ψ(t) = exp(−itH/~)ψ(0), but we do not need
it.

4In the language of operators, the (mixed) state of the system is described by the
density matrix const · exp

(
− H

kBT

)
, but we do not need it.
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of course, 1/const =
∑

k exp
(
− Ek

kBT

)
.

In other words, the energy distribution is

const · exp
(

− E

kBT

)

µ(dE) ,

where µ
(
{E}

)
= #{k : Ek = E} or, if you prefer, µ

(
{E}

)
= #{k : Ek =

E}/n (the coefficient is anyway absorbed by ‘const’). For large quantum sys-
tems, the discrete energy spectrum µ is often approximated by a continuous
measure. Especially, classical systems are treated in this way.

4c1 Definition. Let µ be a finite or locally finite measure on [0,∞) such
that

∫
exp(−εE) µ(dE) < ∞ for all ε > 0. For any T ∈ (0,∞), the Gibbs

measure G̃ on [0,∞) (corresponding to T and µ) is1

G̃(dE) =
1

Z
exp

(

− E

kBT

)

µ(dE) ,

where Z =

∫

exp
(

− E

kBT

)

µ(dE) .

Often µ is the image of another measure ν on another space X under a
map H : X → [0,∞). Then the measure

1

Z
exp

(

− H(x)

kBT

)

ν(dx)

on X is also called the Gibbs measure. (Its image under H is the measure G̃
of 4c1.)

Instead of T it is convenient to use the inverse temperature

β =
1

kBT
.

Thus, the so-called partition function

Zβ =

∫

e−βEµ(dE) =

∫

e−βH dν

is the Laplace transform of µ (therefore, a smooth decreasing2 function of
β), and the Gibbs measure is3

Gβ =
1

Zβ

e−βHν = e−β(H−Fβ)ν , G̃β(dE) =
1

Zβ

e−βEµ(dE) = e−β(E−Fβ)µ(dE) ,

where Fβ = − 1

β
ln Zβ .

1Later it will be denoted G̃β .
2And logarithmically convex, see 4c7.
3Fβ is called free energy (do not ask me, why).
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Note especially the original case:

(4c2)

X = {1, . . . , n} , H(k) = Ek , ν({k}) = 1 ;

Gβ({k}) =
1

Zβ

e−βEk , Zβ =
∑

k

e−βEk ;

µ({E}) = #{k : Ek = E} ; G̃β({E}) =
1

Zβ
e−βEµ({E}) .

Derivatives of Zβ (or Fβ) are of interest, as we will see now.

4c3 Exercise. The mean energy (called also internal energy)

Uβ =

∫

E G̃β(dE) =

∫

H dGβ

may be calculated as

Uβ = − d

dβ
ln Zβ =

d

dβ
(βFβ) .

Prove it.

The specific heat, defined by1

cβ =
d

dT
U1/(kBT ) ,

may be calculated as

cβ = −kBβ2 d

dβ
Uβ = kBβ2 d2

dβ2
ln Zβ = −kBβ2 d2

dβ2
(βFβ) .

4c4 Exercise. Prove that
∫

(H − Uβ)2 dGβ =
cβ

kBβ2
.

Hints: first,
∫

(H − Uβ)2 dGβ =
∫

H2 dGβ −
(∫

H dGβ

)
2; second, d

dβ
Uβ =

d
dβ

R

He−βH dν
R

e−βH dν
= . . .

In the original case (4c2), the entropy of Gβ is

Sβ = −
n∑

k=1

Gβ({k}) lnGβ({k}) = −
∑

E:∃k Ek=E

G̃β({E}) ln
G̃β({E})
µ({E}) .

1In physics it is often denoted cV .
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In general we may define the entropy by

Sβ = −
∫

X

(

ln
dGβ

dν

)

dGβ =

∫

X

(βH + ln Zβ) dGβ =

=

∫

[0,∞)

(βE + ln Zβ) G̃β(dE) = −
∫

[0,∞)

(

ln
dG̃β

dµ

)

dG̃β .

4c5 Exercise. Prove that1

Sβ = β(Uβ − Fβ) =
Uβ − Fβ

kBT
.

Hint: Sβ = Z−1
β

∫
(βH + ln Zβ)e−βH dν = . . .

By the way, if we replace µ, ν with cµ, cν for some c ∈ (0,∞) then G̃β,
Gβ, Uβ and cβ remain intact, but Zβ, Fβ and Sβ change. On the other hand,
an energy shift H 7→ H + const leads to the same shift of Fβ and Uβ, but
leaves intact G̃β, Gβ, Sβ and cβ.

4c6 Exercise. For every β ∈ (0,∞),

ν{x : H(x) ≤ Uβ} ≤ exp Sβ .

Prove it.
Hint: ν{x : H(x) ≤ E} ≤

(∫
e−βH dν

)
/
(
e−βE

)
.

4c7 Exercise. The function β 7→ ln Zβ is convex.
Prove it.

Hint:
∫ √

e−β1H
√

e−β2H dν ≤
√

∫
e−β1H dν

√
∫

e−β2H dν.

It follows immediately that

(4c8)

the function β 7→ βFβ is concave;

the function β 7→ Uβ is decreasing;

cβ ≥ 0 .

4c9 Exercise. 2 (a) Let X = [0,∞)n, H(x1, . . . , xn) = x1 + · · · + xn, ν =
mesn |X . Prove that Uβ = n/β = nkBT and cβ = nkB.

(b) Generalize it for any strictly positive linear form H on [0,∞)n.
Hint: reduce the general case to n = 1.

1In physics, the entropy is multiplied by kB; it is rather (U − F )/T .
2Think about the altitudes of the molecules.
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4c10 Exercise. 1 (a) Let X = R
n, H(x1, . . . , xn) = 1

2
(x2

1 + · · · + x2
n), ν =

mesn. Prove that Uβ = n
2β

= n
2
kBT and cβ = n

2
kB.

(b) Generalize it for any strictly positive quadratic form H on R
n.

Hint: reduce (b) to (a), and (a) to n = 1. Or alternatively: Gβ is a
Gaussian measure, Zβ = (const/β)n/2.

(You may also try H(x) = |x|α for x ∈ R.)

4c11 Exercise. 2 Let X = {0, 1, 2, . . . }, H(x) = x, ν({x}) = 1 for all x.
Prove that Uβ = 1/(eβ − 1) and cβ = kBβ2eβ/(eβ − 1)2. Generalize it for
X = {0, 1, 2, . . . }n.

Note that cβ → nkB as β → 0 (high temperature), but cβ → 0 as β → ∞
(low temperature); compare it with 4c9(a).

4c12 Exercise. 3 Let X = {0, 1}, H(x) = x, ν({x}) = 1 for x = 0, 1.
Prove that Uβ = 1/(eβ + 1) and cβ = kBβ2eβ/(eβ + 1)2. Generalize it for
X = {0, 1}n.

This time, cβ → 0 in both limits (high and low temperature).
First and second moments of G̃β are used in 4c3–4c5; more generally, Zβ

gives us all moments of G̃β via the moment generating function, as follows.

4c13 Exercise. (a) For every λ ∈ (−∞, β),
∫

eλH dGβ =

∫

eλE G̃β(dE) =
Zβ−λ

Zβ
.

(b) For every β > 0, the measure G̃β has all moments, and
∫

Hm dGβ =

∫

Em G̃β(dE) =
(−1)m

Zβ

dm

dβm
Zβ .

(c) Basically, 4c3 and 4c4 are special cases of (b) for m = 1, 2.
Prove it. Does (b) hold for β = 0 ?

4d The random energy model

The simplest nontrivial Gaussian process H consists of independent random
variables:

H(1), . . . , H(n) are orthogaussian; X = {1, . . . , n}, ν({x}) = 1
n

for all x.

1Applicable to classical harmonic oscillators.
2Applicable to quantum harmonic oscillators.
3Applicable to quantum spins.
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Negative values of H do not fit to the framework of 4c, which is harmless as
far as H is bounded from below; recall that an energy shift H 7→ H + const
does not influence Gβ and cβ.

For large n we have µ ≈ γ1 = N(0, 1), thus we may expect Zβ ≈
∫ +∞
−∞ e−βE γ1(dE) = exp

(
1
2
β2

)
, G̃β ≈ N(−β, 1), Uβ ≈ −β, − d

dβ
Uβ ≈ 1 and

cβ ≈ kBβ2. Here is a simulation:

�

�

1

1
the graph of β 7→ − d

dβ
Uβ

n = 1 000 000

two samples

The naive expectation is confirmed for small β (high temperature) but refuted
for large β (low temperature). Why?

Taking into account that

(4d1) − d

dβ
Uβ =

∫

(E − Uβ)2 G̃β(dE)

we want to look at G̃β.
(4d2)

��

�

1−1

1

β=0

�

�

−1

1

β=2

�

�

−1

1

β=4

�

�

−1

1

β=6

�

�

−1

1

β=8

�

�

−1

1

β=10

the c.d.f. of G̃β

n = 1 000 000

one sample

For small β we see G̃β ≈ N(−β, 1), indeed. However, for large β this cannot
happen, since G̃β cannot pass the left endpoint of the sample!

The calculation

E Zβ = 1
n
E

(
e−βH(1) + · · ·+ e−βH(n)

)
= E e−βH(1) =

=
1√
2π

∫

e−βEe−E2/2 dE = eβ2/2 1√
2π

∫

exp
(
−1

2
(E + β)2

)
dE

︸ ︷︷ ︸

=1

gives us more than just the value of E Zβ. It also shows that only values
E = −β + O(1) are essential. Roughly, Zβ ≈ 1

n
eβ2

K, where K = #{k :

H(k) = −β + O(1)} is distributed binomially, Binom(n, p), p ≈ e−β2/2. Two
cases are very different: np � 1 and np � 1.

The first case: np � 1. Here, K ≈ np, since the mean square deviation
√

np(1 − p) of K is much less than np. Thus, Zβ ≈ 1
n
eβ2

ne−β2/2 = eβ2/2 (not
just in the mean).
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The second case: np � 1. Here, with probability close to 1, K = 0 and
Zβ ≈ 0. The large mean value E Zβ = eβ2/2 is supported by rare events of
very large Zβ.

Unfortunately, these arguments are sloppy. The interval −β + O(1) is
too large; both functions, e−βE and Φ′(E) are too far from being constant
on this interval. See below for a correct version. First we deal with the case
ne−β2/2 � 1.

4d3 Exercise. For any E ∈ R, the random variable

Zβ(−E,∞) =
1

n

∑

k:H(k)≥−E

e−βH(k)

has the following expectation and mean square deviation:

E Zβ(−E,∞) = eβ2/2Φ(E − β) ,

σ
(
Zβ(−E,∞)

)
=

1√
n

√

e2β2Φ(E − 2β) − eβ2Φ2(E − β) ≤ 1√
n

eβ2
√

Φ(E − 2β) ;

therefore
σ
(
Zβ(−E,∞)

)

E Zβ(−E,∞)
≤ eβ2/2

√
n

√

Φ(E − 2β)

Φ(E − β)
.

Prove it.
Hint: Zβ(−E,∞) is the sum of n independent random variables; reduce

the general case to n = 1, then calculate the integrals.

Taking E → +∞ we see that Zβ is nearly non-random provided that
eβ2 � n. However, eβ2/2 � n should be enough! Truncation will help.

4d4 Exercise. Let β1, β2, . . . satisfy

βn√
2 lnn

→ 1 and
√

2 ln n − βn → +∞ .

Then
σ
(
Zβn

(−βn − a,∞)
)

E Zβn
(−βn − a,∞)

→ 0

for any a ∈ [0,∞). Moreover,

σ
(
Zβn

(−βn − an,∞)
)

E Zβn
(−βn − an,∞)

→ 0

for any a1, a2, · · · ∈ [0,∞) satisfying an = o(
√

2 lnn − βn).
Prove it.
Hint. Let cn =

√
2 lnn−βn, then 1

n
eβ2

nΦ(an−βn) � exp
(
(
√

2 lnn−cn)2−
1
2
(
√

2 lnn − cn − an)2 − ln n
)

= exp
(
−cn

√
2 lnn + o(cn

√
2 ln n)

)
→ 0.
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The condition βn ∼
√

2 ln n is not essential.

4d5 Exercise. Let β1, β2, . . . satisfy

(4d6)
√

2 lnn − βn → +∞ .

Then
σ
(
Zβn

(−βn − an,∞)
)

E Zβn
(−βn − an,∞)

→ 0

for any a1, a2, · · · ∈ [0,∞) satisfying an = o(
√

2 lnn − βn).
Prove it.
Hint. The function β 7→ β2 − 1

2
(β − a)2 is increasing; choose cn such

that βn ≤
√

2 ln n − cn, cn → ∞, cn = o(
√

ln n) and an = o(cn). (Try

cn =
√

(1 + an)(
√

2 lnn − βn).)

It follows that
∥
∥
∥
∥

Zβn
(−βn − an,∞)

E Zβn
(−βn − an,∞)

− 1

∥
∥
∥
∥

2

→ 0 .

4d7 Exercise. Let β1, β2, . . . satisfy (4d6). Then

∥
∥
∥
∥

Zβn

E Zβn

− 1

∥
∥
∥
∥

1

→ 0 , that is, ‖e−β2
n/2Zβn

− 1‖1 → 0 .

Prove it.
Hint: choose an → ∞ such that 0 ≤ an = o(

√
2 lnn − βn), then

∥
∥
∥
∥

Zβn
− Zβn

(−βn − an,∞)

E Zβn

∥
∥
∥
∥

1

= Φ(−an) → 0 ;

use 4d5.

4d8 Exercise. Prove that

1

ln n
ln Zα

√
2 ln n → α2 in probability as n → ∞

for every α ∈ [0, 1).
Hint: 4d7 gives e−β2

n/2Zβn
→ 1 in probability for βn = α

√
2 lnn; take the

logarithm.
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Note that 4d7 was weaken thrice on the way toward 4d8. First, conver-
gence in L1 was replaced with convergence in probability. Second,

√
2 lnn−βn

could be o(
√

ln n). Third, the rate of convergence o(1/ lnn) could be claimed.
However, the weaker statement 4d8 is easier to grasp.

The (random) function β 7→ ln Zβ is (almost sure) convex by 4c7, there-
fore the function α 7→ 1

ln n
ln Zα

√
2 lnn is also convex. Thus, convergence in

probability at every point (separately) implies uniform convergence in prob-
ability on [ε, 1 − ε] and moreover, convergence of derivatives.

(4d9)

We turn to the case α > 1. Recall that − d
dβ

ln Zβ = Uβ =
∫

E G̃β(dE).
The latter cannot be less than the left endpoint of the sample,

− d

dβ
ln Zβ ≥ min

k
H(k) .

Thus,

(4d10)
d

dα

1

lnn
ln Zα

√
2 ln n ≤

√

2

ln n
max

k
(−H(k)) .

The right-hand side converges in probability (as n → ∞) to 2, which was
basically seen in 2c, but can also be proven via the arguments of this sec-
tion. Namely, in the limit the derivative cannot be less than d

dα

∣
∣
α=1

α2 = 2,
therefore

P
(
max

k
(−H(k)) ≥ (1 − ε)

√
2 lnn

)
→ 1 as n → ∞

for every ε > 0. On the other hand,

Zβ =
1

n

∑

k

e−βH(k) ≥ 1

n
exp

(
−β min

k
H(k)

)
=

1

n
exp

(
β max

k
(−H(k))

)
;

1

ln n
lnZα

√
2 ln n

︸ ︷︷ ︸

≈α2

≥ α

√

2

ln n
max

k
(−H(k)) − 1 ,

�

�

�

1

1

−1

therefore

P
(
max

k
(−H(k)) ≤ (1 + ε)

√
2 lnn

)
→ 1 as n → ∞
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for every ε > 0. We see that

(4d11)
1√

2 ln n
max

k
(−H(k)) → 1 in probability as n → ∞ .

The derivative (4d10) cannot exceed 2 in the limit; but we saw that it
cannot be less than 2 in the limit. It means that

1

lnn
ln Zα

√
2 ln n → 2α − 1 in probability as n → ∞

�

�

�

�

1

1

−1

for each α ∈ [1,∞). We summarize the two cases:

lim
n→∞

1

ln n
lnZα

√
2 ln n =

{

α2 for α ∈ [0, 1],

2α − 1 for α ∈ [1,∞);
	

	

	

1

1

convergence in probability is meant.
As was noted, convergence of convex functions implies convergence of

their first derivatives. By 4c3,

d

dα

1

ln n
lnZα

√
2 ln n = −

√

2

ln n
Uα

√
2 ln n ,

thus,

(4d12) lim
n→∞

1√
2 lnn

Uα
√

2 lnn =

{

−α for α ∈ [0, 1],

−1 for α ∈ [1,∞)

(convergence in probability, as before). Compare the mean energy with the
left endpoint of the sample!

Similarly,

lim
n→∞

1√
2 lnn

Fα
√

2 ln n =

{

−α
2

for α ∈ [0, 1],

−1 + 1
2α

for α ∈ [1,∞);

lim
n→∞

1

ln n
Sα

√
2 ln n =

{

−α2 for α ∈ [0, 1],

−1 for α ∈ [1,∞).
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4d13 Exercise. Prove that for any α ∈ (0, 1) and ε > 0 the probability of
the following event tends to 1 as n → ∞:

ν{x : H(x) ≤ −(α + ε)
√

2 lnn} ≤ exp(−α2 ln n) .

Hint: use 4c6.

The entropy used above is the entropy of Gβ (or G̃β) w.r.t. the uniform
probability measure ν (or µ). The entropy w.r.t. the counting measure is
higher by ln n;

lim
n→∞

1

ln n

(
Sα

√
2 lnn + ln n

)
=

{

1 − α2 for α ∈ [0, 1],

0 for α ∈ [1,∞).

It does not mean that the entropy is small for α > 1, it only means that it
is o(ln n). In fact, it has a nontrivial limiting distribution (as n → ∞). The
order statistics E(1) < E(2) < . . . are approximately

E(k) = −cn +
ln Tk√
2 lnn

,

where cn ∼
√

2 lnn is defined by Φ(−cn) = 1/n (compare it with an of 2c),
and T1 < T2 < . . . are a Poisson point process on [0,∞); in other words,
random variables T1, T2−T1, T3−T2, . . . are independent, distributed Exp(1)
each. Roughly, Tk ≈ k, thus

exp
(
−α

√
2 lnn E(k)

)
≈ exp

(
α
√

2 lnn cn

)

︸ ︷︷ ︸

=const

· exp(−α lnTk)
︸ ︷︷ ︸

=T−α
k

≈k−α

;

for α > 1 the series converges, and the Gibbs measure G̃α
√

2 ln n is approxi-
mately

G̃α
√

2 lnn

(
{E(k)}

)
≈ T−α

k

T−α
1 + T−α

2 + . . .
.

The (finite) entropy of the right-hand side gives us the limit (in distribution)
of Sα

√
2 lnn + ln n as n → ∞. In contrast, for α < 1,

G̃α
√

2 ln n

(
{E(k)}

)
→ 0 in probability as n → ∞ .

(I do not prove these facts.) In this sense, in the limit (n → ∞) the Gibbs
measure Gα

√
2 lnn gets continuous (nonatomic) if α < 1 but discrete (purely
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atomic) if α > 1.
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The shape of G̃α
√

2 ln n for α < 1 can be found via 4d3–4d7. Indeed, for every
u ∈ R

G̃α
√

2 lnn

(
[−α

√
2 lnn + u,∞)

)
=

Zβ(−α
√

2 ln n + u,∞)

Zβ
∼

∼ e−α2 ln nZβ(−α
√

2 lnn + u,∞)

by 4d7, thus
E G̃α

√
2 ln n

(
[−α

√
2 ln n + u,∞)

)
∼ Φ(−u)

by 4d3. By 4d5,

(4d14) G̃α
√

2 ln n

(
[−α

√
2 lnn + u,∞)

)
→ Φ(−u) in probability as n → ∞

for any α ∈ [0, 1). It means that the shape is normal,

G̃α
√

2 ln n ≈ N(−α
√

2 lnn, 1) .

Compare it with (4d2) and (4d12). Note however that (4d12) does not follow
from (4d14) (tails could contribute too much). Similarly, (4d14) does not
imply convergence of second moments, but still hints that (4d1) converges to
1, that is (recall 4c4),

(4d15)
1

ln n
cα

√
2 lnn → 2kBα2 in probability as n → ∞

for any α ∈ [0, 1). How to prove it? Convexity does not help, since conver-
gence of convex functions does not imply convergence of second derivatives.1

We consider the moment generating function fn of the centered G̃βn
,

fn(λ) =

∫

eλ(H+βn) dGβn
=

∫

eλ(E+βn) G̃βn
(dE) .

1A smooth convex function can be approximated by piecewise linear convex func-
tions. . .
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By 4c13(a),

fn(λ) = eλβn
Zβn−λ

Zβn

.

Let βn satisfy (4d6), then Zβn
∼ eβ2

n/2 and Zβn−λ ∼ e(βn−λ)2/2 by 4d7, there-
fore

fn(λ) → eλ2/2 in probability as n → ∞
for every λ ∈ R. This is more than enough in order to ensure convergence
(in probability) of all moments in (4d14).1 Moreover, it is enough in order to
get it without (4d14). Indeed, convergence in probability of convex functions
ln fn(λ) to λ2/2 at each λ (separately) implies uniform convergence in prob-
ability on every bounded interval (recall (4d9)), which ensures convergence
of all moments to the moments of N(0, 1). Relation (4d15) is thus proven.

4e The spherical model

Now the Gaussian process H is a random quadratic form on a sphere,

X = {x ∈ R
n : |x| = 1} , (= Sn−1)

ν is the uniform probability measure on X,

H(x) =
√

n〈Ax, x〉 for x ∈ X;

here A is the Gaussian random matrix of Sect. 3 (recall (3a2)). The coefficient√
n ensures that

H(x) ∼ N(0, 1) for each x ∈ X,

similarly to 4d; however, the random variables H(x) are correlated. As
always, the Gaussian process is described by its covariation function.

4e1 Exercise. Prove that

〈H(x), H(y)〉 = E H(x)H(y) = 〈x, y〉2 for x, y ∈ X.

Hint: reduce the general case to x = e1 (and n = 2, if you want).

In fact, ‖A‖ is close to
√

2 (highly probably for large n, see the note after
3e8), thus sup H(x) is close to

√
2n and, more importantly,

(4e2)
1√
2n

min
x∈X

H(x) → −1 in probability as n → ∞.

1It is enough that supn fn(±ε) <∞ for a single ε > 0. Convergence in probability does
not imply convergence a.s.; however, every subsequence contains a subsequence converging
a.s.
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Compare it with (4d11); the n-dimensional spherical model looks similar
to the en-dimensional random energy model of 4d (but uses only 1

2
n(n +

1) orthogaussian random variables). The latter has a threshold at β =
√

2 ln(en) =
√

2n; we may expect the same for the spherical model (but

in fact, we will get a threshold at β =
√

n/2).
The question is, how to calculate

∫
e−βH dν; it is difficult to integrate

over the sphere!

digression: integrating over the sphere

The Gaussian measure γn lives near the sphere (of radius
√

n rather than
1, which is not a problem) and allows for a simple integration.

4e3 Exercise. Prove that

∫

exp(a1x
2
1 + · · ·+ anx2

n) γn(dx) =
n∏

k=1

(1 − 2ak)
−1/2

for all a1, . . . , an ∈ (−∞, 1/2).
Hint: reduce to n = 1; note that

∫
e−u2/2 du =

√
2π and

∫
exp

(
− u2

2σ2

)
du =√

2πσ.

Still, we need to integrate over the sphere. We have exp(a1x
2
1 + · · · +

anx2
n) γn(dx) = const · γ(dx), where const is the integral calculated above,

and γ is another Gaussian measure,

(4e4)
γ(dx)

dx
=

n∏

k=1

1√
2πσk

exp
(

− x2
k

2σ2
k

)

, σk = (1 − 2ak)
−1/2 .

The distribution of x 7→ |x|2 w.r.t. γ is the distribution of (σ1ζ1)
2 + · · · +

(σnζn)
2 for orthogaussian ζ1, . . . , ζn, it is the convolution of n special distribu-

tions (well-known as gamma distributions). The density of the distribution
at a point r2 is proportional to the integral of γ(dx)/dx over the r-sphere
(think, why). The coefficient depends on r but not γ. We may get rid of the
coefficient by comparing γ with γn (its density is constant on the sphere),

(4e5)
(density of |x|2 w.r.t. γ at r2)

(density of |x|2 w.r.t. γn at r2)
=

(

mean of
γ(dx)

γn(dx)
over r-sphere

)

for every nondegenerate Gaussian measure γ on R
n (irrespective of (4e4)).

The distribution of |x|2 w.r.t. γn is well-known (a gamma distribution) and
its density is easy to write down explicitly, which cannot be said about γ.
Two clever ideas help a lot. First, we may restrict ourselves to logarithmic



Tel Aviv University, 2005 Gaussian measures and Gaussian processes 72

asymptotics; in other words, we may calculate up to factors eo(n). Second, if
the mean value of |x|2 w.r.t. γ is equal to 1, then the density at 1 is neither
too small nor too large, it must be eo(n), uniformly over all γ satisfying the
restriction

∫
|x|2 γ(dx) = 1. (I omit the proof.) By rescaling,

(

density of |x|2 w.r.t. γ at
∫
|x|2 γ(dx)

)

=
eo(n)

∫
|x|2 γ(dx)

,

uniformly over all nondegenerate Gaussian measures γ on R
n. Thus,

(density of |x|2 w.r.t. γ at n)

(density of |x|2 w.r.t. γn at n)
= eo(n)

uniformly over all γ such that
∫
|x|2 γ(dx) = n. By (4e5),

(

mean of
γ(dx)

γn(dx)
over

√
n-sphere

)

= eo(n)

for these γ. Taking into account that

γn(dx)

dx
= (2πe)−n/2 on the

√
n-sphere

(check it), we get
(

mean of
γ(dx)

dx
over

√
n-sphere

)

= (2πe)−n/2eo(n)

for γ such that
∫
|x|2 γ(dx) = n. By rescaling,

(

mean of
γ(dx)

dx
over r-sphere

)

=
( n

2πer2

)n/2

eo(n) where r2 =

∫

|x|2 γ(dx) ,

uniformly over all nondegenerate Gaussian measures γ on R
n.

Returning to γ defined by (4e4) we have

(

mean of exp
(∑

k

akx
2
k

)
over r-sphere

)

=

=
( ∏

k

(1 − 2ak)
)−1/2

exp
(r2

2

)( n

er2

)n/2

eo(n)

uniformly over a1, . . . , an ∈ (−∞, 1/2); here

r2 =

∫

|x|2 γ(dx) =
∑

k

σ2
k =

∑

k

(1 − 2ak)
−1 .
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By rescaling,
(

mean of exp
(
r2

∑

k akx
2
k

)
over r-sphere

)

= the same .

We want to get r2ak = bk for given numbers bk ∈ R. Thus, r must satisfy
r2 =

∑

k(1 − 2bkr
−2)−1, that is,

(4e6)
∑

k

(r2 − 2bk)
−1 = 1 .

The sum is a continuous, strictly decreasing function of r ∈ (
√

2bn,∞) (as-
suming bn = max(b1, . . . , bn)), it tends to +∞ as r →

√
2bn and to 0 as

r → ∞. Therefore there exists exactly one solution r of the equation. For
this r we have

(4e7)

(

mean of exp
(∑

k

bkx
2
k

)
over 1-sphere

)

=

=
( ∏

k

(r2 − 2bk)
)−1/2

exp
(r2

2

)(n

e

)n/2

eo(n) .

end of digression

Now we can calculate
∫

e−βH dν up to eo(n), using Wigner’s semi-circle

law (Theorem 3e6) that describes the spectrum (λ1, . . . , λn) of the (random)
matrix A via the measure 1

π

√
2 − λ2 dλ.

As was said, we may expect a threshold at β � √
n; thus we take

β = α
√

n

and consider small and large α separately.
First, let α be small. We have to solve Equation 4e6 for bk = −β

√
nλk =

−αnλk;

∑

k

(r2 − 2bk)
−1 =

∑

k

(r2 + 2αnλk)
−1 =

1

n

∑

k

(r2

n
+ 2αλk

)−1

=

=

∫ +
√

2

−
√

2

(u + 2αλ)−1 1
π

√
2 − λ2 dλ + o(1) ,

assuming that r2 = nu and 2
√

2α < u. The general formula

∫ +
√

2

−
√

2

(u + vλ)−1 1
π

√
2 − λ2 dλ =

2

u +
√

u2 − 2v2
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(valid for 0 < v < u/
√

2) gives us

∑

k

(r2 − 2bk)
−1 =

2

u +
√

u2 − 8α2
+ o(1) .

We solve the equation (ignoring o(1)): u +
√

u2 − 8α2 = 2; u ≤ 2, and
u2 − 8α2 = (2 − u)2; u = 1 + 2α2, and get

(4e8) r2 = n(1 + 2α2) + o(n)

provided that α < 1/
√

2 (otherwise, for α > 1/
√

2 the equation u+
√

u2 − 8α2 =
2 has no solutions, and for α = 1/

√
2 the solution violates the restriction

2
√

2 α < u). We put this r into (4e7);

(4e9) nn/2
( ∏

k

(r2 − 2bk)
)−1/2

=

(
∏

k

r2 − 2bk

n

)−1/2

=

=

(
∏

k

(
1 + 2α2 + 2αλk + o(1)

)
)−1/2

=

= exp
(

− n

2
· 1

n

∑

k

ln(1 + 2α2 + 2αλk) + o(n)
)

=

= exp
(

− n

2

∫ +
√

2

−
√

2

ln(1 + 2α2 + 2αλ) 1
π

√
2 − λ2 dλ

)

eo(n) .

We apply the general formula
(4e10)

∫ +
√

2

−
√

2

ln(u + vλ) 1
π

√
2 − λ2 dλ = ln

u +
√

u2 − 2v2

2
+

( v

u +
√

u2 − 2v2

)2

(valid when 0 < v ≤ u/
√

2) for u = 1 + 2α2, v = 2α, note that
√

u2 − 2v2 =
1 − 2α2 and get just

nn/2
( ∏

k

(r2 − 2bk)
)−1/2

= e−nα2/2eo(n) .

By (4e7),

Zβ =

∫

e−βH dν = e−nα2/2er2/2e−n/2eo(n) =

= exp
(

− nα2

2
+ n

1 + 2α2

2
− n

2

)

eo(n) = enα2/2eo(n) = eβ2/2eo(n) ,
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that is,
1

n
ln Zα

√
n → α2

2
in probability as n → ∞

for α ∈ [0, 1/
√

2).
We turn to the case α > 1/

√
2.

4e11 Exercise. The solution r of Equation (4e6) satisfies

r2

n
→ 2

√
2α in probability as n → ∞.

Prove it.
Hint: on one hand, if u > 2

√
2α > 2 then u +

√
u2 − 8α2 > 2; on the

other hand, mink λk → −
√

2 in probability as n → ∞ (take it for granted),
thus max bk ∼

√
2αn.

Compare it with (4e8):

lim
n→∞

r2

n
=

{

1 + 2α2 for α ∈ [0, 1/
√

2],

2
√

2α for α ∈ [1/
√

2,∞).

�

�

�

1
√

2

1

2

convergence in probability is meant. Similarly to (4e9),

nn/2
( ∏

k

(r2 − 2bk)
)−1/2

=

(
∏

k

(
2
√

2α + 2αλk + o(1)
)
)−1/2

=

= exp
(

− n

2

∫ +
√

2

−
√

2

ln(2
√

2α + 2αλ) 1
π

√
2 − λ2 dλ

)

eo(n) ,

which, unfortunately, does not follow from Theorem 3e6, since the logarithm
is not bounded on (−

√
2,
√

2). More detailed information about eigenvalues
near −

√
2 is needed, and the small gap r2

n
− 2

√
2α should be taken into

account. (I omit the proof.) Anyway, the integral converges; it is (4e10) for
u = 2

√
2α, v = 2α (thus,

√
u2 − 2v2 = 0);

nn/2
( ∏

k

(r2 − 2bk)
)−1/2

=

= exp

(

− n

2

(

ln(α
√

2) +
1

2

))

eo(n) = (α
√

2)−n/2e−n/4eo(n) .
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By (4e7),

Zβ =

∫

e−βH dν = (α
√

2)−n/2e−n/4er2/2e−n/2eo(n) =

= (α
√

2)−n/2 exp
(

αn
√

2 − 3n

4

)

eo(n) ,

that is,

1

n
ln Zα

√
n → α

√
2 − 1

2
ln(α

√
2) − 3

4
in probability as n → ∞

for α ∈ (1/
√

2,∞). We summarize the two cases:
(4e12)

lim
n→∞

1

n
ln Zα

√
n =

{

α2/2 for α ∈ [0, 1/
√

2],

α
√

2 − 1
2
ln(α

√
2) − 3

4
for α ∈ [1/

√
2,∞);

�

�

�

1
√

2

1

4

convergence in probability is meant.

4e13 Exercise. Prove that

lim
n→∞

1√
n

Uα
√

n =

{

−α for α ∈ (0, 1/
√

2],

−
√

2 + 1
2α

for α ∈ [1/
√

2,∞);

lim
n→∞

1√
n

Fα
√

n =

{

−α
2

for α ∈ (0, 1/
√

2],

−
√

2 + 1
2α

ln(α
√

2) + 3
4α

for α ∈ [1/
√

2,∞);

lim
n→∞

1

n
Sα

√
n =

{

−α2

2
for α ∈ (0, 1/

√
2],

−1
2
ln α − 1

4
(1 + ln 2) for α ∈ [1/

√
2,∞)

(convergence in probability is meant).
Hint: similar to (4d12).

4e14 Exercise. Prove that for any α ∈ (0, 1) and θ ∈ (0, 1) the probability
of the following event tends to 1 as n → ∞:

ν{x : H(x) ≤ −(θ + ε)
√

2n} ≤
{

exp(−nθ2) for θ ≤ 1/2,

(2 − 2θ)n/2e−n/4 for θ ≥ 1/2.

Hint: similar to 4d13.

The threshold at ±
√

2n is evident, but one more threshold at ± 1
2

√
2n is

mysterious!
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4f The Sherrington-Kirkpatrick model

We return to the model touched upon in Sect. 1g,

X = {−1, 1}n , ν is the uniform probability measure on X,

H(σ1, . . . , σn) = − 1√
n

∑

k<l

ζk,lσkσl for (σ1, . . . , σn) ∈ X,

where (ζk,l)k<l is a family of n(n−1)/2 orthogaussian functions. They model
disorder in a system of n spins σ1, . . . , σn = ±1; namely, Ξ(σ1, . . . , σn) is
the energy of the spin configuration σ1, . . . , σn. That is the Sherrington-
Kirkpatrick model for spin glasses, well-known in statistical physics (SK
model). It ignores the geometric location of atoms, assuming that all pairs
interact in the same way (‘mean field approximation’).

The SK model is related to the spherical model as vertices of the cube to
the sphere, in the following sense.

4f1 Exercise. Prove that

H(σ) = − 1√
2

(
〈Aσ, σ〉 − trace A

)
,

where A is the Gaussian random matrix of Sect. 3 (used in 4e).

The trace term is of little importance.

4f2 Exercise. Prove that
∫

exp
( β√

2
〈Aσ, σ〉

)

ν(dσ) = Zβ exp
( β√

2
trace A

)

,

the two factors in the right hand side being independent; and trace A is
distributed N(0, 1).

4f3 Exercise. Derive from (4e2) that for every ε > 0 the probability of the
following event tends to 1 as n → ∞:

max
σ

(
−H(σ)

)
≤ (1 + ε)n .

Computer simulations seem to show that

lim
n→∞

1

n
max

σ

(
−H(σ)

)
= 0.7366 . . .

see [2, (1.2)].
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4f4 Exercise. (See also [1, Prop. 2.2]) For each β,

√

2

n
Fβ = −

√

2

n

1

β
ln Zβ is more concentrated than N(0, 1).

Prove it.
Hint: similar to 4a3.

4f5 Exercise. For each β,

E Zβ = enβ2/4 .

Prove it.
Hint: E

∫
e−βH dν =

∫
(E e−βH) dν.

By Jensen’s inequality, E ln Zβ ≤ ln E Zβ, thus

(4f6) E
1

n
ln Zβ ≤ β2

4
.

4f7 Theorem. (Aizenman, Lebowitz, Ruelle; see [1, Th. 3.3])
For each β < 1,

E
1

n
ln Zβ → β2

4
as n → ∞.

Feel free to use Theorem 4f7 even though I give no proof.

4f8 Exercise. For each β ∈ (0, 1),

1

n
ln Zβ → β2

4
in probability as n → ∞.

Prove it.
Hint: combine 4f7 and 4f4.

4f9 Exercise. For each β ∈ (0, 1),

lim
n→∞

1

n
Uβ = −1

2
β ; lim

n→∞

1

n
Fβ = −1

4
β ; lim

n→∞

1

n
Sβ = −1

4
β2 ;

convergence in probability is meant.
Prove it.
Hint: similar to 4e13.
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4f10 Exercise. For each β ∈ (0, 1) and ε > 0 the probability of the following
event tends to 1 as n → ∞:

#{σ : H(σ) ≤ −n(β + ε)/2}
2n

≤ e−nβ2/4 .

Prove it.
Hint: similar to 4d15, 4e14.

“What really happens for β > 1 ? The physicists have proposed an entire
theory, of great complexity. It seems so much out of reach of the current
rigorous methods that there is no point to even discuss it.” Talagrand [1,
p. 211].

However, we know that the threshold at 1 really exists.

4f11 Theorem. (Comets [3]; see also [1, Th. 3.13]) For all β ∈ (1,∞),

lim sup
n→∞

E
1

n
ln Zβ ≤ β − 1

2
ln β − 3

4
<

β2

4
.

Compare the right hand side with (4e12).
Theorem 4f11 follows immediately from (4e12) and the following inequal-

ity, well-known as ‘domination of the SK model by the spherical model’:

(4f12) E ln ZSK
β ≤ E ln Zsphere

β
√

n/2
for β ∈ [0,∞),

where ZSK
β is Zβ of this section, while Zsphere

β stands for Zβ of Section 4e. The
domination is obtained by averaging over rotations O ∈ O(n). Below, dO
denotes the uniform probability measure on O(n), and νsphere — the uniform
probability measure on the 1-sphere of R

n (that is, ν of Sect. 4e). We extend
H from X = {−1, 1}n to the whole R

n according to 4f1.

4f13 Exercise. For every σ ∈ {−1, 1}n and β ∈ [0,∞),
∫

e−βH(Oσ) dO =

∫

exp
( βn√

2
〈Ax, x〉 − β√

2
trace A

)

νsphere(dx) .

Prove it.
Hint: Oσ is distributed uniformly on the

√
n-sphere.

4f14 Exercise. For every β ∈ [0,∞),

∫

ln

( ∫

e−βH(Oσ) ν(dσ)

)

dO ≤

≤ − β√
2

trace A + ln

∫

exp
( βn√

2
〈Ax, x〉

)

νsphere(dx) .
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Prove it.
Hint:

∫
ln(. . . ) ≤ ln

∫
(. . . ); use 4f13.

4f15 Exercise. Prove (4f12).
Hint: take the expectation of 4f14 and note that the expectation (and

moreover, the distribution) of ln
(∫

e−βH(Oσ) ν(dσ)
)

does not depend on O
(since O−1AO is distributed like A).
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