0 Lebesgue integration (a summary)

0a Measurability

0a1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable if and only if for every $\varepsilon>0$ there exist intervals $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \cdots \subset \mathbb{R}$ and a continuous function g : $\mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{gathered}
\sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right) \leq \varepsilon, \\
f(x)=g(x) \text { for all } x \in \mathbb{R} \backslash \bigcup_{k}\left(a_{k}, b_{k}\right) .
\end{gathered}
$$

The same holds for $f:[0,1] \rightarrow \mathbb{C}$ etc.
0a2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ vanishes almost everywhere if and only if it satisfies 0a1 with $g(\cdot)=0$ (for all ε).

0a3. A set $A \subset \mathbb{R}$ is a null set if and only if its indicator $\mathbb{1}_{A}(\cdot)$ vanishes almost everywhere. Every subset of a null set is a null set. A finite or countable union of null sets is a null set.

0a4. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable if and only if there exist continuous functions $f_{1}, f_{2}, \cdots: \mathbb{R} \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow f$ almost everywhere (that is, outside a null set).

0a5. If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are measurable and $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous then the function $x \mapsto h(f(x), g(x))$ is measurable. In particular, $f+g$ and $f g$ are measurable.

0a6. If $f_{1}, f_{2}, \cdots: \mathbb{R} \rightarrow \mathbb{R}$ are measurable, $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f_{n} \rightarrow f$ almost everywhere, then f is measurable.

0b Integral

0b1. For every measurable function $f:[0,1] \rightarrow[-1,1]$ there exists a number $c \in \mathbb{R}$ such that

$$
\int_{0}^{1} f_{n}(x) \mathrm{d} x \rightarrow c \quad \text { as } n \rightarrow \infty
$$

for every sequence of continuous functions $f_{1}, f_{2}, \cdots:[0,1] \rightarrow[-1,1]$ such that $f_{n} \rightarrow f$ almost everywhere. The number c is called the Lebesgue integral of f and denoted (like the Riemann integral) by $\int_{0}^{1} f(x) \mathrm{d} x$ (or just $\int f$).

The same holds for $f:[a, b] \rightarrow[c, d]$, a bounded $f:[a, b] \rightarrow \mathbb{C}$, etc.

0b2. A measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ is integrable if and only if

$$
\sup _{n} \int_{-n}^{n} \min (n,|f(x)|) \mathrm{d} x<\infty
$$

0b3. For every integrable $f: \mathbb{R} \rightarrow \mathbb{R}$ the limit

$$
\lim _{a, b, c, d \rightarrow+\infty} \int_{-a}^{b} \operatorname{mid}(-c, f(x), d) \mathrm{d} x
$$

exists. It is called the Lebesgue integral of f and denoted by $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x$ (or just $\int f$).

0b4. $\int c f=c \int f ; \int(f+g)=\int f+\int g$; if $f \leq g$ almost everywhere then $\int f \leq \int g$.

0b5. It may happen that f and all f_{n} are integrable and $f_{n} \rightarrow f$ almost everywhere and $\lim _{n} \int f_{n}$ exists, but $\int f \neq \lim _{n} \int f_{n}$.

0b6. (Dominated convergence theorem) Let f, g and all f_{n} be integrable functions such that $f_{n} \rightarrow f$ almost everywhere, and $\left|f_{n}(\cdot)\right| \leq g(\cdot)$ almost everywhere, for all n. Then $\int f_{n} \rightarrow \int f$.

0b7. (Fatou's lemma) Let $f_{n}: \mathbb{R} \rightarrow[0, \infty)$ be measurable, then

$$
\int\left(\liminf _{n} f_{n}(x)\right) \mathrm{d} x \leq \liminf _{n} \int f_{n}(x) \mathrm{d} x .
$$

Corollary. If $f_{n} \rightarrow f$ almost everywhere and $\lim _{n} \int f_{n}$ exists, then $\int f \leq$ $\lim _{n} \int f_{n}$.

0c The Hilbert space L_{2}

$0 c 1$. Equivalence classes of measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying

$$
\int|f(x)|^{2} \mathrm{~d} x<\infty
$$

become a Hilbert space, denoted by $L_{2}(\mathbb{R})$, being equipped with the usual linear operations and the scalar product

$$
\langle f, g\rangle=\int_{-\infty}^{+\infty} f(x) \overline{g(x)} \mathrm{d} x
$$

$0 c 2$. Continuous functions with compact supports are dense in $L_{2}(\mathbb{R})$.

0d The Banach space L_{∞}

0d1. Equivalence classes of measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying

$$
\operatorname{ess} \sup |f(\cdot)|<\infty
$$

become a Banach space, denoted by $L_{\infty}(\mathbb{R})$, being equipped with the usual linear operations and the norm

$$
\|f\|=\operatorname{ess} \sup |f(\cdot)| .
$$

Recall that ess sup $f(\cdot)$ is the least c such that $f(\cdot) \leq c$ almost everywhere.

