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Functional analysis treats functions as points in the function space. A
useless neologism? Not at all. Rather, a way to use geometric intuition for
the benefit of analysis.

Surprisingly, simple geometric symmetries of a special, seemingly not no-
table two-dimensional surface in Hilbert space lead naturally to the famous
Fourier transform (and some other useful things).

1a Introduction

On the finite group Z/nZ, Fourier transform amounts to the basis of eigen-
vectors of the shift U : Cn → Cn,

U(f0, f1, . . . , fn−2, fn−1) = (f1, f2, . . . , fn−1, f0) .

The eigenvalue e2πil/n corresponds to the eigenvector
(

1, e2πil/n, e2πi·2l/n, . . . , e2πi·(n−1)l/n
)

.

Defining unitary F : Cn → Cn by

F(f0, f1, . . . , fn−1) =

=
1√
n

(

∑

k

fk,
∑

k

e−2πik/nfk,
∑

k

e−2πik·2/nfk, . . . ,
∑

k

e−2πik·(n−1)/nfk

)
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we get FU = VF where V is diagonal,

V (f0, f1, . . . , fn−1) =
(

f0, e2πi/nf1, . . . , e2πi(n−1)/nfn−1

)

.

Thus, F diagonalizes U ,
FUF−1 = V .

On the compact group T = R/Z we have Fourier series,

f(x) =
∑

k∈Z

cke
2πikx ,

ck =

∫ 1

0

f(x)e−2πikx dx .

The unitary operator F : L2(T) → l2(Z), Ff = c, diagonalizes shifts U(a) :
L2(T) → L2(T), U(a)f : x 7→ f(x+ a); namely,

FU(a)F−1 = V (a) ,

V (a) : l2(Z) → l2(Z) , (V (a)c)k = e2πiakck .

On the noncompact group R the situation is similar in principle, but more
complicated technically, since the shifts have continuous spectrum.1 We’ll see
that the Fourier transform is a unitary operator F : L2(R) → L2(R) that
diagonalizes shifts U1(a) : L2(R) → L2(R), U1(a)f : t 7→ f(t+ a); namely,

FU1(a)F−1 = V1(a) ,

V1(a) : L2(R) → L2(R) , V1(a)f : t 7→ eibtf(t) .

In fact, Ff : t 7→ 1√
2π

∫ +∞
−∞ e−istf(s) for f ∈ L1(R) ∩ L2(R).

In order to overcome technical difficulties we’ll go round. An orthonormal
basis is a family of vectors with special (and extremely simple) scalar prod-
ucts. Quite different family of vectors with special (and still simple) scalar
products, the so-called exponential map, will be instrumental.

See also “List of results”, “List of formulas”, and Index.

1b Exponential map

Two special geometric objects are introduced in this section: a curve ψ(·) in
a Hilbert space, and the corresponding curve w(·) on the sphere. Placing ap-
propriately the latter curve in the function space L2(R) we extend symmetries
of the curve to shifts of the functions.

1The function x 7→ eiax is not an eigenvector, since it does not belong to L2(R).
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Toy model

Consider a map (vector-function, parametrized curve) ψ : R → E, where
E is a Euclidean space, satisfying

〈ψ(x), ψ(y)〉 = 1 + xy +
1

2
x2y2 .

Existence: ψ(x) =
(

1, x, x2/
√

2
)

∈ R3.
Uniqueness: ‖

∑

ckψ1(xk)‖ = ‖
∑

ckψ2(xk)‖.
General form: ψ(x) = e0 + xe1 + x2

√
2
e2 where e0, e1, e2 are orthonormal.

By the way, e0 = ψ(0), e1 = ψ′(0), e2 = ψ′′(0)/
√

2.
The subspace spanned by all ψ(x) is 3-dimensional.

Exponential map on R

Consider a map (vector-function) ψ0 : R → H , where H is a Hilbert space
over R, satisfying

(1b1) 〈ψ0(x), ψ0(y)〉 = exp(xy/2) ; 〈ψ0(x
√

2), ψ0(y
√

2)〉 = exp(xy) .

Existence: ψ0(x
√

2) =
(

1, x, x2/
√

2!, x3/
√

3!, . . .
)

∈ l2.
As before: uniqueness;

ψ0(x
√

2) =

∞
∑

k=0

xk

√
k!
ek ;

ek are orthonormal; the power series converges (in norm) for all x; ek =
2k/2

√
k!
ψ

(k)
0 (0); the subspace spanned by all ψ0(x) is infinite-dimensional. As-

sume it to be the whole H .
Alternatively:

w0(x) =
ψ0(x)

‖ψ0(x)‖
= e−x2/4ψ0(x) ,

〈w0(x), w0(y)〉 = exp(−(x− y)2/4) ;(1b2)

the latter is shift-invariant.
Action of shifts: U0(a) = U (w0)(a) ∈ Unitary(H) for a ∈ R,

U0(a)w0(x) = w0(x− a) ; U0(a + b) = U0(a)U0(b) .

Observation:
∫ +∞
−∞ e−aq2

dq =
√

π/a, thus the vector-function w1 : R →
L2(R),

w1(x
√

2) : q 7→ 4

√

2a

π
e−(q

√
a−x)2
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satisfies (1b2). Indeed,

∫ +∞

−∞
w1(x

√
2)(q)w1(y

√
2)(q) dq =

√

2

π

∫ +∞

−∞
exp

(

−(q
√
a−x)2−(q

√
a−y)2

)√
adq =

=

√

2

π

∫ +∞

−∞
exp

(

−(q − x)2 − (q − y)2
)

dq =

=

√

2

π

∫ +∞

−∞
exp

(

− 2
(

q − x+ y

2

)2

−
(

x2 + y2 − (x+ y)2

2

)

)

dq =

=

√

2

π

√

π

2
exp

(

− (x− y)2

2

)

.

Traditionally one chooses a = 1/2; the vector-functions w1, ψ1 : R → L2(R),

w1(x) : q 7→ π−1/4e−(q−x)2/2 = π−1/4 exp
(

− q2

2
+ xq − x2

2

)

,

ψ1(x) : q 7→ π−1/4 exp
(

− q2

2
+ xq − x2

4

)

(1b3)

satisfy (1b2), (1b1) respectively. It is not evident whether the vectors ψ1(x)
span L2(R) or not.1 But anyway, our shifts U1(a) = U (w1)(a) conform to the
usual shifts on L2(R); indeed,

(

U1(a)w1(x)
)

(q) = w1(x−a)(q) = w1(x)(q+a),
since w1(x)(q) is a function of q − x only. Thus,

U1(a)f : q 7→ f(q + a)

for every f of the spanned subspace.

1c Exponential map as an analytic vector-function

Using analytic vector-functions on the complex plane we turn to special two-
dimensional surfaces in the Hilbert space, thus gaining additional symmetries.
In the function space the shifts appear to be diagonalized. Also, some useful
systems of functions generate L2(R).

Now we assume H to be a Hilbert space over C and note that the uni-
tary operator ek 7→ ikek leads to another vector-function x

√
2 7→

∑

xk
√

k!
ikek

satisfying (1b1). Not exciting, unless we turn to ψ1, try

ψ1(ix) : q 7→ π−1/4 exp
(

− q2

2
+ ixq +

x2

4

)

,

ψ1(ix)

‖ψ1(ix)‖
: q 7→ π−1/4 exp

(

− q2

2
+ ixq

)

= eixqψ1(0)(q)

1We’ll see that they do.
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and observe that our shifts U1(a) turn into multiplication operators. Really?!
Consider a vector-function ψ0 : C → H satisfying

(1c1) 〈ψ0(z1), ψ0(z2)〉 = exp(z1z2/2) .

Existence: ψ0(z
√

2) =
(

1, z, z2/
√

2!, z3/
√

3!, . . .
)

∈ l2.
As before: uniqueness;

ψ0(z
√

2) =

∞
∑

k=0

zk

√
k!
ek ;

ek are orthonormal; the power series converges (in norm) for all z, which

means that ψ0 is an entire vector-function; ek = 2k/2

√
k!
ψ

(k)
0 (0); the subspace

spanned by all ψ0(z) is infinite-dimensional, and we assume it to be the
whole H .

The vector-function R ∋ x 7→ ψ0(x) ∈ H satisfies (1b1). Another vector-
function R ∋ x 7→ ψ0(ix) ∈ H also satisfies (1b1), since ixiy = xy.

We introduce a vector-function ψ1 : C → L2(R) by

(1c2) ψ1(z) : q 7→ π−1/4 exp
(

− q2

2
+ zq − z2

4

)

and note that 〈ψ1(x), ψ1(y)〉 = exp(xy/2) for x, y ∈ R. Does it mean that
〈ψ1(z1), ψ1(z2)〉 = exp(z1z2/2) for z1, z2 ∈ C? This equality could be checked
by a calculation, but it is more interesting to get it from an excursion into
the theory of analytic vector-functions (which provides much more than just
this equality).

Entire vector-functions on C

1c3 Definition. An entire vector-function ϕ : C → H is a vector-function
of the form

ϕ(z) =
∞

∑

k=0

zkhk

in the sense that

∥

∥

∥
ϕ(z) −

n
∑

k=0

zkhk

∥

∥

∥
→ 0 as n→ ∞

for every z ∈ C; here H is a Hilbert space, and hk ∈ H .
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Clearly, hk must satisfy k
√

‖hk‖ → 0 as k → ∞.
The one-dimensional case H = C conforms to the usual notion of (scalar)

entire function.

1c4 Exercise. If ϕ(z) =
∑∞

k=0 z
khk is an entire vector-function then ξ(z) =

∑∞
k=0(k+ 1)zkhk+1 is an entire vector-function, and ϕ′ = ξ in the sense that

for every z ∈ C,

∥

∥

∥

ϕ(z + ∆z) − ϕ(z)

∆z
− ξ(z)

∥

∥

∥
→ 0 as |∆z| → 0+, ∆z ∈ C .

Prove it.
Hint: (z1 − z0)

∫ 1

0
ξ
(

(1 − u)z0 + uz1
)

du = ϕ(z1) − ϕ(z0).

1c5 Corollary. If ϕ(z) =
∑∞

k=0 z
khk is an entire vector-function then ϕ is

infinitely differentiable, and

hn =
1

n!
ϕ(n)(0) for n = 0, 1, 2, . . .

Thus,

ϕ(z) =
∞

∑

k=0

zk

k!
ϕ(k)(0) .

If entire vector-functions ϕ1, ϕ2 : C → H satisfy ϕ
(n)
1 (0) = ϕ

(n)
2 (0) for all n,

then ϕ1 = ϕ2.

1c6 Proposition. For arbitrary entire vector-functions ϕ1, ϕ2 : C → H ,
(a) if ϕ1(x) = ϕ2(x) for all x ∈ R then ϕ1 = ϕ2;
(b) moreover, if the set {z ∈ C : ϕ1(z) = ϕ2(z)} has at least one (finite)

accumulation point then ϕ1 = ϕ2.

1c7 Proposition. For every entire vector-function ϕ : C → H ,
(a) the closed subspace spanned by all ϕ(z) contains all ϕ′(z) and more-

over, all ϕ(n)(z);
(b) the closed subspace spanned by all ϕ(z) is equal to the closed subspace

spanned by all ϕ(n)(0);
(c) the closed subspace spanned by ϕ(n)(z) for a given z and all n does

not depend on z;
(d) the closed subspace spanned by ϕ(x) for all x ∈ R is equal to the

closed subspace spanned by ϕ(ix) for all x ∈ R;
(e) moreover, for an arbitrary set A ⊂ C having at least one (finite)

accumulation point, the closed subspace spanned by ϕ(z) for z ∈ A does not
depend on the choice of A.
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If ϕ : C → H1 is an entire vector-function and U : H1 → H2 is a linear
isometric embedding (of the Hilbert space H1 to the Hilbert space H2) then
z 7→ Uϕ(z) is an entire vector-function.

1c8 Theorem. Let H1, H2 be Hilbert spaces and ϕ1 : C → H1, ϕ2 : C → H2

entire vector-functions. If

〈ϕ1(x), ϕ1(y)〉 = 〈ϕ2(x), ϕ2(y)〉 for all x, y ∈ R

then
〈ϕ1(z1), ϕ1(z2)〉 = 〈ϕ2(z1), ϕ2(z2)〉 for all z1, z2 ∈ C .

Proof (sketch). We may assume that the closed spanned subspaces are the
whole spaces. We take unitary U : H1 → H2 such that Uϕ1(x) = ϕ2(x)
for all x ∈ R (recall ‘uniqueness’). It follows that Uϕ1(z) = ϕ2(z) for all
z ∈ C.

Back to the exponential map on C

1c9 Exercise. If f : C → C is an entire function and ϕ : C → H an entire
vector-function then fϕ : z 7→ f(z)ϕ(z) is an entire vector-function. Prove
it.

1c10 Exercise. The vector-function ϕ : C → L2(R) defined by ϕ(z) : q 7→
exp(−q2/2 + zq) is entire.

Prove it.
Hint:

∣

∣e−q2/2
∑n

k=0
(zq)k

k!

∣

∣ ≤ exp(−q2/2 + |zq|), a majorant in L2; use the
dominated convergence theorem.

1c11 Corollary. The vector-function ψ1 : C → L2(R) defined by (1c2) is
entire.

By the theorem,

〈ψ1(z1), ψ1(z2)〉 = exp(z1z2/2) for all z1, z2 ∈ C ;

especially, 〈ψ1(ix), ψ1(iy)〉 = exy/2 = 〈ψ1(x), ψ1(y)〉 for x, y ∈ R.
Defining w1 : C → L2(R) by

w1(z) =
ψ1(z)

‖ψ1(z)‖
= e−|z|2/4ψ1(z) : q 7→ π−1/4 exp

(

− q2

2
+ zq − z2

4
− |z|2

4

)

(not an analytic function) we get

〈w1(z1), w1(z2)〉 = exp
(1

2
z1z2−

1

4
|z1|2−

1

4
|z2|2

)

= exp
(

−1

4
|z1−z2|2+

i

2
Im (z1z2)

)

;

especially, 〈w1(ix), w1(iy)〉 = e−|x−y|2/4 = 〈w1(x), w1(y)〉 for x, y ∈ R.
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1c12 Lemma. The closed subspace spanned by {ψ1(ix) : x ∈ R} is the
whole L2(R).

Proof (sketch). ψ1(ix)(q) = const(x) · eixq · e−q2/2; in L2 with the weight e−q2

the closed subspace spanned by the functions q 7→ eixq contains all periodic
functions (recall Fourier series), therefore, all functions.

1c13 Corollary. The closed subspace spanned by {ψ1(x) : x ∈ R} is the
whole L2(R).

Recall the shift operators U1(a) = U (w1)(a) defined by U1(a)w1(x) =
w1(x− a) for a ∈ R and satisfying U1(a)f : q 7→ f(q + a) for every f of the
spanned subspace. Now we see that

U1(a) ∈ Unitary(L2(R)) , U1(a)f : q 7→ f(q+a) for all f ∈ L2(R), a ∈ R .

Replacing w1(x) with w1(ix) we get another one-parameter group of unitary
operators V1(b) defined by

V1(b)w1(iy) = w1

(

i(y + b)
)

for b ∈ R; they act on the spanned subspace, thus, on the whole L2(R).
Taking into account that

w1(iy)(q) = π−1/4 exp
(

− q2

2
+ iyq

)

,

w1

(

i(y + b)
)

(q) = eibqw1(iy)(q)

we get

V1(b) ∈ Unitary(L2(R)) , V1(b)f : q 7→ eibqf(q) for all f ∈ L2(R), b ∈ R .

1d Fourier transform

Now we are in position to define a unitary operator F : L2(R) → L2(R) by

Fψ1(x) = ψ1(−ix) for x ∈ R .

We have FU1(a)w1(x) = Fw1(x − a) = w1

(

−i(x − a)
)

= V1(a)w1(−ix) =
V1(a)Fw1(x), which means that FU1(a) = V1(a)F , that is,

FU1(a)F−1 = V1(a) for a ∈ R .

We see that the two one-parameter unitary groups are unitarily equivalent.
Shift operators are thus diagonalized!
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1e Operators commuting with shifts

Every operator commuting with shifts results from shifts. Also, the Fourier
transform is the only operator diagonalizing the shifts.

A linear electric circuit transforms a signal by an operator commuting
with (time) shifts, provided that the circuit does not change in time. Also a
linear evolution equations with constant coefficients, such as the heat equa-
tion and the Schrödinger equation, lead to evolution operators commuting
with (space) shifts.

1e1 Theorem. Let a bounded linear operator A : L2(R) → L2(R) satisfy
U1(a)A = AU1(a) for all a ∈ R. Then A is a strong limit of a sequence of
linear combinations of operators U1(a).

That is, there exist c
(n)
k ∈ C and a

(n)
k ∈ R such that

∀f ∈ L2(R)

∥

∥

∥

∥

n
∑

k=1

c
(n)
k U1

(

a
(n)
k

)

f − Af

∥

∥

∥

∥

→ 0 as n→ ∞ .

1e2 Remark. (a) The theorem fails for norm convergence of operators (as
we’ll see later). (b) The theorem fails for L2(R → C2) (as we can see imme-
diately).

Proof (sketch). The proof consists of four steps.
First step: we may replace U1(·) with V1(·). Proof: unitary equivalence.
Second step: A is a multiplication operator, that is,

∃ϕ ∈ L∞(R) ∀f ∈ L2(R) Af = ϕ · f .

Proof: define f0(t) = e−t2/2, g0 = Af0 and ϕ = g0/f0, then AV1(b)f0 =
V1(b)g0 = ϕ · V1(b)f0 for all b. Linear combinations of functions V1(b)f0 are
dense in L2; it follows that ϕ ∈ L∞ (since A is bounded) and Af = ϕ · f for
all f ∈ L2.

Third step: it is sufficient to find trigonometric polynomials pn such that
pn → ϕ almost everywhere and supn,q |pn(q)| < ∞. Proof: then for every
f ∈ L2 we have ‖pn · f − ϕ · f‖ → 0 by the dominated convergence theorem,
since |pn · f − ϕ · f |2 ≤ const · |f |2.

Last step. We know that trigonometric polynomials are dense in L2 with
weight e−q2

. Moreover, having ϕ ∈ L∞(R) we get (by the same Fourier series
argument, via Feier sums) trigonometric polynomials pn such that ‖pn‖∞ ≤
‖ϕ‖∞ and

∫

|pn(q)−ϕ(q)|2e−q2

dq → 0 as n→ ∞. Taking a subsequence we

get
∑

n

∫

|pn(q)− ϕ(q)|2e−q2

dq <∞, which implies
∑

n |pn(q) − ϕ(q)|2 <∞
almost everywhere.
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Now we can see that the theorem fails for norm convergence of operators;
it happens because trigonometric polynomials are not dense in L∞(R).

As a by-product we get the general form of an operator commuting with
all V1(b), — just the multiplication operator

L2(R) ∋ f 7→ ϕ · f , ϕ ∈ L∞(R) ,

and, more important, the general form of an operator commuting with all
U1(a),

L2(R) ∋ f 7→ F−1(ϕ · Ff) , ϕ ∈ L∞(R) .

1e3 Corollary. If an operator commutes with all U1(a) and all V1(b) then
it is scalar.

Proof: it is multiplication by ϕ, and ϕ is shift-invariant.

1e4 Corollary. If an invertible operator F1 satisfies F1U1(a)F−1
1 = V1(a)

for all a ∈ R then F1 = cF for some c ∈ C.

Proof: F−1
1 F commutes with all U1(a) and V1(b).

The same holds for U(a) and V (b) in general.

1f Inverse Fourier transform

The relation Fψ1(z) = ψ1(−iz) holds for z ∈ R, therefore, for all z ∈ C.
In particular, Fψ1(ix) = ψ1(x) for x ∈ R. We note that 〈ψ1(z1), ψ1(z2)〉 =
exp(z1z2/2) = 〈ψ1(−z1), ψ1(−z2)〉, introduce a unitary operator J : L2(R) →
L2(R) by

Jψ1(z) = ψ1(−z)
and get FJψ1(−ix) = ψ1(x), that is, FJFψ1(x) = ψ1(x), which means that
FJF = 1l and so,

F−1 = FJ = JF .

It remains to note that Jψ1(z)(q) = ψ1(−z)(q) = π−1/4 exp
(

− q2

2
−zq− z2

4

)

=
ψ1(z)(−q), thus,

(Jf)(q) = f(−q) for f ∈ L2(R) .

1g Convolution operators

Integral combinations of shift operators are convolution operators.

We want to define an operator
∫

g(a)U1(−a) da for every g ∈ L1(R).1

One approach is, to integrate the vector-function a 7→ U1(−a)f (for a given

1The minus sign is traditional.
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f ∈ L2(R)) with the weight g. Another approach is the classical convolution
formula (f ∗ g)(q) =

∫

g(a)f(q − a) da.

Integrating the vector-function

1g1 Lemma. The one-parameter unitary group U1(·) is strongly continuous.

That is, ‖f − U1(a)f‖ → 0 as a → 0 for every f ∈ L2(R). Continuity at
other points follows easily from continuity at 0.

First proof. Using the unitary equivalence we replace U1(·) with V1(·); now,
∫

|f(q)− eibqf(q)|2 dq → 0 as b→ 0 by the dominated convergence theorem.

1g2 Remark. However, ‖1l − U1(a)‖ = 2 for all a 6= 0, since ess supt∈R
|1 −

eibt| = 2 for all b 6= 0.

Another proof. The claim holds evidently on a dense set of f , which is suffi-
cient.

Given f ∈ L2(R), we have a bounded continuous vector-function R ∋
a 7→ U1(−a)f , and may consider the improper Riemann-Stieltjes integral

∫ +∞

−∞
U1(−a)f dG(a) = lim

C→+∞
lim

n→∞

n−1
∑

k=−n

(

G
(k + 1

n
C

)

−G
(k

n
C

))

U1

(

−k
n
C

)

f ,

where G(a) =
∫ a

−∞ g(q) dq; norm convergence in L2(R) is proved in the
same way as for scalar-valued functions (and of course, it holds for arbitrary
partitions and points). This integral will be denoted by

∫

g(a)U1(−a)f da.
Clearly, ‖

∫

g(a)U1(−a)f da‖2 ≤ ‖g‖1‖f‖2, and we define a bounded linear
operator

∫

g(a)U1(−a) da as f 7→
∫

g(a)U1(−a)f da. Thus, ‖
∫

g(a)U1(−a) da‖ ≤
‖g‖1; we have a bounded linear map from L1(R) to the space of operators
L2(R) → L2(R). Clearly,

∫

g(a)U1(−a) da commutes with shifts.
It is easy to guess that

∫

g(a)U1(−a)f da : q 7→
∫

g(a)f(q − a) da ,

but not so easy to prove it, since f(t) cannot be treated as a continuous
linear functional of f ∈ L2.

Classical convolution formula
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1g3 Lemma. Let f ∈ L2(R) and g ∈ L1(R), then for almost all q ∈ R,
(a)

∫

|f(q − a)g(a)| da <∞,
(b)

∫

g(a)U1(−a)f da : q 7→
∫

g(a)f(q − a) da.

Proof. (a)
∫

dq
∫

da |f(q−a)|2|g(a)| =
∫

da |g(a)|
∫

dq |f(q−a)|2 = ‖g‖1‖f‖2
2 <

∞, therefore
∫

|f(q − a)|2|g(a)| da < ∞ for almost all q, which implies
∫

|f(q − a)g(a)| da ≤
(∫

|f(q − a)|2|g(a)| da
)

1/2
(∫

|g(a)| da
)

1/2 <∞.
(b) The function q 7→

∫

f(q−a)g(a) da belongs to L2, since
∫

dq
∣

∣

∫

f(q−
a)g(a) da

∣

∣

2 ≤ ‖g‖1 ·
∫

dq
∫

da |f(q − a)|2|g(a)| ≤ ‖g‖2
1‖f‖2

2. It is sufficient to
prove the equality

〈
∫

g(a)U1(−a)f da, h

〉

=

〈

q 7→
∫

f(q − a)g(a) da, h

〉

for all h ∈ L2(R). The linear functional 〈·, h〉 applies to the Riemann-Stieltjes
integral, giving
〈

∫

g(a)U1(−a)f da, h

〉

=

∫

g(a)〈U1(−a)f, h〉 da =

∫

da g(a)

∫

dq f(q−a)h(t) .

The needed equality
∫

da g(a)

∫

dq h(q)f(q − a) =

∫

dq h(q)

∫

da g(a)f(q − a)

follows from Fubini’s theorem, since
∫∫

dadq |g(a)h(q)f(q − a)| =

=

∫

dq |h(q)|
∫

da |g(a)f(q − a)| ≤

≤ ‖h‖1/2
2 ·

∥

∥

∥

∥

q 7→
∫

da |g(a)f(q − a)|
∥

∥

∥

∥

1/2

2

<∞ .

Thus we have two equivalent definitions of the convolution f ∗ g for
f ∈ L2(R), g ∈ L1(R),

f ∗ g =

∫

g(a)U1(−a)f da ;

f ∗ g : t 7→
∫

f(t− s)g(s) ds .

The latter formula shows that

f ∗ g = g ∗ f for f, g ∈ L1(R) ∩ L2(R) .
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1h Fourier transform and convolution

The convolution operator
∫

g(a)U1(−a) da : f 7→ f ∗ g commutes with all
U1(a), therefore it must be f 7→ F−1(ϕ · Ff) for some ϕ ∈ L∞(R). We have

F
∑

k

ckU1(−ak)F−1 =
∑

k

ckV1(−ak) ;

the limiting procedure (strong convergence. . . ) gives

F
(

∫

g(a)U1(−a) da

)

F−1 =

∫

g(a)V1(−a) da ,

which means that

ϕ(q) =

∫

g(a)e−iaq da ;

f ∗ g = F−1(ϕ · Ff) , that is, F(f ∗ g) = ϕ · Ff

for f ∈ L2(R) and g ∈ L1(R).

1i Gaussian functions

We know that Fψ1(0) = ψ1(0) and ψ1(0) : q 7→ π−1/4e−q2/2. Now we rescale
that function: fσ ∈ L2(R),

fσ(q) = π−1/4σ−1/2 exp
(

− q2

2σ2

)

for 0 < σ <∞ ;

note that f1 = ψ1(0), Ff1 = f1. The functions fσ are normalized in L2:
‖fσ‖ = 1. Also Gaussian functions normalized in L1 are useful,

gσ =
fσ

‖fσ‖1
= 2−1/2π−1/4σ−1/2fσ : q 7→ (2π)−1/2σ−1 exp

(

− q2

2σ2

)

.

1i1 Lemma. Ffσ = f1/σ for 0 < σ <∞.

Proof. It is sufficient to prove it for σ ≥ 1, since it implies fσ = F−1f1/σ =
FJf1/σ = Ff1/σ.

Given σ > 1 we introduce δ =
√
σ2 − 1 and note that f1 ∗ gδ = σ−1/2fσ

(check it). On the other hand, F(f1 ∗ gδ) = ϕδ · Ff1 where ϕδ(q) =
∫

gδ(a)e
−iaq da = exp

(

−1
2
δ2q2

)

(check it). Thus, Ffσ = σ1/2ϕδ · f1 = f1/σ

(check it).

1i2 Corollary. Fgσ = 1
σ
g1/σ.
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1j Explicit formula

1j1 Theorem.

Ff : t 7→ 1√
2π

∫ +∞

−∞
e−istf(s) ds for f ∈ L1(R) ∩ L2(R) .

We use the Gaussian functions fσ, gσ.

1j2 Lemma. f ∗ gσ → f in L2 as σ → 0+, for every f ∈ L2.

Proof. ‖f ∗ gσ − f‖ = ‖
∫

gσ(a)(U1(−a)f − f) da‖ ≤
∫

gσ(a)‖U1(−a)f −
f‖ da =

∫

(−ε,+ε)
· · · +

∫

R\(−ε,+ε)
· · · → 0.

Proof of the theorem. F(f ∗ gσ) = F(gσ ∗ f) = ϕ · Fgσ, where ϕ : t 7→
∫

f(s)e−ist ds. We have Fgσ = 1
σ
g1/σ : t 7→ (2π)−1/2e−σ2t2/2 → (2π)−1/2

as σ → 0+ pointwise (moreover, locally uniformly). On the other hand,
ϕ · 1

σ
g1/σ = ϕ · Fgσ = F(f ∗ gσ) → F(f) in L2. It follows that ϕ ∈ L2 and

F(f) = (2π)−1/2ϕ.

1j3 Corollary. F(f ∗ g) = (2π)1/2(Ff) · (Fg) for f ∈ L2, g ∈ L1 ∩ L2.

1k List of results

1k1 Plancherel’s theorem

There exists a bounded linear operator (called Fourier transform) F : L2(R) →
L2(R) such that

Ff : t 7→ 1√
2π

∫ +∞

−∞
e−istf(s) ds for all f ∈ L1(R) ∩ L2(R) .

The operator F is isometric, which means the following.
Plancherel’s formula:

‖Ff‖ = ‖f‖ for all f ∈ L2(R) .

Parseval’s formula:

〈Ff,Fg〉 = 〈f, g〉 for all f, g ∈ L2(R) .

1k2 Inversion formula

The isometric operator F is unitary, which means that F
(

L2(R)
)

= L2(R).
The inverse operator F−1 is given by

F−1 = FJ = JF
where J is defined by Jf : t 7→ f(−t).
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1k3 Diagonalization of shifts

First,
FU(a)F−1 = V (a) for all a ∈ R ,

where operators U(a), V (a) : L2(R) → L2(R) are defined by

U(a)f : t 7→ f(t+ a) , V (a)f : t 7→ eiatf(t) .

Second, this property characterizes F uniquely up to a coefficient.

1k4 Diagonalization of the Fourier transform

There exists an orthonormal basis (e0, e1, e2, . . . ) of L2(R) such that

Fek = (−i)kek for k = 0, 1, 2, . . .

Namely,

ek =
2k/2

√
k!

dk

dzk

∣

∣

∣

∣

z=0

ψ(z) ,

where ψ : C → L2(R) is defined by

ψ(z) : q 7→ π−1/4 exp
(

− q2

2
+ zq − z2

4

)

.

1k5 Some complete systems in L2(R)

The vectors ek mentioned above are a complete system in the sense that their
linear combinations are dense in L2(R). Also functions

q 7→ exp
(

−(q − x)2
)

for all x ∈ R are a complete system.

1k6 Fourier transform and convolution

F(f ∗ g) = (2π)1/2(Ff) · (Fg) for all f ∈ L2(R), g ∈ L1(R) ∩ L2(R) ;

here

f ∗ g : t 7→
∫

f(t− s)g(s) ds .

1k7 Operators commuting with shifts

A bounded linear operator on L2(R) commutes with all U(a) if and only if
it is of the form

f 7→ F−1(ϕ · Ff)

for some ϕ ∈ L∞(R).
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1k8 Vector-functions

In addition we have several statements about vector-functions (both spe-
cific and general) valued in a (general) Hilbert space, their derivatives and
integrals. See especially Sections 1c and 1g.

1l List of formulas

x, y ∈ R; z1, z2 ∈ C; ψ0, w0 : C → H ;

〈ψ0(z1), ψ0(z2)〉 = exp
(1

2
z1z2

)

;(1l1)

w0(z) =
ψ0(z)

‖ψ0(z)‖
= e−|z|2/4ψ0(z) ;(1l2)

〈w0(z1), w0(z2)〉 = exp
(

− 1

4
|z1 − z2|2 +

i

2
Im (z1z2)

)

;(1l3)

〈w0(x), w0(y)〉 = e−|x−y|2/4 = 〈w0(ix), w0(iy)〉 ;(1l4)

U0, V0 : R → Unitary(H);

U0(a)w0(x) = w0(x− a) ;(1l5)

V0(b)w0(iy) = w0

(

i(y + b)
)

;(1l6)

ψ1, w1 : C → L2(R);

ψ1(z) : q 7→ π−1/4 exp
(

− q2

2
+ zq − z2

4

)

;(1l7)

w1(z) : q 7→ π−1/4 exp
(

− q2

2
+ zq − z2

4
− |z|2

4

)

;(1l8)

w1(x) : q 7→ π−1/4 exp
(

− 1

2
(q − x)2

)

;(1l9)

w1(iy) : q 7→ π−1/4 exp
(

− q2

2
+ iyq

)

;(1l10)

U1, V1 : R → Unitary(L2(R)), a, b ∈ R;

U1(a)f : q 7→ f(q + a) ;(1l11)

V1(b)f : q 7→ eibqf(q) ;(1l12)
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F ∈ Unitary(L2(R));

Fψ1(z) = ψ1(−iz) ;(1l13)

FU1(a)F−1 = V1(a) ;(1l14)

F−1 = FJ = JF , Jf : q 7→ f(−q) ;(1l15)

Ff : t 7→ 1√
2π

∫ +∞

−∞
e−istf(s) ds for f ∈ L1(R) ∩ L2(R) ;(1l16)

f ∗ g =

∫

g(a)U1(−a)f da : t 7→
∫

f(t− s)g(s) ds ;(1l17)

f ∗ g = g ∗ f for f, g ∈ L1(R) ∩ L2(R) ;(1l18)

F(f ∗ g) = (2π)1/2(Ff) · (Fg) for f ∈ L2(R), g ∈ L1(R) ∩ L2(R) .(1l19)

Index
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w1, 4, 7


	Fourier transform as unitary equivalence
	Introduction
	Exponential map
	Exponential map as an analytic vector-function
	Fourier transform
	Operators commuting with shifts
	Inverse Fourier transform
	Convolution operators
	Fourier transform and convolution
	Gaussian functions
	Explicit formula
	List of results
	Plancherel's theorem
	Inversion formula
	Diagonalization of shifts
	Diagonalization of the Fourier transform
	Some complete systems in  L2(R) 
	Fourier transform and convolution
	Operators commuting with shifts
	Vector-functions

	List of formulas

	Index

