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This preparatory chapter aims at some acquaintance with unbounded op-
erators and functions of them. Postponing the general theory, here we treat
functions of the differentiation operator on L2(R) using the Fourier trans-
form.

2a Introduction

For a diagonal matrixA = diag(a1, . . . , an) we have p(A) = diag
(

p(a1), . . . , p(an)
)

for every polynomial p. For a diagonalizable matrix A we have FAF−1 =
diag(a1, . . . , an) for some (invertible) matrix F , and Fp(A)F−1 = p(FAF−1) =
diag

(

p(a1), . . . , p(an)
)

. It is natural to define

ϕ(A) = F−1 diag
(

ϕ(a1), . . . , ϕ(an)
)

F

for every ϕ : {a1, . . . , an} → C. The result does not depend on the choice of
F . The map ϕ 7→ ϕ(A) is a homomorphism of algebras, that is,

linearity: (aϕ+ bψ)(A) = aϕ(A) + bψ(A),

multiplicativity: (ϕ · ψ)(A) = ϕ(A)ψ(A)

for all a, b ∈ C and ϕ, ψ ∈ C{a1,...,an}. Note also

unit preservation: 1l(A) = 1l.

Assume in addition that A∗ = A, then a1, . . . , an ∈ R, F can be chosen
unitary, and the homomorphism is a ∗-homomorphism, that is,

involution preservation: ϕ(A) = (ϕ(A))∗

for all ϕ ∈ C{a1,...,an}. In particular, ϕ(A) is self-adjoint for all ϕ ∈ R{a1,...,an}.
Note also
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positivity: if ϕ ≥ 0 then ϕ(A) ≥ 0

for all ϕ ∈ R{a1,...,an}.
For a compact self-adjoint operator in a Hilbert space the situation is

similar; a finite spectrum {a1, . . . , an} is replaced with a sequence converging
to 0.

For a bounded (not just compact) self-adjoint operator in a Hilbert space
the situation is similar in principle, but more complicated technically, be-
cause of (possibly) continuous spectrum. Additional technical complications
appear for unbounded self-adjoint operators.

In this chapter we consider mostly the (unbounded) differentiation oper-
ator in L2(R), which is rather easy due to its diagonalization by the Fourier
transform.

2b Multiplication operators

All multiplication operators are functions of one important operator Q, the
generator of the unitary group

(

V (b)
)

b∈R.

We know that L∞(R) acts on L2(R) by multiplication operators,

L2 ∋ f 7→ ϕ · f ∈ L2 , ϕ ∈ L∞ .

2b1 Exercise. Formulate and prove the five properties of this action:
linearity,
multiplicativity,
unit preservation,
involution preservation,
positivity.

What about multiplication

f 7→
(

q 7→ qf(q)
)

by the unbounded function q 7→ q? Surely it is not a bounded operator. We
define

DQ =

{

f ∈ L2(R) :

∫

q2|f(q)|2 dq <∞

}

,

Q : DQ → H ,

Qf : q 7→ qf(q) for f ∈ DQ ;
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Q is an example of so-called “densely defined unbounded linear operator”,
and the dense linear set DQ is its domain. Similarly, for every ϕ ∈ L0(R)
(just a measurable function R → C) we define

Dϕ = {f ∈ L2(R) : ϕ · f ∈ L2(R)} ,

Aϕ : Dϕ → H ,

Aϕf = ϕ · f for f ∈ Dϕ ;

Aϕ is a densely defined linear operator, unbounded unless ϕ ∈ L∞. The
special case ϕ = id : q 7→ q leads to the operator Aid = Q.

2b2 Exercise. If ϕ, ψ ∈ L0 satisfy ϕ− ψ ∈ L∞ then

Dϕ = Dψ ,

Aϕf −Aψf = (ϕ− ψ) · f for f ∈ Dϕ = Dψ .

Prove it.

In particular, Did+c1l = Did = DQ for each c ∈ C, and Aid+c1l = Q+ c1l.

2b3 Exercise. Let ϕ ∈ L∞, ψ ∈ L0, then

Dϕ·ψ = {f : ϕ · f ∈ Dψ} ⊃ Dψ ,

(ϕ · ψ) · f = ψ · (ϕ · f) for f ∈ Dϕ·ψ .

The relations Dϕ·ψ = Dψ and (ϕ · ψ) · f = ϕ · (ψ · f) (for f ∈ Dϕ·ψ) are
generally wrong; however, they hold if |ϕ(·)| is bounded away from 0.

Prove the positive claims, and find counterexamples to the negative claims.

An interesting special case is well-known as Cayley transform. Given
ψ ∈ L0 such that ψ = ψ, we introdice ϕ ∈ L∞ by

ϕ(x) =
ψ(x) − i

ψ(x) + i
,

observe that |ϕ(·)| = 1 and ψ− i1l = ϕ · (ψ+ i1l), therefore Aϕ is unitary and
(ψ−i1l)·f = (ψ+i1l)·(ϕ·f), which leads to a remarkable relation between the
unbounded1 self-adjoint operator A = Aψ and the unitary operator U = Aϕ:

(2b4) (A− i1l)f = (A+ i1l)Uf for f ∈ DA

1Here and henceforth I often write “unbounded” meaning “generally, unbounded”, that
is, “not necessarily bounded”.
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(which determines U uniquely), and

(1l − U)Af = i(1l + U)f for f ∈ DA

(since (1 − ϕ) · ψ = i(1 + ϕ)), which restores A from U .
Postponing the general definition of a function of operator, for now we

define
ϕ(Q) = Aϕ for ϕ ∈ L0(R) .

In particular, ϕ = id + c1l : q 7→ q + c gives ϕ(Q) = Q+ c1l; ϕ : q 7→ qn gives
ϕ(Q) = Qn; also, ϕ : q 7→ eibq gives ϕ(Q) = exp(ibQ).

2b5 Exercise. Let n ∈ {2, 3, . . .}.
(a) Qnf is defined if and only if Qn−1f is defined and belongs to DQ;
(b) in this case Qnf = Q(Qn−1f).
Prove it.

2b6 Exercise. (a) Q−1f is defined if and only if there exists g ∈ DQ such
that Qg = f ;

(b) in this case such g is unique, and Q−1f = g.
Prove it.

Recall the unitary operators V (b) of (1b12) (denoted there by V1(b)).
Clearly,

exp(ibQ) = V (b) for all b ∈ R .

The operatorQ is the generator of the one-parameter unitary group
(

V (b)
)

b∈R

in the following sense.

2b7 Exercise. (a) The following three conditions are equivalent for every
f ∈ L2(R):

‖f − exp(iλQ)f‖ = O(λ) as λ→ 0 ;(a1)

d

dλ

∣

∣

∣

λ=0
exp(iλQ)f exists (in the norm);(a2)

f ∈ DQ .(a3)

(b) In this case

Qf = −i
d

dλ

∣

∣

∣

λ=0
exp(iλQ)f .

Prove it.
Hint: |1 − eiλq| ≤ |λq|; use Fatou’s lemma for (a1)=⇒(a3), and the dom-

inated convergence theorem for (a3)=⇒(a2).
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2c Functions of the differentiation operator

All operators commuting with shifts are functions of one important operator
P , the generator of the unitary group

(

U(a)
)

a∈R of shifts.

Recalling the general form of an operator commuting with shifts,

Bϕf = F−1(ϕ · Ff) ,

we observe another action ϕ 7→ Bϕ of L∞(R) on L2(R).

2c1 Exercise. Formulate and prove the five properties of this action:
linearity,
multiplicativity,
unit preservation,
involution preservation,
positivity.

Hint: use 2b1 and unitarity of F .

We do the same for unbounded operators. Namely, for every ϕ ∈ L0(R)
we define

DBϕ
= {f ∈ L2(R) : Ff ∈ DAϕ

} = F−1DAϕ
,

Bϕ : DBϕ
→ H ,

Bϕf = F−1(AϕFf) for f ∈ DBϕ
;

Bϕ is a densely defined linear operator (unbounded unless ϕ ∈ L∞) unitarily
equivalent to ϕ(Q),

Bϕ = F−1ϕ(Q)F ,

and we treat it as a function of the operator P = Bid:

P = F−1QF ,

ϕ(P ) = F−1ϕ(Q)F .

Recall the unitary operators U(a) of (1b11) (denoted there by U1(a)). We
have

U(a) = exp(iaP ) for all a ∈ R .

The operator P is the generator of the one-parameter unitary group
(

U(a)
)

a∈R

in the following sense.
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2c2 Exercise. (a) The following three conditions are equivalent for every
f ∈ L2(R):

‖f − U(a)f‖ = O(a) as a→ 0 ;(a1)

d

da

∣

∣

∣

a=0
U(a)f exists (in the norm);(a2)

f ∈ DP .(a3)

(b) In this case

Pf = −i
d

da

∣

∣

∣

a=0
U(a)f .

Prove it.
Hint: use 2b7, unitarity of F , and the equality U(a) = exp(iaP ).

If f is nice enough, say, continuously differentiable and compactly sup-
ported, then clearly f ′ ∈ L2 and

U(a)f = f + af ′ + o(a) in the norm, as a→ 0

(since U(a)f : q 7→ f(q + a)), thus f ∈ DP and

Pf = −if ′ .

We see that in some sense iP is the differentiation operator f 7→ f ′. However,
what happens for not so nice functions?

2c3 Theorem. The following three conditions on f, g ∈ L2(R) are equiva-
lent:

(a) f ∈ DP and iPf = g;
(b) there exist continuously differentiable compactly supported functions

f1, f2, . . . such that

fn → f in L2 ,

f ′
n → g in L2 ;

(c) for every a ∈ R,

U(a)f = f +

∫ a

0

U(b)g db .

(The latter is the Riemann integral of a continuous vector-function, recall
1g, especially 1g1.)
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Proof (sketch). (a)=⇒(b): we take fn = (f ·1l(−n,n))∗hn where hn are “trian-
gles” q 7→ max(0, n− n2|q|); then fn → f in L2, and U(a)fn = (U(a)f) ∗ hn,
thus f ′

n = d
da

∣

∣

a=0
U(a)fn =

(

d
da

∣

∣

a=0
U(a)f

)

∗ hn = g ∗ hn → g in L2.

(b)=⇒(c): d
da
U(a)fn = U(a)f ′

n, thus U(a)fn = fn+
∫ a

0
U(b)f ′

n db; we take
the limit as n→ ∞.

(c)=⇒(a): d
da

∣

∣

a=0
U(a)f = d

da

∣

∣

a=0

∫ a

0
U(b)g db = g.

According to 2c3(b), fn → f in the so-called Sobolev space W 1
2 (R), and

so, DP = W 1
2 (R). Two more equivalent condition (without proof):

(d) 〈f, h′〉 = −〈g, h〉 for all continuously differentiable compactly sup-
ported functions h;

(e) f(x) = lima→−∞

∫ x

a
g(y) dy for almost all x.

So, the Fourier transform diagonalizes also the differentiation operator:
if f ′ = g in the generalized sense described above (namely, iPf = g) then
ip(Ff)(p) = (Fg)(p) for almost all p (namely, iQFf = Fg). The converse is
also true.

The relation ϕ(P ) = F−1ϕ(Q)F gives in particular operators P n =
F−1QnF .

2c4 Exercise. Let n ∈ {2, 3, . . .}.
(a) P nf is defined if and only if P n−1f is defined and belongs to DP ;
(b) in this case P nf = P (P n−1f).
Prove it.
Hint: use 2b5.

For an infinitely differentiable compactly supported function f we have
(iP )nf = f (n). It is tempting to conclude that

f(q + a) =
∞

∑

n=0

an

n!
f (n)(q) , since exp(iaP ) =

∞
∑

n=0

an

n!
(iP )n ,

but this conclusion is evidently wrong (unless f = 0). A series of unbounded
operators is a more delicate matter!

2c5 Exercise. (a) P−1f is defined if and only if there exists g ∈ DP such
that Pg = f ;

(b) in this case such g is unique, and P−1f = g.
Prove it.
Hint: use 2b6.

The Cayley transform of P (recall (2b4)) is the unitary operator ϕ(P ) =
F−1ϕ(Q)F where ϕ : p 7→ p−i

p+i
. It satisfies

(P − i1l)f = (P + i1l)Uf for f ∈ DP ,
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which means just f ′ + f = g′ − g where g = Uf , provided that f and g are
nice enough (otherwise the derivatives are generalized). Can we calculate
U more explicitly? Yes, we can! First we note that ϕ = 1l − 2ψ, ψ ∈ L2,
ψ : p 7→ i

p+i
. Recalling Sect. 1h we observe that we can get Uf = f − 2f ∗ g

if we find g ∈ L1 such that (2π)1/2Fg = ψ. Clearly, g = (2π)−1/2F−1ψ ∈ L2;
but does g belong to L1, and can we calculate it explicitly? Fortunately, such
a function is well-known:

g(q) = eq1l(−∞,0)(q) ;
∫ 0

−∞

eqe−ipq dq =

∫ 0

−∞

e(1−ip)q dq =
1

1 − ip
=

i

p+ i
.

So,

Uf = f − 2f ∗ g ;

Uf : q 7→ f(q) − 2

∫ ∞

0

e−uf(q + u) du .

2d Frequency bands, spectral projections

The operators Q and P have no eigenvectors but still have many invariant
subspaces. The corresponding projections are instrumental in signal process-
ing and quantum mechanics.

Indicator functions ϕ = 1l(a,b) ∈ L∞(R) satisfy ϕ2 = ϕ and ϕ = ϕ,
therefore the operators

Ea,b = E
(Q)
a,b = ϕ(Q) = 1l(a,b)(Q)

are self-adjoint (that is, orthogonal) projections L2(R) → L2(a, b) ⊂ L2(R).
The relation 1l(a,b) + 1l(b,c) = 1l(a,c) in L∞ (for a < b < c) implies the relation
Ea,b + Eb,c = Ea,c between operators, and the corresponding direct sum re-
lation L2(a, b) ⊕ L2(b, c) = L2(a, c) between subspaces. These subspaces are
invariant under Q (and all ϕ(Q)). Note that

‖E
(Q)
a,b f‖

2 = 〈E
(Q)
a,b f, f〉 =

∫ b

a

|f(q)|2 dq .

In signal processing, ‖f‖2 is (proportional to) the energy of the signal f ;

|f(t)|2 is the energy density at the time t; and 〈E
(Q)
a,b f, f〉 is the energy within

the time interval (a, b).
In quantum mechanics, |f(q)|2 is the probability density (at the point

q) of the coordinate of a one-dimensional particle with the wave function f
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(‖f‖ = 1 is required), and 〈E
(Q)
a,b f, f〉 is the probability of finding the particle

within the spatial interval (a, b) (provided that the coordinate is measured).1

Accordingly, the operators

E
(P )
a,b = 1l(a,b)(P ) = F−1E

(Q)
a,b F

are orthogonal projections satisfying E
(P )
a,b +E

(P )
b,c = E

(P )
a,c (for a < b < c). The

corresponding subspaces (“frequency bands”) satisfy the direct sum relation,
and are invariant under P (and all ϕ(P )).

2d1 Exercise.

‖E
(P )
a,b f‖

2 = 〈E
(P )
a,b f, f〉 =

∫ b

a

|(Ff)(p)|2 dp .

Prove it.
Hint: F−1 = F∗.

In signal processing, ‖(Ff)(ω)‖2 is the spectral density of the signal en-

ergy at the frequency ω; and 〈E
(P )
a,b f, f〉 is the energy within the frequency

band (a, b).
In quantum mechanics, |(Ff)(p)|2 is the probability density (at the point

p) of the momentum of a one-dimensional particle with the wave function f

(‖f‖ = 1 is required), and 〈E
(P )
a,b f, f〉 is the probability of finding the momen-

tum within the interval (a, b) (provided that the momentum is measured).2

2d2 Exercise. For every f ∈ L1(R) ∩ L2(R),

E
(P )
a,b f = ga,b ∗ f , where

ga,b(q) =
1

2πi

eibq − eiaq

q
.

Prove it.
Hint: F(g ∗ f) = . . .

Especially, g−b,b(q) = sin bq
πq

.

Be careful: ga,b belongs to L2(R) but not L1(R). Nevertheless the convo-
lution operator f 7→ ga,b ∗ f is well-defined on a dense set of functions f and
extends by continuity to all f ∈ L2.

3

1The ideal measurement of the coordinate is meant. Do not take it too seriously. It is
rather a toy model of a quantum measurement. The infinite resolution is unfeasible.

2Once again, the ideal measurement of the momentum is meant. . .
3Which cannot be said about |ga,b(·)|. . .
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2e List of formulas

Multiplication operators:

Qf : q 7→ qf(q) for f ∈ DQ ;(2e1)

ϕ(Q)f = ϕ · f : q 7→ ϕ(q)f(q) for f ∈ Dϕ(Q) ;(2e2)

exp(ibQ) = V (b) ;(2e3)

Qf = −i
d

db

∣

∣

∣

∣

b=0

V (b)f for f ∈ DQ ;(2e4)

E
(Q)
a,b = 1l(a,b)(Q) ;(2e5)

‖E
(Q)
a,b f‖

2 = 〈E
(Q)
a,b f, f〉 =

∫ b

a

|f(q)|2 dq .(2e6)

Operators commuting with shifts:

P = F−1QF ;(2e7)

Pf : q 7→ −if ′(q) for nice f ;(2e8)

ϕ(P ) = F−1ϕ(Q)F : f 7→ F−1(ϕ · Ff) ;(2e9)

exp(iaP ) = U(a) ;(2e10)

Pf = −i
d

da

∣

∣

∣

∣

a=0

U(a)f for f ∈ DP ;(2e11)

E
(P )
a,b = 1l(a,b)(P ) = F−1E

(Q)
a,b F ;(2e12)

‖E
(P )
a,b f‖

2 = 〈E
(P )
a,b f, f〉 =

∫ b

a

|(Ff)(p)|2 dp ;(2e13)

E
(P )
a,b f =

(

q 7→
1

2πi

eibq − eiaq

q

)

∗ f for f ∈ L1(R) ∩ L2(R) .(2e14)
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