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Bounded continuous functions f : R → C can be applied to a (generally,
unbounded) operator A, giving bounded operators f(A), provided that A is
self-adjoint (which amounts to three evident conditions and one inevident
condition). Indicators of intervals (and some other discontinuous functions
f) can be applied, too. Especially, operators Ut = exp(itA) form a unitary
group whose generator is A.

3a Introduction: which operators are most useful?

The zero operator is much too good for being useful. Less good and more
useful are: finite-dimensional self-adjoint operators; compact self-adjoint op-
erators; bounded self-adjoint operators.

On the other hand, arbitrary linear operators are too bad for being useful.
They do not generate groups, they cannot be diagonalized, functions of them
are ill-defined.

Probably, most useful are such operators as (for example) P and Q (con-
sidered in the previous chapters); P 2 + Q2 (the Hamiltonian of a harmonic
one-dimensional quantum oscillator, P 2 being the kinetic energy and Q2 the
potential energy); more generally, P 2 + v(Q) (the Hamiltonian of a anhar-
monic one-dimensional quantum oscillator) and its multidimensional coun-
terparts.
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The famous Schrödinger equation

i
d

dt
ψ(t) = Hψ(t) , H = P 2 + v(Q)

leads to unitary operators exp(−itH). An important goal of functional anal-
ysis is, to define exp(−itH) for good operators H and to understand the
distinction between good and bad operators.

Unitary operators are important for physics. In classical physics, many
evolution operators are unitary due to conservation of energy, in quantum
physics — of probability.

3b Three evident conditions

Good operators (especially, generators of unitary groups) are densely defined,
symmetric, and closed.

An unbounded1 linear operator A : DA → H , DA ⊂ H , is basically the
same as its graph

Graph(A) = {(x, y) : x ∈ DA, y = Ax} .

The phrase “B extends A” means “Graph(A) ⊂ Graph(B)”; the phrase “B
is the closure of A” means “Graph(B) = Closure(Graph(A))”; the phrase “A
is closed” means “Graph(A) is closed”. In addition, Domain(A) = DA ⊂ H
and Range(A) = A(Domain(A)) ⊂ H .

3b1 Exercise. (a) Reformulate Theorem 2c3(a,b) in the form “B is the
closure of A”.

(b) Prove that the operators P and Q are closed.

Further, the phrase “A is densely defined” means “Domain(A) is dense”.
Unless otherwise stated,

∗ all operators are assumed linear;

∗ all operators are assumed densely defined;

∗ all bounded operators are assumed everywhere defined.

Note that all bounded operators are closed.

3b2 Exercise. If A is closed and B is bounded then A+B is closed.
Prove it.

1I mean, not necessarily bounded.
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In general, Domain(A)∩Domain(B) need not be dense (and even can be
{0}). Fortunately, Domain(P ) ∩ Domain(Q) is dense.

In general, Closure(Graph(A)) need not be a graph (it may contain some
(0, y), y 6= 0); that is, not all operators are closable.

3b3 Definition. Operator A is symmetric if

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ Domain(A) .

3b4 Exercise. Operator A is symmetric if and only if ∀x ∈ H 〈Ax, x〉 ∈ R.
Prove it.
Hint: the “if” part: 〈Ax, y〉 + 〈Ay, x〉 = 〈A(x + y), x + y〉 − 〈Ax, x〉 −

〈Ay, y〉 ∈ R; also 〈Ax, iy〉 + 〈Aiy, x〉 ∈ R.

3b5 Exercise. Prove that the operators P and Q are symmetric.

3b6 Lemma. A symmetric operator is closable, and its closure is a sym-
metric operator.

Proof. If xn → 0 and Axn → y then 〈y, z〉 = lim〈Axn, z〉 = lim〈xn, Az〉 = 0
for all z ∈ Domain(A), therefore y = 0, thus, A is closable.

Given x, y ∈ Domain(B) where B = Closure(A), we take xn, yn ∈ Domain(A)
such that xn → x, Axn → Bx, yn → y, Ayn → By and get 〈Bx, y〉 =
lim〈Axn, yn〉 = lim〈xn, Ayn〉 = 〈x,By〉, thus, B is symmetric.

3b7 Exercise. For every ϕ ∈ L0(R) the operators ϕ(P ) and ϕ(Q) are closed.
Prove it.
Hint: start with ϕ(Q); a sequence converging in L2 has a subsequence

converging almost everywhere.

3b8 Exercise. The following three conditions on ϕ ∈ L0(R) are equivalent:
(a) ϕ = ϕ;
(b) ϕ(P ) is symmetric;
(c) ϕ(Q) is symmetric.

Prove it.

Generator of a unitary group

3b9 Definition. A strongly continuous one-parameter unitary group is a
family (Ut)t∈R of unitary operators Ut : H → H such that

Us+t = UsUt for all s, t ∈ R ,

‖Utx− x‖ → 0 as t→ 0 , for all x ∈ H .
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Two examples:
(

U(a)
)

a∈R and
(

V (b)
)

b∈R (recall 1g1).

3b10 Exercise. Let (Ut) be a unitary group1 and x ∈ H , then the vector-
function t 7→ Utx is continuous.

Prove it.
Hint: ‖Ut+sx− Utx‖ does not depend on t.

3b11 Definition. The generator of a unitary group (Ut) is the operator A
defined by2

iAx = y if and only if
1

t
(Utx− x) → y as t→ 0 .

3b12 Exercise. The generator of a unitary group is a densely defined oper-
ator.

Prove it.
Hint: for every x ∈ H and every ε > 0 the vector 1

ε

∫ ε

0
Utx dt belongs to

Domain(A).

3b13 Exercise. The generator of a unitary group is a symmetric operator.
Prove it.
Hint: U∗

t = U−1
t = U−t.

3b14 Exercise. Let (Ut) be a unitary group, A its generator, and x ∈
Domain(A). Then the vector-function t 7→ Utx is continuously differentiable,
and Utx ∈ Domain(A) for all t ∈ R, and

d

dt
Utx = iAUtx = UtiAx for all t ∈ R .

Prove it.
Hint: Ut+ε − Ut = (Uε − 1l)Ut = Ut(Uε − 1l).

Note that operators Ut leave the set Domain(A) invariant.

3b15 Exercise. Let A be the generator of a unitary group (Ut), and B the
generator of a unitary group (Vt). If A = B then Ut = Vt for all t ∈ R.

Prove it.
Hint: let x ∈ Domain(A), then the vector-function x(t) = Utx − Vtx

satisfies d
dt
xt = iAxt, therefore d

dt
‖xt‖2 = 2Re 〈iAxt, xt〉 = 0.

1By “unitary group” I always mean “strongly continuous one-parameter unitary group”.
2Some authors call iA (rather than A) the generator.
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3b16 Exercise. Let (Ut) be a unitary group, A its generator. Then the
following two conditions on x, y ∈ H are equivalent:

(a) x ∈ Domain(A) and iAx = y,
(b) for every t ∈ R,

Utx = x+

∫ t

0

Usy ds .

Prove it.
Hint: recall the proof of 2c3.

3b17 Exercise. The generator of a unitary group is a closed operator.
Prove it.
Hint: use 3b16.

3c The fourth, inevident condition

Strangely, the three conditions do not ensure a unique dynamics. Good op-
erators (especially, generators of unitary groups) satisfy also the fourth con-
dition Range(A± i1l) = H, and are called self-adjoint. Surprisingly, the four
conditions are sufficient for all our purposes (in subsequent sections).

Let (Ut) be a unitary group and A an operator such that d
dt

∣

∣

t=0
Utx = iAx

for all x ∈ Domain(A). One may hope to construct (Ut) from A via the
differential equation

d

dt
Utx = iAx

for all x ∈ Domain(A) or, maybe, for a smaller but still dense set of “good”
vectors x. However, this is a delusion! Two different generators (of two
different unitary groups) can coincide on a dense set.

3c1 Example. Given α ∈ C, |α| = 1, we define unitary operators U
(α)
t on

L2(0, 1) by

U
(α)
t f : q 7→ αkf(q + t− k) whenever q + t− k ∈ (0, 1) ;

here k runs over Z. It is easy to see that
(

U
(α)
t

)

t∈R is a unitary group. Its

generator A(α) satisfies
A(α) ⊃ A

where iAf = f ′ for all f ∈ Domain(A) and Domain(A) consists of all con-
tinuously differentiable functions (0, 1) → C whose supports are compact
subsets of the open interval (0, 1). (Such functions are dense in L2(0, 1).)
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The operator A is symmetric (integrate by parts. . . ), and its closure satisfies
all the three conditions: densely defined, symmetric, closed. Nevertheless,
Closure(A) ⊂ A(α) for all α (since A(α) are closed), thus, the differential
equation i d

dt
ψ(t) = Aψ(t) fails to determine dynamics uniquely. Somehow,

ψ(t) escapes Domain(A). There should be a fourth condition, satisfied by all
generators but violated by A.

3c2 Theorem. If Closure(A) is the generator of a unitary group then
Range(A+ i1l) is dense.

Proof. Assuming the contrary we get y ∈ H , y 6= 0, such that 〈Ax+ix, y〉 = 0,
that is, 〈iAx, y〉 = 〈x, y〉, for all x ∈ Domain(A). It follows that 〈iBx, y〉 =
〈x, y〉 for all x ∈ Domain(B) where B = Closure(A) is the generator of (Ut).
For all x ∈ Domain(B) we have

d

dt
〈Utx, y〉 = 〈iBUtx, y〉 = 〈Utx, y〉 for all t ∈ R ,

since Utx ∈ Domain(B). We see that 〈Utx, y〉 = const·et; taking into account
that |〈Utx, y〉| ≤ ‖x‖ · ‖y‖ we conclude that 〈Utx, y〉 = 0. In particular,
〈x, y〉 = 0 for all x ∈ Domain(B), which cannot happen for a non-zero y.

3c3 Exercise. Range(A+ i1l) is not dense for the operator A of 3c1.
Prove it.
Hint: try y : q 7→ eq.

3c4 Exercise. If Closure(A) is the generator of a unitary group then Range(A+
iλ1l) is dense for every λ ∈ R such that λ 6= 0.

Prove it.
Hint: (1/λ)A is also a generator.

3c5 Exercise. If Closure(A) is the generator of a unitary group then Range(A+
z1l) is dense for every z ∈ C \ R.

Prove it.
Hint: A+ λ1l is also a generator (for λ ∈ R).

3c6 Exercise. Every bounded symmetric operator is the generator of a
unitary group.

Prove it.
Hint: the series Ut =

∑∞
k=0

ik

k!
tkAk converges in the operator norm.

3c7 Corollary. Range(A+ z1l) is dense for every bounded symmetric oper-
ator A and every z ∈ C \ R.
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3c8 Exercise. Let Closure(A) = ϕ(P ) for some ϕ ∈ L0(R), ϕ = ϕ. Then
Range(A+ i1l) is dense.

Prove it.
Hint: first, replace P with Q. Second, 1

ϕ(·)+i1l
∈ L∞.

3c9 Exercise. The following two conditions on x, y ∈ H are equivalent:
(a) 〈x, y〉 ∈ R;
(b) ‖x+ iy‖2 = ‖x‖2 + ‖y‖2.
Prove it.

3c10 Lemma. The following two conditions on a symmetric operator A are
equivalent:

(a) Range(A+ i1l) is closed;
(b) A is closed.

Proof. For all x, y ∈ Graph(A) we have ‖y + ix‖2 = ‖y‖2 + ‖x‖2 by 3c9 and
3b4. Thus, Range(A+ i1l) and Graph(A) are isometric.

3c11 Exercise. Range(A+z1l) is closed for every z ∈ C\R and every closed
symmetric operator A.

Prove it.
Hint: 3b2 can help.

3c12 Definition. 1 A self-adjoint operator is a densely defined, closed sym-
metric operator A such that Range(A− i1l) = H and Range(A + i1l) = H .

Note that “symmetric” and “self-adjoint” mean the same for bounded
operators (recall 3c7) but differ for closed unbounded operators.

3c13 Proposition. The generator of a unitary group is self-adjoint.

Proof. We combine 3b12, 3b13, 3b17, 3c2 and 3c10.

3c14 Exercise. If A is self-adjoint then (A− i1l)−1 and (A+ i1l)−1 are well-
defined bounded operators of norm ≤ 1.

Prove it.

3c15 Exercise. If A is self-adjoint, B is symmetric and B extends A, then
A = B.

Prove it.
Hint: otherwise (B + i1l)y = (A + i1l)x = (B + i1l)x for some y ∈

Domain(B) and x ∈ Domain(A), x 6= y.

1Not the standard definition, but equivalent. Another equivalent definition will be
given in 3i3.
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3c16 Exercise. If Range(A− i1l) and Range(A+i1l) are dense and (Ut), (Vt)
are unitary groups such that

d

dt

∣

∣

∣

t=0
Utx = Ax =

d

dt

∣

∣

∣

t=0
Vtx for all x ∈ Domain(A) ,

then Ut = Vt for all t.
Prove it.
Hint: 3c15 and 3b15.

The dense range condition is essential! (Do not forget Example 3c1.)

3d Application to the Schrödinger equation

The Schrödinger operator is self-adjoint, which ensures uniqueness (recall
3c16) and existence (wait for Sect. 3i) of the corresponding dynamics.

Given a continuous v : R → R, we consider the operator

H = P 2 + v(Q) : ψ 7→ −ψ′′ + v · ψ

on the set Domain(H) of all twice continuously differentiable, compactly
supported functions ψ : R → C.

3d1 Theorem. If v(·) is bounded from below then Closure(H) is self-adjoint.1

We assume that v(·) > 0 (otherwise add a constant and use 3i5). Clearly,
H is symmetric. If Closure(H) is not self-adjoint then either Range(H−i1l) or
Range(H+ i1l) is not closed. Consider the former case (the latter is similar):
there exists f ∈ L2(R) such that ‖f‖ 6= 0 and 〈(H − i1l)ψ, f〉 = 0 for all
ψ ∈ Domain(H). That is,

(3d2)

∫

(

−ψ′′(q) + v(q)ψ(q)− iψ(q)
)

f̄(q) dq = 0 for all ψ ∈ Domain(H) .

Clearly, (3d2) holds whenever f is twice continuously differentiable and

(3d3) − f ′′(q) + v(q)f(q) + if(q) = 0 for all q ,

but we need the converse: (3d3) follows from (3d2). Proving it we restrict
ourselves to the interval (0, 1) and functions ψ with compact support within

(0, 1). Clearly,
∫ 1

0
ψ′′(q) dq = 0 and

∫ 1

0
qψ′′(q) dq = 0, but the converse is also

1In fact, v(q) ≥ −const · q2 (for large |q|) is still good, but v(q) ∼ −const · |q|2+ε is bad.
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true: every continuous g : (0, 1) → C with a compact support within (0, 1),
satisfying

(3d4)

∫ 1

0

g(q) dq = 0 and

∫ 1

0

qg(q) dq = 0

is of the form g = ψ′′. We have

ψ(a) =

∫ 1

0

K(a, b)ψ′′(b)db =

∫ 1

0

K(a, b)g(b) db

where
K(a, b) = −min(a, b) min(1 − a, 1 − b) .

Thus,

0 =

∫

(

−ψ′′(q) + (v(q) − i)ψ(q)
)

f̄(q) dq =

=

∫

f̄(q)
(

− g(q) + (v(q) − i)

∫

K(q, r)g(r) dr
)

dq =

= −
∫

f̄(a)g(a) da+

∫∫

f̄(q)(v(q) − i)K(q, r)g(r) dqdr =

=

∫

dr g(r)
(

− f̄(r) +

∫

f̄(q)(v(q) − i)K(q, r) dq
)

for all g satisfying (3d4) (not only continuous). It follows that

f̄(r) =

∫

f̄(q)(v(q) − i)K(q, r) dq for almost all r ;

this integral is a smooth function of r. Now (3d3) follows easily.
The function |f(·)| has (at least one) local maximum at some q0. Mul-

tiplying f by a constant we ensure f(q0) = 1. Then d2

dq2 |q=q0
Re f(q) ≤ 0.

However, Re f ′′(q0) = Re
(

v(q0)f(q0)− if(q0)
)

= v(q0) > 0; the contradiction
completes the proof of the theorem.

3e Cayley transform

Every self-adjoint operator results from some unitary operator by A = (1l +
U)(1l − U)−1.

3e1 Theorem. For every self-adjoint operator A there exists a unique uni-
tary operator U such that

(a) U(A + i1l)x = (A− i1l)x for all x ∈ Domain(A);
(b) Range(1l − U) = Domain(A), and A(1l − U)x = i(1l + U)x for all

x ∈ H .
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Proof. Uniqueness of U follows from (a); indeed, U = (A− i1l)(A+ i1l)−1. In
order to prove existence we consider the set G of all pairs (x, y) such that
x− y ∈ Domain(A) and

2ix = (A+ i1l)(x− y) ,

2iy = (A− i1l)(x− y) .

We have ‖x‖ = ‖y‖ for all (x, y) ∈ G by 3c9.
For every x ∈ H there exists y ∈ H such that (x, y) ∈ G. Indeed,

x = (A + i1l)z for some z ∈ Domain(A); taking y = (A − i1l)z we get
x− y = 2iz.

Similarly, for every y ∈ H there exists x ∈ H such that (x, y) ∈ G. Thus,
G = Graph(U) for a unitary operator U satisfying (a). It remains to prove
(b).

For every z ∈ Domain(A) there exists a pair (x, y) ∈ G such that x− y =
2iz. Thus, x− Ux = 2iz, which shows that Domain(A) ⊂ Range(1l − U).

For every x ∈ H there exists y ∈ H and z ∈ Domain(A) such that y = Ux,
x = (A+ i1l)z and y = (A− i1l)z. Thus, 2iz = x− y = (1l−U)x; we see that
Range(1l − U) ⊂ Domain(A) and so, Range(1l − U) = Domain(A). Further,
x+y = Az+iz+Az−iz = 2Az = −iA(x−y), that is, x+Ux = −iA(x−Ux),
which shows that (1l + U)x = −iA(1l − U)x.

This operator U is called the Cayley transformed of A.

3e2 Exercise. Let U be the Cayley transformed of A, then (1l − U)x 6= 0
for all x 6= 0.

Prove it.

Thus, A = i(1l + U)(1l − U)−1.

3e3 Exercise. Let U be the Cayley transformed of A, then Domain(A) is
invariant under U and U−1, and UAx = AUx for all x ∈ Domain(A).

Prove it.
Hint: UAx = Ax− iUx− ix = AUx.

3e4 Exercise. Let ϕ ∈ L0(R → R), then

(a) the Cayley transformed of ϕ(Q) is ϕ(·)−i
ϕ(·)+i

(Q);

(b) the same for P instead of Q.
Prove it.
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3f Continuous functions of unitary operators

Continuous functions of unitary operators are defined. In combination with
the Cayley transform they provide some functions of self-adjoint operators.

The Banach space C2(T) of all twice continuously differentiable complex-
valued functions on the circle T = {z ∈ C : |z| = 1} is closed under (point-
wise) multiplication: f, g ∈ C2(T ) implies f · g ∈ C2(T). Also, fn → f
and gn → g imply fn · gn → f · g (since ‖f · g‖ ≤ const · ‖f‖ · ‖g‖ and
fn · gn − f · g = fn · (gn − g)+ (fn − f) · g); convergence in ‖ · ‖C2(T) is meant.1

Fourier coefficients ck =
∫ 1

0
f(e2πix)e−2πikx dx of f ∈ C2(T) sat-

isfy |ck| ≤ const · ‖f‖/k2 (since ck = −i
2πk

∫ (

d
dx
f(e2πix)

)

e−2πikx dx =
−1

4π2k2

∫ (

d2

d2x
f(e2πix)

)

e−2πikx dx), therefore
∑

k∈Z
|ck| ≤ const · ‖f‖C2(T).

2

Given a unitary operator U , we define f(U) for f ∈ C2(T) by

f(U) =
∑

k∈Z

ckU
k ;

the series converges in the operator norm, and ‖f(U)‖ ≤
∑

k∈Z
|ck| ≤ const ·

‖f‖C2(T).
Here is a simple special case: U : l2 → l2,

U = diag(u1, u2, . . . ) : (z1, z2, . . . ) 7→ (u1z1, u2z2, . . . )

for given u1, u2, · · · ∈ T.

3f1 Exercise. In this case
(a) f(U) = diag

(

f(u1), f(u2), . . .
)

for all f ∈ C2(T);
(b) the map f 7→ f(U) is a ∗-homomorphism (recall Sect. 2a) from C2(T)

to bounded operators; it is positive, and ‖f(U)‖ ≤ ‖f‖C(T).
3

(c) Is it true that ‖f(U)‖ = ‖f‖C(T)?
Prove (a) and (b); decide (c).
Hint: (a): first consider f(z) = zk; second, linear combinations (trigono-

metric polynomials); and finally, limits.

The same holds whenever U : H → H is diagonal in some orthonormal
basis.

Another simple case: U = ϕ(Q) : L2(R) → L2(R), U : f 7→ ϕ · f for a
given ϕ ∈ L∞(R), |ϕ(·)| = 1.

1Thus, C2(T) is a commutative Banach algebra.
2In fact, the same holds also for C1(T) and even for Lipα(T), α > 1/2; however, C2(T)

is quite enough here.
3Note the norm in C(T) rather than C2(T).
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3f2 Exercise. In this case
(a) f(ϕ(Q)) = f(ϕ(·))(Q) for all f ∈ C2(T);
(b) the map f 7→ f(U) is a ∗-homomorphism from C2(T) to bounded

operators; it is positive, and ‖f(U)‖ ≤ ‖f‖C(T).
(c) Is it true that ‖f(U)‖ = ‖f‖C(T)?
Prove (a) and (b); decide (c).

We return to the general case.

3f3 Exercise. (f · g)(U) = f(U)g(U) for all f, g ∈ C2(T).
Prove it.
Hint: first consider f(z) = zk and g(z) = zl; second, linear combinations

(trigonometric polynomials); and finally, limits.

3f4 Exercise. f(U) =
(

f(U)
)

∗ for all f ∈ C2(T).
Prove it.

We have a ∗-homomorphism. What about positivity, and the supremal
norm?

3f5 Lemma. If f ∈ C2(T) is such that f(x) ∈ [0,∞) for all x ∈ T then
f(U) ≥ 0.

Proof. We assume that f(x) > 0 for all x ∈ T (otherwise consider f(·) + ε).
The function

√

f : x 7→
√

f(x)

belongs to C2(T). Thus,

f(U) = (
√

f ·
√

f)(U) =
(
√

f(U)
)

∗
(
√

f(U)
)

≥ 0 .

3f6 Lemma. ‖f(U)‖ ≤ ‖f‖C(T) for all f ∈ C2(T).

Proof. For every ε > 0 there exists g ∈ C2(T) such that |f(·)|2 + |g(·)|2 =
‖f‖2

C(T) + ε, which implies ‖f(U)x‖2 ≤ ‖f(U)x‖2 + ‖g(U)x‖2 =
(

‖f‖2
C(T) +

ε
)

‖x‖2.

3f7 Theorem. For every unitary operator U there exists a unique positive
∗-homomorphism f 7→ f(U) from C(T) to bounded operators, such that
‖f(U)‖ ≤ ‖f‖ for all f , and if ∀z ∈ T f(z) = z then f(U) = U .

Proof. Uniqueness: first consider monomials, then polynomials, then lim-
its. Existence: we just extend the map f 7→ f(U) from C2(T) to C(T) by
continuity.
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Such a map f 7→ f(U) (as well as f 7→ f(A) defined below, and their
extensions to wider classes of functions) is well-known as “function calculus”
or “functional calculus”; the corresponding existence theorems are closely
related to “spectral mapping theorems”.

Application to self-adjoint operators

Consider the Banach algebra C(R ∪ {∞}) of all continuous functions
f : R → C having a (finite) limit f(∞) = f(−∞) = f(+∞).

3f8 Theorem. For every self-adjoint operator A there exists a unique pos-
itive ∗-homomorphism f 7→ f(A) from C(R ∪ {∞}) to bounded operators,
such that ‖f(A)‖ ≤ ‖f‖ for all f , and if ∀a ∈ R f(a) = a−i

a+i
then f(A) is the

Cayley transformed of A.

Proof. The homeomorphism

(3f9) R ∪ {∞} ∋ a 7→ a− i

a+ i
∈ T

between R ∪ {∞} and T induced an isomorphism between C(R ∪ {∞}) and
C(T),

C(R ∪ {∞}) ∋ f 7→ g ∈ C(T) when ∀a f(a) = g
(a− i

a+ i

)

;

it remains to let
f(A) = g(U)

where U is the Cayley transformed of A.

3f10 Exercise. (a) Let ϕ ∈ L0(R → R) and A = ϕ(Q), then f(A) =
f(ϕ(·))(Q) for all f ∈ C(R ∪ {∞});

(b) the same for P instead of Q.
Prove it.

Hint: 3e4 and 3f2(a).

Note however that eiλA is still not defined, since the function a 7→ eiλa does
not belong to C(R∪{∞}) (unless λ = 0). Also, indicators of intervals do not
belong to C(R ∪ {∞}). And of course the unbounded function idR : a 7→ a
does not.
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3g Some discontinuous functions of unitary operators

Monotone sequences of continuous functions lead to semicontinuous functions
by a limiting procedure.

3g1 Definition. For an operator A we write A ≥ 0 if A is symmetric and

∀x ∈ Domain(A) 〈Ax, x〉 ≥ 0 .

We need some general operator-related inequalities. Recall that ∀x ∈
H ‖x‖2 ≥ 0; applying it to ax−by we get 2Re (ab̄〈x, y〉) ≤ |a|2‖x‖2 + |b|2‖y‖2

for all a, b ∈ C, and therefore |〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ H , — the
Cauchy-Schwartz inequality.

Similarly, the generalized Cauchy-Schwartz inequality

∀x, y ∈ Domain(A) |〈Ax, y〉| ≤
√

〈Ax, x〉
√

〈Ay, y〉

holds for every operator A ≥ 0. In particular, for a bounded A ≥ 0

(3g2) ∀x ∈ H ‖Ax‖2 ≤ ‖A‖3/2‖x‖
√

〈Ax, x〉 .

(Take y = Ax and note that 〈A2x,Ax〉 ≤ ‖A‖3‖x‖2.)

3g3 Lemma. If 1l + A ≥ 0 and 1l − A ≥ 0 then ‖A‖ ≤ 1.

Proof. 2Re 〈Ax, y〉 = 〈A(x+y), x+y〉−〈A(x−y), x−y〉 ≤ ‖x+y‖2+‖x−y‖2 =
2‖x‖2 + 2‖y‖2; the same holds for ax, by and therefore |〈Ax, y〉| ≤ ‖x‖‖y‖
(not only for x, y ∈ Domain(A)).

Another important general relation:

‖A‖2 = ‖A∗A‖ for every bounded operator A .

Proof: On one hand, ‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2; on the other hand,
‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 ≤ ‖A∗A‖‖x‖2.

3g4 Lemma. A bounded increasing sequence of symmetric bounded opera-
tors is strongly convergent. In other words: let symmetric bounded operators
A1, A2, . . . onH satisfy A1 ≤ A2 ≤ . . . and supn ‖An‖ <∞; then there exists
a symmetric bounded operator A such that

∀x ∈ H ‖Anx−Ax‖ → 0 as n→ ∞ .

Proof. For n > m we have

‖(An − Am)x‖2 ≤ ‖An − Am‖3/2‖x‖
√

〈(An −Am)x, x〉 → 0 as m→ ∞

uniformly in n.
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Can we define f(U) = lim fn(U) whenever fn ↑ f , fn ∈ C(T → R),
f : T → R is bounded, but f /∈ C(T)? Yes, but not just now.

3g5 Lemma. Let f1, f2, · · · ∈ C(T → R), g1, g2, · · · ∈ C(T → R), fn ↑ f ,
gn ↑ g (pointwise) for some bounded f, g : T → R. If f(·) ≤ g(·) on T then
limn fn(U) ≤ limn gn(U).

Proof. We may assume that f(·) < g(·) (otherwise take g(·) + ε). Open
sets {z ∈ T : f1(z) < gn(z)} cover T. By compactness, ∃n f1(·) < gn(·).
Therefore f1(U) ≤ limn gn(U). Similarly, fm(U) ≤ limn gn(U) for each m.

Thus, fn ↑ f and gn ↑ f imply limn fn(U) = limn gn(U), and we define

f(U)x = lim
n
fn(U)x for all x ∈ H

whenever fn ↑ f, fn ∈ C(T → R), and f : T → R is bounded.

Note that it extends (not redefines) f(U) for f ∈ C(T → R).
The class K(T) of all functions f : T → [0,∞) obtainable in this way

is well-known as the class of all bounded lower semicontinuous functions.1

Indicators of open sets belong to K(T) (open intervals are enough for us).

3g6 Exercise. If f, g ∈ K(T) and c ∈ [0,∞) then cf ∈ K(T), f+g ∈ K(T),
f · g ∈ K(T), and

(cf)(U) = cf(U) , (f + g)(U) = f(U) + g(U) , (f · g)(U) = f(U)g(U) .

Prove it.
Hint: fn ↑ f , gn ↑ f imply fn + gn ↑ f + g, etc.

However, (−f) /∈ K(T). Can we define (f − g)(U) as f(U) − g(U)?
If f−g = f1−g1 then f+g1 = g+f1, therefore f(U)+g1(U) = g(U)+f1(U)

and so, f(U) − g(U) = f1(U) − g1(U). Thus, we define

(f − g)(U) = f(U) − g(U)

for all f, g ∈ K(T).

3g7 Exercise. If f1, f2, · · · ∈ K(T), fn ↑ f and f is bounded, then f ∈ K(T)
and fn(U)x → f(U)x for all x ∈ H .

Prove it.
Hint: given fn,k ↑ fn (as k → ∞), introduce gn = max(f1,n, . . . , fn,n),

prove that gn ↑ f , note that gn ≤ fn ≤ f implies gn(U) ≤ fn(U) ≤ f(U),
and use (3g2) (similarly to the proof of 3g4).

1“Lower semicontinuous” means: lim infs→t f(s) ≥ f(t).
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3g8 Lemma. The class L(T → R) = {f − g : f, g ∈ K(T)} is an algebra
(over R). The map f 7→ f(U) is a homomorphism from L(T → R) to
bounded operators; it is positive, and ‖f(U)‖ ≤ sup |f(·)|.

Proof. First, c(f − g) = cf − cg for c ≥ 0, and −(f − g) = (g − f); further,
(f1 − g1) + (f2 − g2) = (f1 + f2) − (g1 + g2) and (f1 − g1) · (f2 − g2) =
(f1 · f2 + g1 · g2) − (f1 · g2 + g1 · f2), which shows that K −K is an algebra.
Second,

(

(f1 − g1) + (f2 − g2)
)

(U) = (f1 − g1)(U) + (f2 − g2)(U), since
both are equal to f1(U) + f2(U) − g1(U) − g2(U); treating c(f − g)(U) and
(

(f1 − g1) · (f2 − g2)
)

(U) in the same way we conclude that f 7→ f(U) is a
homomorphism.

Positivity: if f − g ≥ 0 then (f − g)(U) ≥ 0, since f(U) ≥ g(U) by 3g5.
Finally, −C ≤ f(·) ≤ C implies −C · 1l ≤ f(U) ≤ C · 1l by positivity (and

linearity), and then ‖f(U)‖ ≤ C by 3g3.1

Now, for f ∈ L(T) = L(T → C) = {g + ih : g, h ∈ L(T → R)} we define

f(U) = (Re f)(U) + i(Im f)(U)

and get a ∗-homomorphism. Note that

‖f(U)‖ ≤ sup
T

|f(·)| ,

since ‖f(U)‖2 = ‖(f(U))∗(f(U))‖ = ‖(|f |2)(U)‖ ≤ sup |f(·)|2.

3g9 Exercise. (a) Let ϕ ∈ L∞(R), |ϕ(·)| = 1, and U = ϕ(Q), then f(U) =
f(ϕ(·))(Q) for all f ∈ L(T);

(b) the same for P instead of Q.
Prove it.
Hint: 3f2.

3h Bounded functions of (unbounded) self-adjoint op-
erators

Semicontinuous functions of a self-adjoint operator are defined via semicon-
tinuous functions of the corresponding unitary operator.

The homeomorphism (3f9) between R∪{∞} and T transforms the classes
K(T), L(T → R) and L(T → C) of functions on T into the corresponding
classes K(R∪{∞}), L(R∪{∞} → R) and L(R∪{∞}) = L(R∪{∞} → C)

1It is clear that the approach to ‖f(U)‖ used here can be used also in the proof of 3f6.
It is not clear, whether the approach of 3f6 can be used here, or not. (Try it.)
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of functions on R ∪ {∞}. Namely, K(R ∪ {∞}) consists of all bounded
f : R ∪ {∞} → [0,∞) such that fn ↑ f for some fn ∈ C(R ∪ {∞}); L(R ∪
{∞} → R) = {f − g : f, g ∈ K(R∪ {∞}); and L(R∪ {∞} → C) = {f + ig :
f, g ∈ L(R ∪ {∞} → R)}. A function f ∈ L(R ∪ {∞} → C) corresponds to
g ∈ L(T → C),

f(a) = g
(a− i

a+ i

)

, g(z) = f
(

i
1 + z

1 − z

)

,

and we define f(A) by
f(A) = g(U)

where the unitary operator U = (A− i1l)(A+i1l)−1 is the Cayley transformed
of A. However, g(1) = f(∞); is this value essential? No, it is not.

3h1 Lemma. 1l{1}(U) = 0 whenever U is the Cayley transformed (of some
A).

Proof. First, the number 1 is not an eigenvalue of U , that is, Ux = x implies
x = 0. Indeed, A(1l − U)x = i(1l + U)x by 3e1(b), thus Ux = x implies
(1l + U)x = 0, Ux = −x and so, x = 0.

Second, the relation ∀z ∈ T (1− z)1l{1}(z) = 0 between functions implies
the relation (1l − U)1l{1}(U) = 0 between operators.

Thus, f(A) is well-defined for f ∈ L(R). Here L(R) = L(R → C) =
{f |R : f ∈ L(R ∪ {∞} → C)} is an algebra of bounded functions that
contains all bounded semicontinuous functions. In particular it contains all
bounded continuous functions, especially, a 7→ eita. Now (at last!) opera-
tors exp(itA) for t ∈ R are well-defined. Also spectral projections 1l(a,b)(A),
1l[a,b)(A), 1l(a,b](A), 1l[a,b](A) are well-defined.

3h2 Exercise. (a) Let ϕ ∈ L0(R → R) and A = ϕ(Q), then f(A) =
f(ϕ(·))(Q) for all f ∈ L(R);

(b) the same for P instead of Q.
Prove it.

Hint: 3g9 and 3e4.

3h3 Exercise. 1l(−n,n)(A)x→ x as n→ ∞, for every x ∈ H .
Prove it.
Hint: 3g7 and 3h1.

3h4 Lemma. Let fn : a 7→ a1l(−n,n)(a), then fn(A)x → Ax as n → ∞, for
every x ∈ Domain(A).
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Proof. By 3e1, x = (1l − U)y and Ax = i(1l + U)y for some y ∈ H . We have
fn(A)x = fn(A)(1l − U)y = gn(A)y where

gn(a) = fn(a)
(

1 − a− i

a+ i

)

= fn(a) · 2i

a + i
=

= 2i
a

a+ i
1l(−n,n)(a) = i

(

1 +
a− i

a+ i

)

1l(−n,n)(a) .

Thus, fn(A)x = i1l(−n,n)(A)(1l + U)y → i(1l + U)y = Ax.

3h5 Exercise. The following three conditions on λ ∈ R are equivalent (for
every given self-adjoint operator A):

(a) 1l(λ−ε,λ+ε)(A) = 0 for some ε > 0;
(b) ∃ε > 0 ∀x ∈ Domain(A) ‖(A− λ1l)x‖ ≥ ε‖x‖;
(c) there exists a bounded operator (A− λ1l)−1 inverse to A− λ1l.

Prove it.

The set σ(A) of all numbers λ ∈ R that violate these conditions is called
the spectrum of A. It is a closed set, the smallest closed set such that
1lR\σ(A)(A) = 0.

3h6 Exercise. σ(A) ⊂ [0,∞) if and only if A ≥ 0.
Prove it.
Hint: on one hand, if A ≥ 0 then ‖(A + ε1l)x‖2 ≥ ε2‖x‖2; on the other

hand, if σ(A) ⊂ [0,∞) then fn(A) = (gn(A))2 ≥ 0 where fn : a 7→ 1l(−n,n)(a)
and gn : a 7→ √

a1l(0,n)(a).

3h7 Exercise. σ(H) ⊂ [inf v(·),∞) for the Schrödinger operator (recall 3d).
Prove it.
Hint: 〈−ψ′′, ψ〉 = 〈ψ′, ψ′〉 ≥ 0.

3h8 Exercise. σ(A) ⊂ [−1,+1] if and only if ‖A‖ ≤ 1.
Prove it.

It is easy to see that the function fn : a 7→ a1l(−n,n)(a) may be written as

fn =

∫ n

−n

a d1l(−∞,a]

(Riemann-Stieltjes integral in the space of functions with the supremal norm),
which implies

fn(A) =

∫ n

−n

a dEA(a) , EA(a) = 1l(−∞,a](A)
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(Riemann-Stieltjes integral in the space of operators with the operator norm),
and finally, by 3h4,

Ax =

∫ ∞

−∞

a dEA(a)x

(improper Riemann-Stieltjes integral in the Hilbert space).
In fact, using measure theory one can extend the map f 7→ f(A) to

all Borel functions f and even all functions measurable w.r.t. a finite Borel
measure (that depends on A). Pointwise convergence (and even convergence
almost everywhere w.r.t. that measure) of functions, in combination with
uniform boundedness, implies strong convergence of operators. Moreover,
every self-adjoint operator A is unitarily equivalent to ϕ(Q) for some ϕ ∈
L0(R → R). (Think, why the “moreover”.)

3i Generating a unitary group

Every self-adjoint operator is the generator of a unitary group.

3i1 Theorem. Let A be a self-adjoint operator. Then operators

Ut = exp(itA)

are a (strongly continuous one-parameter) unitary group, and A is its gener-
ator.

First of all, UsUt = Us+t since eisaeita = ei(s+t)a, and U0 = 1l, and U−t =
U−1

t . On the other hand, U−t = U∗
t since e−ita = eita. Thus, U−1

t = U∗
t , which

means that Ut is unitary.
In order to check that ‖Utx − x‖ → 0 as t → 0 (which is sufficient to

check on a dense set) we introduce subspaces

Hn ⊂ H , Hn = 1l(−n,n)(A)H ;

H1 ∪H2 ∪ . . . is dense

(by 3h3) and observe that

‖Utx− x‖ ≤ n|t|‖x‖ for all x ∈ Hn

since |eita − 1|1l(−n,n)(a) ≤ n|t|.
It remains to prove that A is the generator of (Ut).

3i2 Exercise. For every n the subspace Hn is invariant under all Ut, and
the restricted operators

U
(n)
t = Ut|Hn
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are a unitary group on Hn, whose generator is the bounded operator

An = fn(A)|Hn
, fn : a 7→ a1l(−n,n)(a) .

Prove it.
Hint: consider the functions a 7→ eita1l(−n,n)(a).

The unitary group (Ut) has a generator, — a self-adjoint operator B
(recall Sect. 3b); we have to prove that A = B. By 3i2,

Hn ⊂ Domain(B) and B|Hn
= An .

On the other hand,

Hn ⊂ Domain(A) and A|Hn
= An ,

since fn(A)x = fn+k(A)x → Ax (as k → ∞) for x ∈ Hn (recall 3h4). Thus,
the self-adjoint operators A and B coincide on the dense set H1 ∪H2 ∪ . . .

Does it mean that A = B? No, it does not! Recall Example 3c1. There,
self-adjoint operators A(α), different for different α, coincide on a dense set.
Continuing that example we may consider subspaces Gn = L2

(

1
n
, n−1

n

)

⊂
L2(0, 1) and observe that Domain(A(α))∩Gn is dense in Gn, and A(α)x ∈ Gn

for all x ∈ Domain(A(α)) ∩ Gn. Nevertheless Gn is not invariant under the
Cayley transformed U (α) of A(α).1

Returning to our situation we see that it is much better. The Cayley
transformed operators U (of A) and V (of B) coincide on Hn for the following
reason. The restricted operator An, being bounded (and symmetric) is a
self-adjoint operator on Hn. For every x ∈ Hn there exists z ∈ Hn such that
x = (An + i1l)z. It means both x = (A + i1l)z and x = (B + i1l)z. Thus,
Ux = (A− i1l)z = (An − i1l)z as well as V x = (B − i1l)z = (An − i1l)z.

We see that U = V on a dense set, therefore on the whole H . Thus,
A = B, which completes the proof of Theorem 3i1.

Combining 3i1 with 3c13 we get three corollaries.

3i3 Corollary. An operator generates a unitary group if and only if it is
self-adjoint.

3i4 Corollary. If A is self-adjoint then Range(A + z1l) = H for every z ∈
C \ R.

3i5 Corollary. If A is self-adjoint then λA+c1l is self-adjoint for all λ, c ∈ R.

Combining 3i1, 3c13 and 3b15 we get Stone’s theorem: every unitary
group (Ut) is of the form Ut = exp(itA) for a self-adjoint A.

1In fact, U (α)x : q 7→ x(q) − 2α
e−α

∫ q

0
eq−rx(r) dr − 2e

e−α

∫ 1

q
eq−rx(r) dr.
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3j List of results

3j1 Theorem. For every self-adjoint operatorA there exists a unique unitary
operator U (so-called Cayley transformed of A) such that

(a) U(A + i1l)x = (A− i1l)x for all x ∈ Domain(A);
(b) Range(1l − U) = Domain(A), and A(1l − U)x = i(1l + U)x for all

x ∈ H .

3j2 Theorem. For every unitary operator U there exists a unique positive
∗-homomorphism f 7→ f(U) from C(T) to bounded operators, such that
‖f(U)‖ ≤ ‖f‖ for all f , and if ∀z ∈ T f(z) = z then f(U) = U .

3j3 Theorem. For every self-adjoint operator A there exists a unique pos-
itive ∗-homomorphism f 7→ f(A) from C(R ∪ {∞}) to bounded operators,
such that ‖f(A)‖ ≤ ‖f‖ for all f , and if ∀a ∈ R f(a) = a−i

a+i
then f(A) is the

Cayley transformed of A.

3j4 Theorem. The ∗-homomorphism of 3j2 has a unique extension from
C(T) to the ∗-algebra L(T) (spanned by all bounded semicontinuous func-
tions) satisfying

‖f(U)‖ ≤ sup |f(·)| for all f ∈ L(T);
C(T → R) ∋ fn ↑ f ∈ L(T → R) implies ∀x ∈ H fn(U)x → f(U)x.

3j5 Theorem. The ∗-homomorphism of 3j3 has a unique extension from
C(R∪ {∞}) to the ∗-algebra L(R) (spanned by all bounded semicontinuous
functions) satisfying

‖f(A)‖ ≤ sup |f(·)| for all f ∈ L(R);
C(R ∪ {∞} → R) ∋ fn ↑ f ∈ L(R → R) implies ∀x ∈ H fn(A)x →

f(A)x;
if ∀n, a fn(a) = a1l(−n,n)(a) then ∀x ∈ Domain(A) fn(A)x→ Ax.

3j6 Theorem. The formulas

Ut = exp(itA) ,

Ax =
d

dt

∣

∣

∣

t=0
Utx

establish a one-to-one correspondence between all strongly continuous one-
parameter unitary groups (Ut) and all self-adjoint operators A.

3j7 Theorem. For every continuous function v : R → R bounded from below
there exists one and only one strongly continuous one-parameter unitary
group (Ut) on L2(R) such that

i
d

dt
Utψ = −ψ′′ + v · ψ
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for all twice continuously differentiable, compactly supported functions ψ :
R → C.
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