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Waiving sharp values f(t) and retaining only smoothed averages
∫

f(t)ϕ(t) dt
we get a generalized function, called a distribution. Differentiation becomes

always possible. Fourier transform becomes more transparent.

4a Introduction: how to measure f(t)?

A usual medical thermometer cannot measure the temperature at a given
millisecond, but only the temperature averaged over many seconds. Faster
thermometers exist, but still, each thermometer averages the temperature
over some time interval. The same holds for any other physical variable; no
measuring device can measure an instant value.

Similarly, a voltmeter averages the voltage over some time. An AC (alter-
nating current) voltage can be measured by a rectifier and a voltmeter. But
also the rectifier averages over time.1 Such behavior is typical for nonlinear
devices. In this sense,

sinωt→ 0 as ω → ∞ ;

a high-frequency input produces a weak output. How to adapt mathematical
analysis to this physical idea?

To this end we stop treating sinωt as a family of instant values (sinωt)t∈R

and start treating it as a family of averaged values
(

∫

ϕ(t) sinωt dt

)

ϕ∈Φ

where Φ is a class of functions (to be specified later). Each ϕ ∈ Φ (so-called
test function) describes a possible measuring device. We get

∫

ϕ(t) sinωt dt→ 0 as ω → ∞

1A high-speed rectifier able to work on the infrared frequencies (terahertz range) was
proposed in 2007.
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for each ϕ ∈ Φ (provided that Φ is chosen appropriately).

4b Continuous test functions

First derivative of a step function appears.

on a circle

We start with the Banach space C(T → R) of all real-valued continuous
functions on T = R/Z (or equivalently, 1-periodic continuous functions R →
R) with the norm ‖ϕ‖ = max |ϕ(·)|.

The dual Banach space C(T → R)∗ consists, by definition, of bounded
linear functionals

T : C(T → R) → R , 〈T, ϕ〉 ≤ ‖T‖ · ‖ϕ‖ ;

〈T, ϕ〉 is just a convenient notation for T (ϕ).

4b1 Example. Given f ∈ L1(T → R), we introduce T ∈ C(T → R)∗ by

〈T, ϕ〉 =

∫ 1

0

f(x)ϕ(x) dx .

4b2 Example. (“Dirac delta-function”) Given x ∈ T, we introduce δx ∈
C(T → R)∗ by

〈δx, ϕ〉 = ϕ(x) .

4b3 Example. (“Positive Radon measure”) Given a bounded increasing
function F : [0, 1) → R, we introduce T ∈ C(T → R)∗ by the Riemann-
Stieltjes integral

〈T, ϕ〉 =

∫

[0,1)

ϕ(x) dF (x) .

Note that 4b2 is a special case of 4b3. Also 4b1 is a special case of 4b3 if
f(·) ≥ 0.

In fact, the general form of T ∈ C(T → R)∗ is given by 4b3 with a
function F : [0, 1) → R of bounded variation (equivalently: the difference
of two bounded increasing functions); these T are called real (or “signed”)
Radon measures on T.

The complex-valued case is similar: either T : C(T → R) → C is linear
over R, or equivalently, T : C(T → C) → C is linear over C; in both cases
we get the space C(T)∗ = C(T → C)∗ of complex Radon measures on T.
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We treat 4b1 as a linear embedding of L1(T) into C(T)∗,

〈f, ϕ〉 =

∫ 1

0

f(x)ϕ(x) dx for f ∈ L1(T) ⊂ C(T)∗ ;

thus,
C(T) ⊂ L1(T) ⊂ C(T)∗ .

In fact, these embeddings are one-to-one.
Note that we use here bilinear forms 〈·, ·〉, while in Sections 1–3 〈·, ·〉

stands for the Hermitian form 〈f, g〉 =
∫

f(x)g(x) dx.
Functions n1l(0,1/n) ∈ L1(T) are not a Cauchy sequence in the L1 metric.

However,
〈n1l(0,1/n), ϕ〉 → 〈δ0, ϕ〉 as n→ ∞

for every ϕ ∈ C(T).

4b4 Definition. Let Tn, T ∈ C(T)∗. We say that Tn → T in C(T)∗ if

∀ϕ ∈ C(T) 〈Tn, ϕ〉 → 〈T, ϕ〉 .

We see that
n1l(0,1/n) → δ0 in C(T)∗ .

Also,
xn → x implies δxn

→ δx .

The embedding of L1(T) into C(T)∗ is continuous:

if fn → f in L1(T) then fn → f in C(T)∗

(think, why). In fact, L1(T) is dense in C(T)∗, and C(T) is dense in L1(T)
and in C(T)∗.

The group T acts by shifts on L1(T), as well as C(T),

(Sxf)(y) = f(x+ y) for f ∈ L1(T) ; (Sxϕ)(y) = ϕ(x+ y) for ϕ ∈ C(T) .

Can we extend Sx : L1(T) → L1(T) ⊂ C(T)∗ continuously to C(T)∗ →
C(T)∗? If L1(T) ∋ fn → T ∈ C(T)∗ in C(T)∗ then for all ϕ ∈ C(T) we have

〈Sxfn, ϕ〉 = 〈fn, S−xϕ〉 → 〈T, Sxϕ〉 .

Defining SxT by

〈SxT, ϕ〉 = 〈T, S−xϕ〉 for ϕ ∈ C(T)
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we observe that Sx : C(T)∗ → C(T)∗ is continuous, that is,

Tn → T implies SxTn → SxT ,

and extends Sx : L1(T) → L1(T):

L1(T)

Sx

��

�

�

// C(T)∗

Sx

��

L1(T) �

�

// C(T)∗

In fact it is the (unique) extension by continuity, since L1(T) is dense in
C(T)∗.

4b5 Exercise. Check that Sxδy = δy−x.

If f ∈ C1(T) ⊂ L1(T) ⊂ C(T)∗ (a smooth f), then

Sεf − f

ε
→ f ′ as ε→ 0

(check it).
We say that T ∈ C(T)∗ is differentiable, if the following limit exists:

T ′ = lim
ε→0

SεT − T

ε
.

4b6 Exercise. The indicator function 1l(0,0.5), treated as an element of C(T)∗,
is differentiable, and

1l′(0,0.5) = δ0 − δ0.5 .

(a) Prove it.
(b) decide, whether

∥

∥

∥

∥

SεT − T

ε
−

(

δ0 − δ0.5

)

∥

∥

∥

∥

C(T)∗
→ 0 as ε → 0 ,

or not?

4b7 Exercise. δ0 is not differentiable in C(T)∗.
Prove it.

4b8 Exercise. (“Integration by parts”) If T ∈ C(T)∗ is differentiable then

〈T ′, ϕ〉 = −〈T, ϕ′〉 for all ϕ ∈ C1(T) ⊂ C(T) .

Prove it.



Tel Aviv University, 2009 Intro to functional analysis 53

In fact, every bounded increasing function F : [0, 1) → R, treated as an
element of (L1(T) and therefore of) C(T)∗, is differentiable, and

〈F ′, ϕ〉 =

∫

[0,1)

ϕ(x) dF (x) +
(

F (0) − F (1−)
)

ϕ(0) .

The same holds for functions F of bounded variation.

on an open interval

Denote by D0(0, 1) the linear (mot Banach) space of all continuous func-
tions (0, 1) → C with compact supports inside (0, 1). Define convergence in
D0(0, 1) as follows: for ϕ, ϕn ∈ D0(0, 1),

ϕn → ϕ

in D0(0, 1)
iff

ϕn → ϕ uniformly, and the supports of all ϕn

are contained in a single compact subset of (0, 1).

Accordingly, D′

0(0, 1) consists of all linear functionals T : D0(0, 1) → C such
that

〈T, ϕn〉 → 〈T, ϕ〉 whenever ϕn → ϕ in D0(0, 1) .

4b9 Example. Let f : (0, 1) → C be (measurable and) locally integrable,

that is,
∫ b

a
|f(x)| dx <∞ whenever 0 < a < b < 1. We let

〈f, ϕ〉 =

∫ 1

0

f(x)ϕ(x) dx

and get an element of D′

0(0, 1) (denoted by f , still).

The space of locally integrable functions is thus embedded,

Lloc
1 (0, 1) ⊂ D′

0(0, 1) .

In fact, the embedding is one-to-one.

4b10 Example. (“Dirac delta-function”) As before, for x ∈ (0, 1),

〈δx, ϕ〉 = ϕ(x) .

In fact, the general form of T ∈ D′

0(0, 1) is 〈T, ϕ〉 =
∫ 1

0
ϕ(x) dF (x) where

F : (0, 1) → C is of locally finite variation.
Convergence in D′

0(0, 1) is defined as before,

Tn → T in D′

0(0, 1) iff ∀ϕ ∈ D0(0, 1) 〈Tn, ϕ〉 → 〈T, ϕ〉 .
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Once again,

(4b11) n1l(x,x+1/n) → δx .

Given a locally integrable function f : (0, 1) → C, we may construct
another locally integrable function g : (0, 1) → C by g(x) = f(x/2). However,
what about, say, x 7→ δ0.3(x/2)? Do you guess it is δ0.6?

We try to extend the map

f 7→
(

f̃ : x 7→ f(x/2)
)

continuously to D′

0(0, 1). If Lloc
1 (0, 1) ∋ fn → T ∈ D′

0(0, 1) in D′

0(0, 1) and
f̃n : x 7→ fn(x/2) then

〈f̃n, ϕ〉 =

∫ 1

0

f̃n(x)ϕ(x) dx =

∫ 1

0

fn

(x

2

)

ϕ(x) dx =

= 2

∫ 0.5

0

fn(x)ϕ(2x) dx = 〈fn, ψ〉 → 〈T, ψ〉

where ψ ∈ D0(0, 1) is defined by ψ(x) = 2ϕ(2x) for x ∈ (0, 0.5), otherwise 0.
Defining T̃ by

〈T̃ , ϕ〉 = 〈T, ψ̃〉
we observe that

Tn → T implies T̃n → T̃

and the map T 7→ T̃ extends the map f 7→ f̃ . For example, if T = δ0.3 then
T̃ = 2δ0.6. In this sense

δ0.3(x/2) = 2δ0.6(x) .

Compare it with (4b11). Similarly, for any continuously differentiable α :
(0, 1) → (0, 1) such that α′(·) > 0 one defines

〈T (α(·)), ϕ〉 = 〈T, (α−1)′ · ϕ(α−1(·))〉 ,

thus extending the map f 7→ f(α(·)) by continuity. In particular,

δx(α(·)) = (α−1)′(x)δα−1(x) .

Shifts do not act on the interval, but anyway, we may define differentiation
in D′

0(0, 1) via ‘integration by parts’ (recall 4b8):

(4b12) 〈T ′, ϕ〉 = −〈T, ϕ′〉

for all continuously differentiable ϕ ∈ D0(0, 1) (these being dense inD0(0, 1)).
If such T ′ exists, we say that T is differentiable in D′

0(0, 1).
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Once again,
1l′(a, b) = δa − δb

and more generally,

〈F ′, ϕ〉 =

∫ 1

0

ϕ(x) dF (x)

for F of locally finite variation. And of course, δx are not differentiable in
D′

0(0, 1).

4c Smooth test functions

Higher derivatives of a step function appear.

smoothness of finite order

Denote by Dm(0, 1) the linear space of all m times continuously differen-
tiable functions (0, 1) → C with compact supports inside (0, 1).

An example:

ϕ(x) =

{

(x− 0.1)m+1(0.9 − x)m+1 for x ∈ (0.1, 0.9),

0 otherwise.

Define convergence in Dm(0, 1) as follows: for ϕ, ϕn ∈ Dm(0, 1),

ϕn → ϕ

in Dm(0, 1)
iff

ϕ(k)
n → ϕ(k) uniformly (k = 0, 1, . . . , n), and the supports of

all ϕn are contained in a single compact subset of (0, 1).

Accordingly, D′

m(0, 1) consists of all linear functionals T : Dm(0, 1) → C such
that

〈T, ϕn〉 → 〈T, ϕ〉 whenever ϕn → ϕ in Dm(0, 1) .

Elements of D′

m(0, 1) are called distributions of order m on (0, 1).
Note that convergence in Dm+1(0, 1) implies convergence in Dm(0, 1) (the

converse being wrong). Thus, D′

m(0, 1) is embedded into D′

m+1(0, 1) as a
linear subspace. The embedding is one-to-one, since Dm+1(0, 1) is in fact
dense in Dm(0, 1).

4c1 Example.
〈δ′x, ϕ〉 = −ϕ′(x) for x ∈ (0, 1) ;

δ′x belongs to D′

1(0, 1) but not D′

0(0, 1). More generally,

〈δ(k)
x , ϕ〉 = (−1)kϕ(k)(x) for k = 0, 1, . . . , m and x ∈ (0, 1) ;

δ
(m)
x belongs to D′

m(0, 1) but not D′

m−1(0, 1).
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In the spirit of (4b12) we define the derivative T ′ ∈ D′

m+1(0, 1) for every
T ∈ D′

m(0, 1) by

∀ϕ ∈ Dm+1(0, 1) 〈T ′, ϕ〉 = −〈T, ϕ′〉 .

Similarly, T ′′ ∈ D′

m+2(0, 1), and so on.

Thus, (δ
(k)
x )′ = δ

(k+1)
x .

4c2 Definition. Let Tn, T ∈ D′

m(0, 1). We say that Tn → T in D′

m(0, 1) if

∀ϕ ∈ Dm(0, 1) 〈Tn, ϕ〉 → 〈T, ϕ〉 .

4c3 Exercise.

δx+ε − δx
ε

→ δ′x in D′

1(0, 1) as ε→ 0 .

Prove it.

Any other interval may be used in place of (0, 1), of course.

4c4 Exercise. The following limit exists in D′

1(−1, 1)

T = lim
ε→0+

(

x 7→ 1

x

)

· 1l(−1,−ε)∪(ε,1)

and satisfies

〈T, ϕ〉 =

∫ +1

−1

ϕ(x) − ϕ(0)

x
dx for all ϕ ∈ D1(−1, 1) .

Prove it.

This T is called the principal value of 1/x and denoted by pv(x 7→ 1/x).
In fact, its derivative T ′ ∈ D′

2(−1, 1) is

〈T ′, ϕ〉 =

∫ +1

−1

ϕ(x) − ϕ(0) − xϕ′(0)

x2
dx for all ϕ ∈ D2(−1, 1) .

4c5 Exercise. Prove that pv(x 7→ 1/x) is the derivative of the integrable
function x 7→ ln |x| treated as a distribution of order 0.

The set Dm(0, 1) is not only a linear space but also an algebra: ϕ, ψ ∈
Dm(0, 1) =⇒ ϕ · ψ ∈ Dm(0, 1).

4c6 Definition. The product ϕ · T ∈ D′

m(0, 1) of ϕ ∈ Dm(0, 1) and T ∈
D′

m(0, 1) is defined by

〈ϕ · T, ψ〉 = 〈T, ϕ · ψ〉 for ψ ∈ Dm(0, 1) .
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As before, the map D′

m(0, 1) ∋ T 7→ ϕ · T ∈ D′

m(0, 1) is a continuous
extension of the map Dm(0, 1) ∋ ψ 7→ ψ · ψ ∈ Dm(0, 1) ⊂ D′

m(0, 1).

4c7 Exercise.
(x 7→ x) · pv(x 7→ 1/x) = 1 .

Prove it.

However, distributions are not an algebra. The product of distributions
is generally undefined.

smoothness of infinite order

The space D(0, 1) = ∩mDm(0, 1) consists of all infinitely differentiable
functions (0, 1) → C with compact supports inside (0, 1).

An example:

ϕ(x) =

{

exp
(

− 1
(x−0.1)(0.9−x)

)

for x ∈ (0.1, 0.9),

0 otherwise.

Convergence in D(0, 1) is defined as follows: for ϕ, ϕn ∈ D(0, 1),

ϕn → ϕ

in D(0, 1)
iff

for each k, ϕ(k)
n → ϕ(k) uniformly, and the supports of

all ϕn are contained in a single compact subset of (0, 1).

Accordingly, D′(0, 1) consists of all linear functionals T : D(0, 1) → C such
that

〈T, ϕn〉 → 〈T, ϕ〉 whenever ϕn → ϕ in D(0, 1) .

Convergence in D(0, 1) implies convergence in Dm(0, 1) for each m. Thus,

D′

0(0, 1) ⊂ D′

1(0, 1) ⊂ · · · ⊂ D′(0, 1) .

Elements of D′(0, 1) are called distributions on (0, 1). They need not be
of finite order.

4c8 Example. T =
∑

k δ
(k)
1/k ∈ D′(0, 1); that is,

〈T, ϕ〉 =
∞

∑

k=2

ϕ(k)
(1

k

)

(a finite sum. . . ).
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In fact, every T ∈ D′(0, 1) is of finite order (that is, continuous on Dm)
within (ε, 1 − ε), ε > 0.

Now we can differentiate everything!

4c9 Definition. The derivative T ′ ∈ D′(0, 1) of T ∈ D′(0, 1) is defined by

∀ϕ ∈ D(0, 1) 〈T ′, ϕ〉 = −〈T, ϕ′〉 .

Similarly, T ′′ ∈ D′(0, 1), and so on.

4c10 Definition. Let Tn, T ∈ D′(0, 1). We say that Tn → T in D′(0, 1) if

∀ϕ ∈ D(0, 1) 〈Tn, ϕ〉 → 〈T, ϕ〉 .

4c11 Exercise. The differentiation operator is continuous. That is,

if Tn → T in D′(0, 1) then T ′

n → T ′ in D′(0, 1) .

Prove it.

Any other interval may be used in place of (0, 1), of course.

4c12 Exercise. For every m = 0, 1, 2, . . .

(

x 7→ 1√
2πσ

dm

dxm
exp

(

− x2

2σ2

)

)

→ δ
(m)
0 in D′(0, 1) as σ → 0 + .

Prove it.

4d Fourier transform

Fourier transform of a plane wave appears.

On the whole R we can introduce D(R) and D′(R) as before. However,
D′(R) is too large for Fourier transform because of arbitrarily fast growth
on infinity allowed. We increase the space of test functions as follows (thus
decreasing the space of distributions).

4d1 Definition. The space S(R) consists of all infinitely differentiable func-
tions ϕ : R → C such that

∀k,m sup
x∈R

|xkϕ(m)(x)| <∞ .

Elements of S(R) are called rapidly decreasing test functions, and S(R)
is called the Schwartz space. Note that xkϕ(m)(x) → 0 as |x| → ∞.
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4d2 Example. ϕ(x) = exp(−x2).

4d3 Exercise. If ϕ ∈ S(R) then ϕ′ ∈ S(R) and (x 7→ xϕ(x)) ∈ S(R).
Prove it.

Convergence in S(R) is defined as follows: for ϕ, ϕn ∈ S(R),

ϕn → ϕ

in S(R)
iff ∀k,m sup

x∈R

|xkϕ(m)
n (x)| −−−→

n→∞

0 .

Accordingly, S ′(R) consists of all linear functionals T : S(R) → C such that

〈T, ϕn〉 → 〈T, ϕ〉 whenever ϕn → ϕ in S(R) .

Elements of S ′(R) are called temperedtempered distribution distributions
on R.

Note that D(R) ⊂ S(R) and ϕn → 0 in S(R) whenever ϕn → 0 in D(R).
Thus,

S ′(R) ⊂ D′(R) .

The embedding is one-to-one, since D(R) is in fact dense in S(R).

4d4 Example. δx ∈ S ′(R).

4d5 Example. Every polynomial P , treated as a distribution, belongs to
S ′(R):

〈P, ϕ〉 =

∫ +∞

−∞

P (x)ϕ(x) dx .

In contrast, (x 7→ ex) /∈ S ′(R).
Recall the operators Q,P (Sect. 2); FP = QF and PF = −FQ.

4d6 Lemma. Let f ∈ Domain(P ), iPf = g, then f can be corrected on a
null set getting

f(b) − f(a) =

∫ b

a

g(x) dx whenever a < b .

Proof. Theorem 2c3 gives us fn such that fn → f in L2 and f ′

n → g in L2.

Thus, fn(b)− fn(a) =
∫ b

a
f ′

n(x) dx→
∫ b

a
g(x) dx. Also,

∫ 1

0
fn(x) dx− fn(0) =

∫ 1

0
(1− x)f ′

n(x) dx→
∫ 1

0
(1− x)g(x) dx, therefore limn fn(0) exists. It follows

that fn converge pointwise; their limit must be equal to f almost everywhere.
It remains to correct f as follows: f(x) = limn fn(x) for all x.



Tel Aviv University, 2009 Intro to functional analysis 60

Continuity of f follows. If g is continuous then f is continuously differ-
entiable and f ′ = g.

4d7 Exercise. The following three conditions on ϕ ∈ L2(R) are equivalent:
(a) ϕ ∈ S(R);
(b) QnPmϕ ∈ L∞(R) for all m,n;
(c) PmQnϕ ∈ L∞(R) for all m,n.

Prove it.
Hint: QP − PQ = i1l.

4d8 Exercise. The following three conditions on ϕ1, ϕ2, · · · ∈ L2(R) are
equivalent:

(a) ϕk → 0 in S(R);
(b) QnPmϕk → 0 in the norm of L∞(R) for all m,n;
(c) PmQnϕk → 0 in the norm of L∞(R) for all m,n.

Prove it.

4d9 Proposition. (a) If a function ϕ belongs to S(R) then its Fourier trans-
form Fϕ also belongs to S(R);

(b) if ϕn → ϕ in S(R) then Fϕn → Fϕ in S(R).

Proof. (a) Let ϕ ∈ S(R), then ϕ ∈ L1(R) ∩ L2(R), therefore Fϕ = ψ ∈
L2(R) ∩ L∞(R).

By 4d3, QnPmϕ ∈ S(R), therefore P nQmψ = P nQmFϕ = P nFPmϕ =
±FQnPmϕ ∈ L∞ for all m,n. By 4d7, ψ ∈ S(R).

(b) For every ϕ ∈ S(R),

‖ϕ‖1 =

∫

|ϕ(x)| dx ≤
(

∫

dx

1 + |x|

)

sup
x

(

(1 + |x|)|ϕ(x)|
)

≤

≤ const · (‖ϕ‖∞ + ‖Qϕ‖∞) ,

therefore ‖Fϕ‖∞ ≤ const · (‖ϕ‖∞ + ‖Qϕ‖∞). Applying it to QnPm(ϕk − ϕ)
and using 4d8 we get ‖FQnPm(ϕk − ϕ)‖∞ → 0 as k → ∞. As before it
follows that ‖P nQm(Fϕk − Fϕ)‖∞ → 0. By 4d8 again, Fϕk − Fϕ → 0 in
S(R).

4d10 Lemma.

〈Ff, g〉 = 〈f,Fg〉 for f, g ∈ L2(R) . (Beware: not the scalar product!)

Proof. In terms of the scalar product 〈f, g〉L2
=

∫

f(x)g(x) dx, unitarity
of F gives 〈Ff,Fg〉L2

= 〈f, g〉L2
. In terms of the bilinear form 〈f, g〉 =

∫

f(x)g(x) dx it becomes 〈Ff,Fg〉 = 〈f, g〉. However,

Fg = F−1g for g ∈ L2(R) ,
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since for all g of the dense set L1(R) ∩ L2(R) we have

Fg : t 7→ 1√
2π

∫

eistg(s) ds ,

F−1g = JFg : t 7→ (Fg)(−t) =
1√
2π

∫

eistg(s) ds .

Thus, 〈Ff,F−1g〉 = 〈f, g〉; 〈Ff,F−1g〉 = 〈f, g〉; and finally 〈Ff, g〉 =
〈f,Fg〉.

Let fn ∈ L2(R) ⊂ S ′(R), fn → T in S ′(R). Then for every ϕ ∈ S(R),

〈Ffn, ϕ〉 = 〈fn,Fϕ〉 → 〈T,Fϕ〉 .

Thus we get a continuous extension of F : L2(R) → L2(R) ⊂ S ′(R) to
S ′(R) → S ′(R).

4d11 Definition. The Fourier transform FT ∈ S ′(R) of T ∈ S ′(R) is defined
by

〈FT, ϕ〉 = 〈T,Fϕ〉 for ϕ ∈ S(R) .

It is the (unique) extension by continuity, since L2(R) is in fact dense in
S ′(R).

4d12 Exercise. Extend the operator J of Sect. 1 from L2(R) to S ′(R) and
prove that the formulas

F−1 = FJ = JF
hold for operators on S ′(R).

4d13 Exercise. Prove that

Fδ0 = (2π)−1/2 · 1l and F1l = (2π)1/2δ0 ,

moreover,

Fδx : y 7→ (2π)−1/2e−ixy and F
(

y 7→ e−ixy
)

= (2π)1/2δx .

4d14 Definition. For T ∈ S ′(R) we define T ′, PT,QT ∈ S ′(R) by

〈T ′, ϕ〉 = −〈T, ϕ′〉 ,
〈PT, ϕ〉 = −〈T, Pϕ〉 = i〈T, ϕ′〉 ,
〈QT, ϕ〉 = 〈T,Qϕ〉 = 〈T, (x 7→ xϕ(x))〉 .

Of course, iPT = T ′.
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4d15 Exercise. Prove the formulas

FP = QF and PF = −FQ

for operators on S ′(R).

4d16 Exercise. Prove that

Fδ′0 : x 7→ i(2π)−1/2x and F(x 7→ x) = i(2π)1/2δ′0 ,

moreover,

Fδ(m)
0 : x 7→ im(2π)−1/2xm and F

(

x 7→ xm
)

= im(2π)1/2δ
(m)
0 ;

still more generally,

Fδ(m)
x : y 7→ im(2π)−1/2yme−ixy and F

(

y 7→ yme−ixy
)

= im(2π)1/2δ(m)
x

for m = 0, 1, 2, . . . and x ∈ R.

Can we use the formula

F(f ∗ g) = (2π)1/2(Ff) · (Fg)

for defining the convolution of distributions? Generally not, since the product
of distributions is generally undefined. However, we may define f ·T ∈ S ′(R)
for T ∈ S ′(R) and f : R → R an infinitely differentiable function such that
f, f ′, f ′′, . . . are functions of polynomial growth, that is,

∀m ∃n |f (m)(x)|
|x|n → 0 as |x| → ∞ ;

such f are called multipliers in S(R), since ∀ϕ ∈ S(R) f · ϕ ∈ S(R) (think,
why). For such f we define (recall 4c6)

〈f · T, ϕ〉 = 〈T, f · ϕ〉 for all ϕ ∈ S(R) .

Given a multiplier f in S(R), we define the convolution T∗(F−1f) ∈ S ′(R)
for all T ∈ S ′(R) by

T ∗ (F−1f) = (2π)1/2F−1(f · FT ) .

All polynomials are multipliers, of course. Taking f = Fδ′0 we have
(2π)1/2f(x) = ix;

T ∗ δ′0 = (2π)1/2F−1(f · FT ) = F−1(iQFT ) = iPT = T ′ .
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Similarly,

T ∗ δ(m)
0 = T (m) for m = 0, 1, 2, . . . and T ∈ S ′(R) .

In particular,
δ
(m)
0 ∗ δ(n)

0 = δ
(m+n)
0 .

In fact, FT is a multiplier in S(R) whenever T is compactly supported,

that is,

∃C ∀ϕ
(

ϕ(·) = 0 outside [−C,C] implies 〈T, ϕ〉 = 0
)

.

Thus, T1 ∗ T2 is well-defined if at least one of T1, T2 is compactly supported.

4e List of formulas

T is a distribution, ϕ is a test function.

〈T ′, ϕ〉 = −〈T, ϕ′〉 ;(4e1)

〈δx, ϕ〉 = ϕ(x) ;(4e2)
(

1l(a,b)

)

′ = δa − δb ;(4e3)
(

δ(m)
x

)

′ = δ(m+1)
x ;(4e4)

〈δ(m)
x , ϕ〉 = (−1)mϕ(m)(x) ;(4e5)

δx(α(·)) = (α−1)′(x)δα−1(x) .(4e6)

F is the Fourier transform, “∗” means convolution.

〈FT, ϕ〉 = 〈T,Fϕ〉 ;(4e7)

FP = QF ; PF = −FQ ;(4e8)

Fδ0 = (2π)−1/2 · 1l ; F1l = (2π)1/2δ0 ;(4e9)

Fδx : y 7→ (2π)−1/2e−ixy ; F
(

y 7→ e−ixy
)

= (2π)1/2δx ;(4e10)

Fδ′0 : x 7→ i(2π)−1/2x ; F(x 7→ x) = i(2π)1/2δ′0 ;(4e11)

Fδ(m)
0 : x 7→ im(2π)−1/2xm ; F

(

x 7→ xm
)

= im(2π)1/2δ
(m)
0 ;(4e12)

Fδ(m)
x : y 7→ im(2π)−1/2yme−ixy ; F

(

y 7→ yme−ixy
)

= im(2π)1/2δ(m)
x ;

(4e13)

T ∗ δ′0 = T ′ ;(4e14)

T ∗ δ(m)
0 = T (m) ;(4e15)

δ
(m)
0 ∗ δ(n)

0 = δ
(m+n)
0 .(4e16)
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