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To understand why rare events are impor- The numbers that arise in statis-
tant at all, one only has to think of a lot- tical mechanics can defeat your
tery to be convinced that rare events (such calculator. A googol is 1019 (one
as hitting the jackpot) can have an enor- with a hundred zeros after it). A
mous impact. googolplex is 10800801,

Amir Dembo and Ofer Zeitouni! James P. Sethna?

Small probabilities, such as 107%, are important for lotteries, reliabil-
ity etc., which cannot be said about much smaller probabilities, such as
10—1000000000000000000000 — However, these monsters do appear in statistical
physics (as e where the number of particles like n = 10?® is quite usual).
They are far beyond the reach of the famous normal approximation (unlike
1079).

la A physical question

A system of n spin-1 particles is described by the configuration space {—1,0, 1}".
Each configuration (si,...,s,) € {—1,0,1}" has its energy®

31+“‘+Sn)

n

H,y(s1,...,8,) :nf<

where f : [-1,1] — R is a given smooth function (not depending on n). If

1See page 1 in the book “Large deviations techniques and applications”, Jones and
Bartlett Publ., 1993.

2See page 54 in the book “Statistical mechanics: entropy, order parameters, and com-
plexity”, Oxford, 2006.

3All spins interact with the same magnetic field g((s; + --- + s,)/n) that depends
on the mean field (s; + --+ + s,)/n via a function g describing (generally, nonlinear)
magnetic properties of the environment. Thus, f(z) = zg(x). See also Sect. 9 in: R.S. El-
lis, “The theory of large deviations and applications to statistical mechanics”, 2006,
http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf; and Sect. 7.3.2 in:
D. Yoshioka, “Statistical physics”, Springer, 2007.


http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf
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the system is in thermal equilibrium with a heat bath at temperature T, then
each configuration (si,...,s,) appears with the probability

1
const,, - exp (— ﬁHn(sl, - sn)> ,
B

where kg (= 1.38-10723J/K) is the so-called Boltzmann constant. For large
n, up to small fluctuations, the energy per particle f (W) is a function
of the temperature. Find this function.

1b A naive solution

First, the number of configurations (si,...,s,) such that #F=Fs ~ g is
roughly proportional (up to an n-dependent coefficient) to exp(—%"ﬁ) for
small x (only small x being relevant). Indeed, if all configurations are
equiprobable then #=F:* js approximately normal, N(0,2); the corre-
sponding density is proportional to x exp(—%"a:Z).

Second, the probability of this set of configurations is roughly propor-
tional to

exp (— %TnxQ — k:BLTn (x)) = exp (— n(%ﬁ + 5f($)>) ;

1
kT "
imizer zz of the function x —

roughly f(zs).

where § = Thus, the probability is roughly concentrated at the min-

3

S2® 4+ ff(z), and the energy per particle is

1c Failure of the naive solution

Consider the simple case f(z) = 1 + = (an external magnetic field only).
Here, 25 = —23; the energy per particle: f(z3) =1—-38=1— %@%

For small § (that is, high temperature) it is believable. Otherwise it
is not, since xg is not small (recall, only small = should be relevant) and
moreover, need not belong to [—1, 1].

In fact, this simple case admits an exact solution. The probability!

const eXp(—BHn(sl, o sn)) = const - exp(—ﬁ(sl + sn)) =

= const -e P51 7P

Every ‘const’ is a new constant (depending on n and 3 but not s1,. .., s,).
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factorizes; it means that si,...,s, are independent random variables,! each
distributed as follows:

(1c1) S -1 0 1
C B 1 -8
pl"Ob. eBJrere_B eB414e—8 eBJrelJre_B
Therefore 24+%2 js concentrated near the expectation,
rg= ",
g e +1+eP

which is different from —%6 (However, for small g it is —%B in the linear
approximation.) Note that x3 — —1 as § — oo, and no wonder; at low
temperature the energy is roughly minimal.

1d A physical approach

The spins sq, ..., s, are microscopic, but the frequences

1
Ps = E#{k sy =s}) forse{-1,0,1}

are macroscopic. The entropy per particle,

S(p-1,pop) =— Y pslnps,
s=—1,0,1
is roughly (1/n) times the logarithm of the number of configurations (si, ..., s,)

conforming to (p_1, po, p1)-

Given a macroscopic parameter = +(s; + -+ 4+ 8,) = p1 — p_1, we
maximize the entropy? over all (p_1, po, p1) satisfying py —p_; = x. It appears
that the maximizer is of the form

1

b —b
drirer b

(p717p07p1) =
just the form of (IcI)) but with some b instead of 5. We get

S(p—17p07p1) =bx + ln(eb +1+ e_b) )

el —eb

r=-—-——
e+ 1+e b’

n contrast to the general case (nonlinear f).
2Why maximize the entropy? See Sect. 2b ‘Contraction principle’.
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which is a functional dependence (not explicit, unfortunately) between x
and the entropy S. This is the correct substitute of the naive formula S =
—322 + In3. Now we continue similarly to the ‘naive solution’; x4 is the
minimizer of the function  — —S(x) 4+ Bf(z), and the energy is f(z3).

By the way, for small b (and z),

2
x:—§b+0(b); b:—ngro(:p);

S =bx+In(3+b*+o(b?)) = —%xQ +1n3 +o(z?),

which conforms to the naive approach.
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