1 Physical prelude

1a A physical question 1
1b A naive solution 2
1c Failure of the naive solution 2
1d A physical approach 3

To understand why rare events are important at all, one only has to think of a lottery to be convinced that rare events (such as hitting the jackpot) can have an enormous impact.

Amir Dembo and Ofer Zeitouni ${ }^{1}$

The numbers that arise in statistical mechanics can defeat your calculator. A googol is 10^{100} (one with a hundred zeros after it). A googolplex is $10^{\text {googol }}$.

James P. Sethna ${ }^{2}$

Small probabilities, such as 10^{-6}, are important for lotteries, reliability etc., which cannot be said about much smaller probabilities, such as $10^{-1000000000000000000000}$. However, these monsters do appear in statistical physics (as $\mathrm{e}^{-c n}$ where the number of particles like $n=10^{23}$ is quite usual). They are far beyond the reach of the famous normal approximation (unlike 10^{-6}).

1a A physical question

A system of n spin- 1 particles is described by the configuration space $\{-1,0,1\}^{n}$. Each configuration $\left(s_{1}, \ldots, s_{n}\right) \in\{-1,0,1\}^{n}$ has its energy ${ }^{3}$

$$
H_{n}\left(s_{1}, \ldots, s_{n}\right)=n f\left(\frac{s_{1}+\cdots+s_{n}}{n}\right)
$$

where $f:[-1,1] \rightarrow \mathbb{R}$ is a given smooth function (not depending on n). If

[^0]the system is in thermal equilibrium with a heat bath at temperature T, then each configuration $\left(s_{1}, \ldots, s_{n}\right)$ appears with the probability
$$
\operatorname{const}_{n} \cdot \exp \left(-\frac{1}{k_{\mathrm{B}} T} H_{n}\left(s_{1}, \ldots, s_{n}\right)\right)
$$
where $k_{\mathrm{B}}\left(=1.38 \cdot 10^{-23} \mathrm{~J} / K\right)$ is the so-called Boltzmann constant. For large n, up to small fluctuations, the energy per particle $f\left(\frac{s_{1}+\cdots+s_{n}}{n}\right)$ is a function of the temperature. Find this function.

1b A naive solution

First, the number of configurations $\left(s_{1}, \ldots, s_{n}\right)$ such that $\frac{s_{1}+\cdots+s_{n}}{n} \approx x$ is roughly proportional (up to an n-dependent coefficient) to $\exp ^{n}\left(-\frac{3 n}{4} x^{2}\right)$ for small x (only small x being relevant). Indeed, if all configurations are equiprobable then $\frac{s_{1}+\cdots+s_{n}}{n}$ is approximately normal, $\mathrm{N}\left(0, \frac{2}{3 n}\right)$; the corresponding density is proportional to $x \mapsto \exp \left(-\frac{3 n}{4} x^{2}\right)$.

Second, the probability of this set of configurations is roughly proportional to

$$
\exp \left(-\frac{3 n}{4} x^{2}-\frac{1}{k_{\mathrm{B}} T} n f(x)\right)=\exp \left(-n\left(\frac{3}{4} x^{2}+\beta f(x)\right)\right),
$$

where $\beta=\frac{1}{k_{\mathrm{B}} T}$. Thus, the probability is roughly concentrated at the minimizer x_{β} of the function $x \mapsto \frac{3}{4} x^{2}+\beta f(x)$, and the energy per particle is roughly $f\left(x_{\beta}\right)$.

1c Failure of the naive solution

Consider the simple case $f(x)=1+x$ (an external magnetic field only). Here, $x_{\beta}=-\frac{2}{3} \beta$; the energy per particle: $f\left(x_{\beta}\right)=1-\frac{2}{3} \beta=1-\frac{2}{3} \frac{1}{k_{\mathrm{B}} T}$.

For small β (that is, high temperature) it is believable. Otherwise it is not, since x_{β} is not small (recall, only small x should be relevant) and moreover, need not belong to $[-1,1]$.

In fact, this simple case admits an exact solution. The probability ${ }^{1}$

$$
\begin{aligned}
\operatorname{const} \cdot \exp \left(-\beta H_{n}\left(s_{1}, \ldots, s_{n}\right)\right)=\text { const } \cdot \exp \left(-\beta\left(s_{1}+\cdots+s_{n}\right)\right) & = \\
= & \text { const } \cdot \mathrm{e}^{-\beta s_{1}} \cdots \mathrm{e}^{-\beta s_{n}}
\end{aligned}
$$

[^1]factorizes; it means that s_{1}, \ldots, s_{n} are independent random variables, ${ }^{1}$ each distributed as follows:
\[

$$
\begin{array}{cccc}
s & -1 & 0 & 1 \tag{1c1}\\
\text { prob. } & \frac{\mathrm{e}^{\beta}}{\mathrm{e}^{\beta}+1+\mathrm{e}^{-\beta}} & \frac{1}{\mathrm{e}^{\beta}+1+\mathrm{e}^{-\beta}} & \frac{\mathrm{e}^{-\beta}}{\mathrm{e}^{\beta}+1+\mathrm{e}^{-\beta}}
\end{array}
$$
\]

Therefore $\frac{s_{1}+\cdots+s_{n}}{n}$ is concentrated near the expectation,

$$
x_{\beta}=-\frac{\mathrm{e}^{\beta}-\mathrm{e}^{-\beta}}{\mathrm{e}^{\beta}+1+\mathrm{e}^{-\beta}},
$$

which is different from $-\frac{2}{3} \beta$. (However, for small β it is $-\frac{2}{3} \beta$ in the linear approximation.) Note that $x_{\beta} \rightarrow-1$ as $\beta \rightarrow \infty$, and no wonder; at low temperature the energy is roughly minimal.

1d A physical approach

The spins s_{1}, \ldots, s_{n} are microscopic, but the frequences

$$
p_{s}=\frac{1}{n} \#\left\{k: s_{k}=s\right\} \quad \text { for } s \in\{-1,0,1\}
$$

are macroscopic. The entropy per particle,

$$
S\left(p_{-1}, p_{0}, p_{1}\right)=-\sum_{s=-1,0,1} p_{s} \ln p_{s}
$$

is roughly $(1 / n)$ times the logarithm of the number of configurations $\left(s_{1}, \ldots, s_{n}\right)$ conforming to (p_{-1}, p_{0}, p_{1}).

Given a macroscopic parameter $x=\frac{1}{n}\left(s_{1}+\cdots+s_{n}\right)=p_{1}-p_{-1}$, we maximize the entropy ${ }^{2}$ over all $\left(p_{-1}, p_{0}, p_{1}\right)$ satisfying $p_{1}-p_{-1}=x$. It appears that the maximizer is of the form

$$
\left(p_{-1}, p_{0}, p_{1}\right)=\frac{1}{\mathrm{e}^{b}+1+\mathrm{e}^{-b}} \cdot\left(\mathrm{e}^{b}, 1, \mathrm{e}^{-b}\right),
$$

just the form of (1c1) but with some b instead of β. We get

$$
\begin{gathered}
S\left(p_{-1}, p_{0}, p_{1}\right)=b x+\ln \left(\mathrm{e}^{b}+1+\mathrm{e}^{-b}\right), \\
x=\frac{\mathrm{e}^{-b}-\mathrm{e}^{b}}{\mathrm{e}^{b}+1+\mathrm{e}^{-b}},
\end{gathered}
$$

[^2]which is a functional dependence (not explicit, unfortunately) between x and the entropy S. This is the correct substitute of the naive formula $S=$ $-\frac{3}{4} x^{2}+\ln 3$. Now we continue similarly to the 'naive solution'; x_{β} is the minimizer of the function $x \mapsto-S(x)+\beta f(x)$, and the energy is $f\left(x_{\beta}\right)$.

By the way, for small b (and x),

$$
\begin{gathered}
x=-\frac{2}{3} b+o(b) ; \quad b=-\frac{3}{2} x+o(x) \\
S=b x+\ln \left(3+b^{2}+o\left(b^{2}\right)\right)=-\frac{3}{4} x^{2}+\ln 3+o\left(x^{2}\right),
\end{gathered}
$$

which conforms to the naive approach.

[^0]: ${ }^{1}$ See page 1 in the book "Large deviations techniques and applications", Jones and Bartlett Publ., 1993.
 ${ }^{2}$ See page 54 in the book "Statistical mechanics: entropy, order parameters, and complexity", Oxford, 2006.
 ${ }^{3}$ All spins interact with the same magnetic field $g\left(\left(s_{1}+\cdots+s_{n}\right) / n\right)$ that depends on the mean field $\left(s_{1}+\cdots+s_{n}\right) / n$ via a function g describing (generally, nonlinear) magnetic properties of the environment. Thus, $f(x)=x g(x)$. See also Sect. 9 in: R.S. Ellis, "The theory of large deviations and applications to statistical mechanics", 2006, http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf and Sect. 7.3.2 in: D. Yoshioka, "Statistical physics", Springer, 2007.

[^1]: ${ }^{1}$ Every 'const' is a new constant (depending on n and β but not s_{1}, \ldots, s_{n}).

[^2]: ${ }^{1}$ In contrast to the general case (nonlinear f).
 ${ }^{2}$ Why maximize the entropy? See Sect. 2b 'Contraction principle'.

