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To understand why rare events are impor-
tant at all, one only has to think of a lot-
tery to be convinced that rare events (such
as hitting the jackpot) can have an enor-
mous impact.

Amir Dembo and Ofer Zeitouni1

The numbers that arise in statis-
tical mechanics can defeat your
calculator. A googol is 10100 (one
with a hundred zeros after it). A
googolplex is 10googol.

James P. Sethna2

Small probabilities, such as 10−6, are important for lotteries, reliabil-
ity etc., which cannot be said about much smaller probabilities, such as
10−1 000 000 000 000 000 000 000. However, these monsters do appear in statistical
physics (as e−cn where the number of particles like n = 1023 is quite usual).
They are far beyond the reach of the famous normal approximation (unlike
10−6).

1a A physical question

A system of n spin-1 particles is described by the configuration space {−1, 0, 1}n.
Each configuration (s1, . . . , sn) ∈ {−1, 0, 1}n has its energy3

Hn(s1, . . . , sn) = nf

(

s1 + · · ·+ sn
n

)

,

where f : [−1, 1] → R is a given smooth function (not depending on n). If

1See page 1 in the book “Large deviations techniques and applications”, Jones and
Bartlett Publ., 1993.

2See page 54 in the book “Statistical mechanics: entropy, order parameters, and com-
plexity”, Oxford, 2006.

3All spins interact with the same magnetic field g((s1 + · · · + sn)/n) that depends
on the mean field (s1 + · · · + sn)/n via a function g describing (generally, nonlinear)
magnetic properties of the environment. Thus, f(x) = xg(x). See also Sect. 9 in: R.S. El-
lis, “The theory of large deviations and applications to statistical mechanics”, 2006,
http://www.math.umass.edu/∼rsellis/pdf-files/Dresden-lectures.pdf; and Sect. 7.3.2 in:
D. Yoshioka, “Statistical physics”, Springer, 2007.

http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf
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the system is in thermal equilibrium with a heat bath at temperature T , then
each configuration (s1, . . . , sn) appears with the probability

constn · exp

(

−
1

kBT
Hn(s1, . . . , sn)

)

,

where kB (= 1.38 · 10−23J/K) is the so-called Boltzmann constant. For large
n, up to small fluctuations, the energy per particle f( s1+···+sn

n
) is a function

of the temperature. Find this function.

1b A naive solution

First, the number of configurations (s1, . . . , sn) such that s1+···+sn
n

≈ x is
roughly proportional (up to an n-dependent coefficient) to exp

(

−3n
4
x2
)

for
small x (only small x being relevant). Indeed, if all configurations are
equiprobable then s1+···+sn

n
is approximately normal, N(0, 2

3n
); the corre-

sponding density is proportional to x 7→ exp
(

−3n
4
x2
)

.
Second, the probability of this set of configurations is roughly propor-

tional to

exp

(

−
3n

4
x2 −

1

kBT
nf(x)

)

= exp

(

− n
(3

4
x2 + βf(x)

)

)

,

where β = 1

kBT
. Thus, the probability is roughly concentrated at the min-

imizer xβ of the function x 7→ 3

4
x2 + βf(x), and the energy per particle is

roughly f(xβ).

1c Failure of the naive solution

Consider the simple case f(x) = 1 + x (an external magnetic field only).
Here, xβ = −2

3
β; the energy per particle: f(xβ) = 1− 2

3
β = 1− 2

3
1

kBT
.

For small β (that is, high temperature) it is believable. Otherwise it
is not, since xβ is not small (recall, only small x should be relevant) and
moreover, need not belong to [−1, 1].

In fact, this simple case admits an exact solution. The probability1

const · exp
(

−βHn(s1, . . . , sn)
)

= const · exp
(

−β(s1 + · · ·+ sn)
)

=

= const · e−βs1 . . . e−βsn

1Every ‘const’ is a new constant (depending on n and β but not s1, . . . , sn).
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factorizes; it means that s1, . . . , sn are independent random variables,1 each
distributed as follows:

(1c1)
s −1 0 1

prob. eβ

eβ+1+e−β
1

eβ+1+e−β
e−β

eβ+1+e−β

Therefore s1+···+sn
n

is concentrated near the expectation,

xβ = −
eβ − e−β

eβ + 1 + e−β
,

which is different from −2

3
β. (However, for small β it is −2

3
β in the linear

approximation.) Note that xβ → −1 as β → ∞, and no wonder; at low
temperature the energy is roughly minimal.

1d A physical approach

The spins s1, . . . , sn are microscopic, but the frequences

ps =
1

n
#{k : sk = s} for s ∈ {−1, 0, 1}

are macroscopic. The entropy per particle,

S(p
−1, p0, p1) = −

∑

s=−1,0,1

ps ln ps ,

is roughly (1/n) times the logarithm of the number of configurations (s1, . . . , sn)
conforming to (p

−1, p0, p1).
Given a macroscopic parameter x = 1

n
(s1 + · · · + sn) = p1 − p

−1, we
maximize the entropy2 over all (p

−1, p0, p1) satisfying p1−p
−1 = x. It appears

that the maximizer is of the form

(p
−1, p0, p1) =

1

eb + 1 + e−b
· (eb, 1, e−b) ,

just the form of (1c1) but with some b instead of β. We get

S(p
−1, p0, p1) = bx+ ln(eb + 1 + e−b) ,

x =
e−b − eb

eb + 1 + e−b
,

1In contrast to the general case (nonlinear f).
2Why maximize the entropy? See Sect. 2b ‘Contraction principle’.



Tel Aviv University, 2007 Large deviations 4

which is a functional dependence (not explicit, unfortunately) between x
and the entropy S. This is the correct substitute of the naive formula S =
−3

4
x2 + ln 3. Now we continue similarly to the ‘naive solution’; xβ is the

minimizer of the function x 7→ −S(x) + βf(x), and the energy is f(xβ).
By the way, for small b (and x),

x = −
2

3
b+ o(b) ; b = −

3

2
x+ o(x) ;

S = bx+ ln(3 + b2 + o(b2)) = −
3

4
x2 + ln 3 + o(x2) ,

which conforms to the naive approach.
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