10 Cramèr theorem via Sanov's theorem

10a	Sanov's theorem in general	83
10b	Cramèr theorem on a bounded interval	84
10c	A strengthened Sanov's theorem	85
10d	Cramèr theorem on the line	87

10a Sanov's theorem in general

Recall Sanov's theorem 3b4 for a finite probability space (the multinomial LDP). We want to generalize it to arbitrary (not just discrete) probability spaces.

First, consider the space of (infinite) sequences $\Omega = \{0, 1\}^{\infty}$ and a probability measure p on Ω . Its marginals are a consistent family of probability measures on $\{0, 1\}^{j, 1}$

Given *n* points $\omega_1, \ldots, \omega_n \in \Omega$, we consider the empirical measure $\frac{1}{n} \sum \delta_{\omega_k} \in P(\Omega)$,

$$\left(\frac{1}{n}\sum_{k=1}^{n}\delta_{\omega_{k}}\right)(A) = \frac{\#\{k:\omega_{k}\in A\}}{n}$$

Treating $\omega_1, \ldots, \omega_n$ as independent, distributed p each, we get a distribution $\mu_n \in P(P(\Omega))$ of the empirical measure,

$$\int f \,\mathrm{d}\mu_n = \int_{\Omega} \dots \int_{\Omega} f\left(\frac{1}{n} \sum_{k=1}^n \delta_{\omega_k}\right) p(\mathrm{d}\omega_1) \dots p(\mathrm{d}\omega_n) \,.$$

Indeed, Ω is a compact metrizable space (with the product topology),² thus, $P(\Omega)$ is also a compact metrizable space, and $P(P(\Omega))$ is well-defined.

In order to use the Dawson-Gärtner theorem 5b2 (or rather its generalization 5b4) we consider the projection (truncation) maps $\Omega \to \{0,1\}^j$ and the corresponding maps $g_j : P(\Omega) \to P(\{0,1\}^j)$. They separate points of $P(\Omega)$ (think, why). The spaces $P(\{0,1\}^j)$ depend on j, but 5b4 generalizes readily to such a situation. The image $\nu_n^{(j)}$ of the measure μ_n under g_j is the multinomial distribution (think, why) governed by the measure $p^{(j)} = g_j(p)$. By Theorem 3b4, the sequence $(\nu_n^{(j)})_n$ satisfies LDP

¹In fact, every such family corresponds to one and only one p (Kolmogorov's theorem). ²Homeomorphic to the Cantor set.

with the rate function $x \mapsto H(x|p^{(j)})$ for $x \in P(\{0,1\}^j)$. By the Dawson-Gärtner theorem, the sequence $(\mu_n)_n$ satisfies LDP with the rate function $I(x) = \sup_j H(g_j(x)|g_j(p))$. However, $\sup_j H(g_j(x)|g_j(p)) = H(x|p)$, the relative entropy H(x|p) being defined by

$$H(x|p) = \int \left(\ln \frac{\mathrm{d}x}{\mathrm{d}p} \right) \mathrm{d}x = \int \left(\frac{\mathrm{d}x}{\mathrm{d}p} \ln \frac{\mathrm{d}x}{\mathrm{d}p} \right) \mathrm{d}p$$

if x is absolutely continuous w.r.t. p, otherwise $H(x|p) = \infty$. Finally,

$$I(x) = H(x|p) \,.$$

10a1 Exercise. Let p be a probability measure on [0, 1]. Consider the distribution $\mu_n \in P(P[0, 1])$ of the empirical measure $\frac{1}{n} \sum \delta_{\omega_k}$, where $\omega_1, \ldots, \omega_n$ are drawn from p independently. Then $(\mu_n)_n$ satisfies LDP with the rate function $x \mapsto H(x|p)$ for $x \in P[0, 1]$.

Prove it.

Hint: map $\{0,1\}^{\infty}$ onto [0,1] using binary digits.

The same can be done for any probability measure on \mathbb{R}^d , and in fact, on any Polish space.

10b Cramèr theorem on a bounded interval

Every measure $p \in P[0, 1]$ has its barycenter $F(p) = \int u p(du) \in [0, 1]$. The map $F : P[0, 1] \to [0, 1]$ is continuous (think, why).

Given $p \in P[0, 1]$ and n, we consider the corresponding distribution $\mu_n \in P(P[0, 1])$ of the empirical measure $\frac{1}{n} \sum \delta_{\omega_k} \in P[0, 1]$. The image $\nu_n \in P[0, 1]$ of μ_n under F is nothing but the distribution of $(X_1 + \cdots + X_n)/n$ where X_1, \ldots, X_n are independent random variables distributed p each. Indeed, $F(\frac{1}{n} \sum \delta_{\omega_k}) = (\omega_1 + \cdots + \omega_n)/n$.

Combining Sanov's theorem 10a1 with the contraction principle 2b1 we conclude that (a) the sequence $(\nu_n)_n$ is LD-convergent, and (b) $(\nu_n)_n$ satisfies LDP with the rate function

$$I(y) = \min\{H(x|p) : x \in P[0,1], F(x) = y\}.$$

The case y = F(p) is evident; here I(y) = 0 since H(p|p) = 0. Given $\lambda \in \mathbb{R}$, we define $p_{\lambda} \in P[0, 1]$ by

$$\frac{\mathrm{d}p_{\lambda}}{\mathrm{d}p}(u) = \mathrm{const}_{\lambda} \cdot \mathrm{e}^{\lambda u}, \quad \mathrm{const}_{\lambda} = \frac{1}{\int \mathrm{e}^{\lambda u} p(\mathrm{d}u)}$$

Large deviations

and note that

$$H(x|p_{\lambda}) = H(x|p) - \lambda F(x) - \ln \operatorname{const}_{\lambda}$$

(think, why). It means that $\min\{H(x|p_{\lambda}) : F(x) = y\} = \min\{H(x|p) : F(x) = y\} - \lambda y - \ln \operatorname{const}_{\lambda}$. The case $y = F(p_{\lambda})$ is thus solved; here $\min\{H(x|p_{\lambda}) : F(x) = y\} = 0$, therefore $\min\{H(x|p) : F(x) = y\} = \lambda y + \ln \operatorname{const}_{\lambda}$, that is,

$$I(F(p_{\lambda})) = \lambda F(p_{\lambda}) - \ln \int e^{\lambda u} p(du);$$

here

$$F(p_{\lambda}) = \frac{\int u e^{\lambda u} p(\mathrm{d}u)}{\int e^{\lambda u} p(\mathrm{d}u)}$$

The same holds for every compactly supported probability measure p on \mathbb{R} (not necessarily concentrated on [0, 1]).

Usually one introduces the logarithmic moment generating function

$$\Lambda_p(\lambda) = \ln \int e^{\lambda u} p(\mathrm{d}u)$$

(convex by Hölder's inequality) and its Legendre(-Fenchel) transform

$$\Lambda_p^*(u) = \sup_{\lambda \in \mathbb{R}} \left(\lambda u - \Lambda_p(\lambda) \right).$$

Then $\operatorname{const}_{\lambda} = \exp(-\Lambda_p(\lambda))$ and $F(p_{\lambda}) = \Lambda'_p(\lambda)$ (think, why). If $u = \Lambda'_p(\lambda)$ then $\Lambda^*_p(u) = \lambda u - \Lambda_p(\lambda) = \lambda F(p_{\lambda}) - \Lambda_p(\lambda) = I(u)$. We see that $I(u) = \Lambda^*_p(u)$ at least for all u of the form $\Lambda'_p(\cdot)$.

Let [a, b] be the smallest segment containing the support of p. Then $\Lambda'_p(-\infty) = a$ and $\Lambda'_p(+\infty) = b$. It follows that every $u \in (a, b)$ is of the form $\Lambda'_p(\cdot)$. Thus, $I(\cdot) = \Lambda^*_p(\cdot)$ on (a, b).

See also 3c (especially (3c3)).

10c A strengthened Sanov's theorem

The space $P(\mathbb{R})$ of all probability measures on \mathbb{R} is endowed with the weak convergence (compare it with 2a) defined by

(10c1)
$$\mu_n \to \mu \iff \forall f \in C_{\rm b}(\mathbb{R}) \int f \,\mathrm{d}\mu_n \to \int f \,\mathrm{d}\mu$$

for $\mu, \mu_n \in P(\mathbb{R})$. It is equivalent to $\operatorname{dist}(\mu_n, \mu) \to 0$, where 'dist' is the Lévy-Prokhorov metric,

(10c2) dist
$$(\mu, \nu) = \inf \{ \varepsilon > 0 : \forall F \ \mu(F) \le \nu(F_{+\varepsilon}) + \varepsilon, \ \nu(F) \le \mu(F_{+\varepsilon}) + \varepsilon \};$$

here F runs over all closed subsets of \mathbb{R} , or equivalently, over the rays $(-\infty, u]$, $u \in \mathbb{R}$. This metric turns $P(\mathbb{R})$ into a Polish space.

However, the barycenter $\int u x(du)$ cannot be treated as a continuous function of $x \in P(\mathbb{R})$ (think, why). This time we cannot combine Sanov's theorem with the contraction principle just as we did in 10b. We need the inverse contraction principle 9e1.

The space $M_+(\mathbb{R})$ of all finite positive measures on \mathbb{R} is also a Polish space; (10c1) and (10c2) still work. We consider the closed subset

$$\mathcal{X}_1 = \left\{ x \in \mathcal{M}_+(\mathbb{R}) : \int \frac{x(\mathrm{d}u)}{|u|+1} = 1 \right\}$$

and the map

$$F: \mathcal{X}_1 \to \mathcal{X}_2 = P(\mathbb{R}), \quad F(x) = y \iff \frac{\mathrm{d}y}{\mathrm{d}x}(u) = \frac{1}{|u|+1};$$

the map F is continuous and one-to-one (think, why). The barycenter of the measure y = F(x) is a well-defined, continuous function of x (think, why).

Given *n* points $u_1, \ldots, u_n \in \mathbb{R}$, we represent the empirical measure $\frac{1}{n} \sum \delta_{u_k} \in P(\mathbb{R})$ as follows:

$$\frac{1}{n}\sum_{k=1}^{n}\delta_{u_{k}} = F\left(\frac{1}{n}\sum_{k=1}^{n}(|u_{k}|+1)\delta_{u_{k}}\right).$$

Given $p \in P(\mathbb{R})$, we denote by μ_n the distribution of $\frac{1}{n} \sum (|u_k|+1)\delta_{u_k}$ and by ν_n the distribution of $\frac{1}{n} \sum \delta_{u_k}$; here u_1, \ldots, u_n are independent, distributed p each. Thus, $\mu_n \in P(\mathcal{X}_1), \nu_n \in P(\mathcal{X}_2)$, and ν_n is the image of μ_n under F.

From now on we assume that the distribution p has all exponential moments, that is,

(10c3)
$$\int e^{i\lambda u} p(du) < \infty \quad \text{for all } \lambda \in \mathbb{R}.$$

10c4 Lemma. The sequence $(\mu_n)_n$ is exponentially tight.

Proof. (sketch) It is sufficient to prove that for every $\varepsilon > 0$ there exists $C < \infty$ such that for all $n, \mu_n(K_{+\varepsilon}) \ge 1 - \varepsilon^n$, where

$$K = \mathcal{X}_1 \cap \mathcal{M}_+[-C, C] = \{x \in \mathcal{X}_1 : x(\mathbb{R} \setminus [-C, C]) = 0\}.$$

If $x(\mathbb{R} \setminus [-C, C]) < \varepsilon$ then $x \in K_{+\varepsilon}$ (think, why); we need

$$\mathbb{P}\left(\frac{1}{n}\sum_{k:|u_k|>C}(|u_k|+1)\geq\varepsilon\right)\leq\varepsilon^n.$$

Large deviations

$$\mathbb{P}\left(\sum_{k:|u_k|>C} (|u_k|+1) \ge n\varepsilon\right) = \mathbb{P}\left(\sum_k (|u_k|+1)\mathbf{1}_{(C,\infty)}(|u_k|) \ge n\varepsilon\right) \le \\ \le \frac{\mathbb{E} \exp \lambda \sum_k (|u_k|+1)\mathbf{1}_{(C,\infty)}(|u_k|)}{\exp(\lambda n\varepsilon)} = \\ = \left(e^{-\lambda\varepsilon} \int \exp \lambda(|u|+1)\mathbf{1}_{(C,\infty)}(|u|) p(\mathrm{d}u)\right)^n$$

for every $\lambda > 0$. However, $\int \exp \lambda(|u|+1) \mathbf{1}_{(C,\infty)}(|u|) p(\mathrm{d}u) \to 1$ as $C \to \infty$. We choose λ such that $2\mathrm{e}^{-\lambda\varepsilon} \leq \varepsilon$ and then C such that $\int (\ldots) \leq 2$.

By Sanov's theorem, $(\nu_n)_n$ satisfies LDP with the rate function $y \mapsto H(y|p)$. By the inverse contraction principle (Theorem 9e1) and Lemma 10c4, $(\mu_n)_n$ satisfies LDP with the rate function $x \mapsto H(F(x)|p)$ (assuming (10c3)). This is the strengthened Sanov's theorem.

10d Cramèr theorem on the line

Let $p \in P(\mathbb{R})$ satisfy (10c3), and ν_n be the distribution of $(X_1 + \cdots + X_n)/n$ where X_1, \ldots, X_n are independent random variables distributed p each.

Applying the contraction principle (Theorem 9b1) to the continuous map $\mathcal{X}_1 \to \mathbb{R}, x \mapsto \text{barycenter}(F(x))$ we conclude that $(\nu_n)_n$ satisfies LDP with the rate function

$$I(u) = \min\{H(F(x)|p) : x \in \mathcal{X}_1, \operatorname{barycenter}(F(x)) = u\} = \\ = \min\{H(y|p) : y \in F(\mathcal{X}_1), \operatorname{barycenter}(y) = u\}.$$

Note that

$$y \in F(\mathcal{X}_1) \iff \int |u| y(\mathrm{d}u) < \infty$$
.

We proceed similarly to 10b. The case u = barycenter(p) is evident; here I(u) = 0, since H(p|p) = 0 and $p \in F(\mathcal{X}_1)$.

Given $\lambda \in \mathbb{R}$, we define $p_{\lambda} \in P(\mathbb{R})$ by

$$\frac{\mathrm{d}p_{\lambda}}{\mathrm{d}p}(u) = \mathrm{const}_{\lambda} \cdot \mathrm{e}^{\lambda u}, \quad \mathrm{const}_{\lambda} = \frac{1}{\int \mathrm{e}^{\lambda u} p(\mathrm{d}u)}$$

and note that $p_{\lambda} \in F(\mathcal{X}_1)$ and

$$H(y|p_{\lambda}) = H(y|p) - \lambda \cdot \text{barycenter}(y) - \ln \text{const}_{\lambda}.$$

The rest is exactly as in 10b.

10d1 Theorem. (Cramèr) Let X_1, X_2, \ldots be i.i.d. random variables, and

$$\Lambda(\lambda) = \ln \mathbb{E} e^{\lambda X_1} < \infty \quad \text{for } \lambda \in \mathbb{R}.$$

Then the sequence (of distributions) of random variables $(X_1 + \cdots + X_n)/n$ satisfies LDP with the rate function Λ^* ,

$$\Lambda^*(u) = \sup_{\lambda \in \mathbb{R}} \left(\lambda u - \Lambda(\lambda) \right).$$

Many generalizations, and various proofs, are well-known. In fact, the statement remains true if the set $\{\lambda : \Lambda(\lambda) < \infty\}$ is a neighborhood of 0 (and even only $\{0\}$) rather than the whole \mathbb{R} . Can it still be proved via Sanov's theorem? I do not know.

See also [1, Sect. 2.2].

Finally, I formulate (without proof) a related result.

10d2 Theorem. (Gärtner) Let μ_1, μ_2, \ldots be probability distributions on \mathbb{R} such that the limit

$$c(\lambda) = \lim_{n} \frac{1}{n} \ln \int e^{n\lambda u} \mu_n(\mathrm{d}u) \in \mathbb{R}$$

exists for every $\lambda \in \mathbb{R}$, and the function $c(\cdot)$ is differentiable on \mathbb{R} . Then $(\mu_n)_n$ satisfies LDP with the rate function

$$I(u) = \sup_{\lambda \in \mathbb{R}} (\lambda u - c(\lambda)).$$

The condition of (finiteness and) differentiability can be weakened considerably. See the Gärtner-Ellis theorem in [2, Sect. 8], [1, Sect. 2.3].

References

- [1] A. Dembo, O. Zeitouni, *Large deviations techniques and applications*, Jones and Bartlett publ., 1993.
- R.S. Ellis, The theory of large deviations and applications to statistical mechanics, 2006, http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf