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2 Basic notions

2a  Large deviation principle (LDP) . ... ... .. [5
2b  Contraction principle . . . . ... ... ...... ld

2c Change of measure ... ..............

The formalism of the probability theory grows on a probability space
(Q, F, P) and the corresponding spaces of random variables, L,(2, F,P).
In spite of their names, these notions belong to analysis (measure theory,
functional analysis) rather than probability theory.

Likewise, the formalism of the large deviations theory grows on notions
(LD-convergence, rate function) of analytical nature. They are explained in
this section.

2a Large deviation principle (LDP)

Let K be a compact metrizable space.

All continuous functions K — R are a separable Banach space C'(K).
All (Borel) probability measures on K are a set P(K). Every u € P(K)
gives us a linear functional C(K) — R,

fos [ fan.
satisfying two conditions,
fZO:>/fduZO and /1du:1.

The linear functional determines p uniquely.? The weak convergence of mea-
sures® is defined by

o = e [fdm s [

for p, u, € P(K).

1See [1], Sect. 4.3 (‘Varadhan’s integral lemma’) and 4.4 (‘Bryc’s inverse Varadhan
lemma’). “The next theorem could actually be used as a starting point for developing the
large deviation paradigm” [Il before Th. 4.3.1]. See also [4, Def. 6.8 and Th. 6.9] (‘Laplace
principle’), [5l Sect. II1.3], [3, Sect. 1.3], [7, Th. 2.2], [2, Th. 2.1.10], [6, Th. 2.6].

%In fact, every such functional corresponds to some measure (Riesz-Markov theorem).

3Sometimes called ‘weak* convergence’ by functional analysts.
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Given p € P(K) and p € [1,00), we have a seminorm || - ||z, on C(K),

1/p
1l = ( / \fl”du) for [ € C(K).

satisfying

(2al) fl<lgl = Fl < gl

(2a2) i <t,

(2a3) f.920 = |Ifvgll <22(|f]IVlgl)

for f,g € C(K); here a Vb = max(a,b). Indeed, [(fV g)Pdu < [(fP+
g") du < 2(([ fPdu) v ([ g7 dp)).

2a4 Exercise. The following two conditions on pu, i, € P(K) are equivalent:

(@) 1 lipeny = 11y for all | € C(K);
(b) pp, — p (weakly).

(As before, p is a given number of [1, 00).)
Prove it.
Hint: f = |g|P — |h[?...

Let p, € P(K), p, € [1,00), p, — oc. It happens often’ that the limit
(245) T 111,00

exists for all f € C(K). Then the limit is another seminorm || - ||;m on C'(K),

satisfying (2all), (2a2) and
(2a6) 920 = I Vglhim < [flhim V [|g]im

for all f,g € C(K). In order to describe this new seminorm we introduce a
function I1 : K — [0, 1] by

(2a7) ﬁ = sup{F() | Fllim < 1}

It need not be continuous. Rather, 1/1II is lower semicontinuous (see below),
thus, II is upper semicontinuous. (But why II(-) < 17 Just try f =1.)

! And no wonder: in fact, the seminorms on C(K) satisfying [2all), [2a2)) are a compact
metrizable space. ..
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2a8 Definition. A function ¢ : K — R is lower semicontinuous, if it satisfies
the following equivalent conditions:
(a) iminf, ,, 2, ©(y) > ¢(z) for every z € K;
(b) the set {x € K : ¢(x) < ¢} is closed for every ¢ € R;
(c) ¢ is the (pointwise) supremum of some set of continuous functions;
(d) there exist f, € C(K) such that f,(x) 1 ¢(x) for every x.

2a9 Exercise. Prove that (a)—(d) are equivalent.

Hint: (d)==-(c) is trivial, (¢)==(b) is easy; (b)==(a): consider {y :
fly) < f(z) — €}; (a)=>(d) is harder, consider f,(z) = infyex(p(y) +
ndist(z,y)).

Upper semicontinuity is defined similarly. Generalization to ¢ : K —
[—00, +00] is straightforward.

2a10 Exercise. Every upper semicontinuous function on K reaches its supre-
mum (that is, 3z ¢(z) = sup, p(y)); every lower semicontinuous function
on K reaches its infimum.

Prove it.

Hint: use compactness.

2all Proposition. For every f € C(K),
1f i = mae (] f () |TI())

The proof is postponed to Sect. 4. The supremum is reached due to upper
semicontinuity. The claim holds for every seminorm || - ||, satisfying (2all),

(2a2)) and (2afl), irrespective of (2af).

2a12 Exercise. If maxy(|f|I1I;) = maxg(|f|Iy) for all f € C(K), then
IT; = Iy (assuming that Iy, I : K — [0, 1] are upper semicontinuous).
Prove it.
Hint: try f(z) = (1 — Mdist(x,z))" for a large M, assuming that
Iy (o) < IIy(xo).

It is custom to use the lower semicontinuous function I : K — [0, o]
defined by
M(z) =e 1@ forzekK.

The function I is well-known as ‘the rate function’; the function II is some-
times called ‘deviability’. Defining a seminorm || - ||; on C'(K) by

|71l = max (| ()|~ @)
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we get

i [y, ) = I1£1l5 - for f € C(E).

For now we are mostly interested in the case p, = n. (The case p, = n¢
for a given ¢ € (0,1), relevant to so-called moderate deviations, will be used
later.)

2a13 Definition. (a) A sequence (i,), of probability measures on a compact
metrizable space K is LD-convergent, if the limit

1/n
nm(/mwM)
n—o0
exists for all f € C(K).

(b) The sequence (i), satisfies LDP with a rate function I (a lower
semicontinuous function K — [0, o)), if

1/n
I —
for all f € C(K).

Proposition 2alll and Exercise 2al2 ensure the following.

2al4 Corollary. If (1), is LD-convergent then (u,),, satisfies LDP with one
and only one rate function I (a lower semicontinuous function K — [0, oc]),
namely,

'@ =sup{f(x) : I || f]lL.qu) <1}

2al5 Exercise. Let K = [0,1] and u,, € P(K) be just the Lebesgue measure
on [0,1] (for all n). Prove that (u,), satisfies LDP with the rate function
I(-) =0.

2a16 Exercise. Let K = [0, 1], and pu, € P(K) be defined by

/fdua - (Oz+1)/01f(x)xo‘dx.

a) Prove that the sequence (), is LD-convergent, and find its rate function.
b) The same for the sequence (fiay,)n-
¢) The same for the sequence (p,2),.
d) The same for the sequence (1t /)n.-

(
(
(
(
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2al7 Exercise. (a) If (i), is LD-convergent then (f9,,), is LD-convergent.
(b) If (pn), satisfies LDP with a rate function I, then (ps,), satisfies
LDP with the rate function 21.
Prove it.

Hint: | fllzaan) = A1, 1)

2al18 Exercise. Let K = [0, 1], and (p,),, satisfy LDP with the rate function
I(z) = In(1/z). Prove that p,([0,0.5]) < 0.6" for all n large enough.
Hint: take f(-) = 1 on [0,0.5] but f(-) = 0 on [0.55, 1].

2al19 Exercise. Prove that

Imrélfr(l](l‘) =0.

Hint: try f =1.
2a20 Exercise. For every ¢ > 0,
pn({z: I(z) <e}) =1 asn— .

Prove it, assuming that I(-) is continuous.
Hint: take f = e’ and use the Markov inequality, i, ({z : f"(z) > e"}) <

(f fm d/in)/(em)'

2b Contraction principle

Let K4, Ky be compact metrizable spaces, F' : K; — K, a continuous map,
(tn)n a sequence of probability measures on Ky, and (v,), its image on Kj
(that is, v,(B) = p,(F~Y(B)) for Borel sets B C K>).

2b1 Theorem. (a) If (), is LD-convergent, then (1), is LD-convergent.
(b) If (p4)n satisfies LDP with a rate function I;, then (1), satisfies LDP
with a rate function /5 such that

L(y) =min{li(z) :z € Ky, F(x) = y}.

If F~'({y}) = 0 then the minimum is +oo by definition. Otherwise, the
minimum is reached since F~!({y}) is compact and I; is lower semicontinu-
ous.

2b2 Exercise. Prove Theorem 2b1l
Hint: given g € C(K3), introduce f € C(K;) by f(x) = g(F(z)) and
note that [ |f|"du, = [ |g]" dv,.
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2c Change of measure

2c1 Theorem. Let (fy)n, (Vn)n be two sequences of probability measures
on a compact metrizable space K, satisfying

dvn =c,e ™ foralln
dpsy,

for some h € C(K) and ¢y, ¢, -+ € (0,00).

(a) If (gn), is LD-convergent then (1,), is LD-convergent.

(b) If (), satisfies LDP with a rate function 7, then (v,),, satisfies LDP
with the rate function

1
J:(I+h)—mlén(l+h):_f+h— lim —Ing¢, .

n—oo N

2c2 Exercise. Prove Theorem RcIl.
Hint: — (f[f"dva)™ = ([(Ifle™) dpa) /([ (™) dpn) V™ —

max(...)/ max(...).

See also [0, Th. II1.17] (‘tilted LDP?).
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