2 Basic notions

$\mathbf{2a}$	Large deviation principle (LDP) $\ldots \ldots \ldots$	5
$\mathbf{2b}$	Contraction principle	9
2c	Change of measure	10

The formalism of the probability theory grows on a probability space (Ω, \mathcal{F}, P) and the corresponding spaces of random variables, $L_p(\Omega, \mathcal{F}, P)$. In spite of their names, these notions belong to analysis (measure theory, functional analysis) rather than probability theory.

Likewise, the formalism of the large deviations theory grows on notions (LD-convergence, rate function) of analytical nature. They are explained in this section.¹

2a Large deviation principle (LDP)

Let K be a compact metrizable space.

All continuous functions $K \to \mathbb{R}$ are a separable Banach space C(K).

All (Borel) probability measures on K are a set P(K). Every $\mu \in P(K)$ gives us a linear functional $C(K) \to \mathbb{R}$,

$$f \mapsto \int f \,\mathrm{d}\mu \,,$$

satisfying two conditions,

$$f \ge 0 \implies \int f \, \mathrm{d}\mu \ge 0 \quad \text{and} \quad \int \mathbf{1} \, \mathrm{d}\mu = 1.$$

The linear functional determines μ uniquely.² The weak convergence of measures³ is defined by

$$\mu_n \to \mu \quad \Longleftrightarrow \quad \forall f \in C(K) \quad \int f \, \mathrm{d}\mu_n \to \int f \, \mathrm{d}\mu$$

for $\mu, \mu_n \in P(K)$.

¹See [1], Sect. 4.3 ('Varadhan's integral lemma') and 4.4 ('Bryc's inverse Varadhan lemma'). "The next theorem could actually be used as a starting point for developing the large deviation paradigm" [1, before Th. 4.3.1]. See also [4, Def. 6.8 and Th. 6.9] ('Laplace principle'), [5, Sect. III.3], [3, Sect. 1.3], [7, Th. 2.2], [2, Th. 2.1.10], [6, Th. 2.6].

²In fact, every such functional corresponds to some measure (Riesz-Markov theorem). ³Sometimes called 'weak* convergence' by functional analysts.

Tel Aviv University, 2007

6

Given $\mu \in P(K)$ and $p \in [1, \infty)$, we have a seminorm $\|\cdot\|_{L_p(\mu)}$ on C(K),

$$||f||_{L_p(\mu)} = \left(\int |f|^p \,\mathrm{d}\mu\right)^{1/p} \quad \text{for } f \in C(K) \,,$$

satisfying

$$(2a1) |f| \le |g| \implies ||f|| \le ||g||,$$

$$(2a2) ||\mathbf{1}|| \le 1,$$

(2a3)
$$f, g \ge 0 \implies ||f \lor g|| \le 2^{1/p} (||f|| \lor ||g||)$$

for $f, g \in C(K)$; here $a \vee b = \max(a, b)$. Indeed, $\int (f \vee g)^p d\mu \leq \int (f^p + g^p) d\mu \leq 2((\int f^p d\mu) \vee (\int g^p d\mu)).$

2a4 Exercise. The following two conditions on $\mu, \mu_n \in P(K)$ are equivalent: (a) $\|f\|_{L_p(\mu_n)} \to \|f\|_{L_p(\mu)}$ for all $f \in C(K)$; (b) $\mu_n \to \mu$ (weakly). (As before, p is a given number of $[1, \infty)$.)

Prove it. Hint: $f = |g|^p - |h|^p \dots$

Let $\mu_n \in P(K), p_n \in [1, \infty), p_n \to \infty$. It happens often¹ that the limit

(2a5)
$$\lim_{n \to \infty} \|f\|_{L_{p_n}(\mu_n)}$$

exists for all $f \in C(K)$. Then the limit is another seminorm $\|\cdot\|_{\lim}$ on C(K), satisfying (2a1), (2a2) and

(2a6)
$$f,g \ge 0 \implies ||f \lor g||_{\lim} \le ||f||_{\lim} \lor ||g||_{\lim}$$

for all $f, g \in C(K)$. In order to describe this new seminorm we introduce a function $\Pi: K \to [0, 1]$ by

(2a7)
$$\frac{1}{\Pi(x)} = \sup\{f(x) : \|f\|_{\lim} \le 1\}.$$

It need not be continuous. Rather, $1/\Pi$ is lower semicontinuous (see below), thus, Π is upper semicontinuous. (But why $\Pi(\cdot) \leq 1$? Just try $f = \mathbf{1}$.)

¹And no wonder: in fact, the seminorms on C(K) satisfying (2a1), (2a2) are a *compact* metrizable space...

2a8 Definition. A function $\varphi : K \to \mathbb{R}$ is *lower semicontinuous*, if it satisfies the following equivalent conditions:

(a) $\liminf_{y \to x, y \neq x} \varphi(y) \ge \varphi(x)$ for every $x \in K$;

(b) the set $\{x \in K : \varphi(x) \le c\}$ is closed for every $c \in \mathbb{R}$;

(c) φ is the (pointwise) supremum of some set of continuous functions;

(d) there exist $f_n \in C(K)$ such that $f_n(x) \uparrow \varphi(x)$ for every x.

2a9 Exercise. Prove that (a)–(d) are equivalent.

Hint: (d) \Longrightarrow (c) is trivial, (c) \Longrightarrow (b) is easy; (b) \Longrightarrow (a): consider $\{y : f(y) \leq f(x) - \varepsilon\}$; (a) \Longrightarrow (d) is harder, consider $f_n(x) = \inf_{y \in K} (\varphi(y) + n \operatorname{dist}(x, y))$.

Upper semicontinuity is defined similarly. Generalization to $\varphi : K \to [-\infty, +\infty]$ is straightforward.

2a10 Exercise. Every upper semicontinuous function on K reaches its supremum (that is, $\exists x \ \varphi(x) = \sup_y \varphi(y)$); every lower semicontinuous function on K reaches its infimum.

Prove it. Hint: use compactness.

2a11 Proposition. For every $f \in C(K)$,

$$\|f\|_{\lim} = \max_{x \in K} \left(|f(x)| \Pi(x) \right).$$

The proof is postponed to Sect. 4. The supremum is reached due to upper semicontinuity. The claim holds for every seminorm $\|\cdot\|_{\text{lim}}$ satisfying (2a1), (2a2) and (2a6), irrespective of (2a5).

2a12 Exercise. If $\max_K(|f|\Pi_1) = \max_K(|f|\Pi_2)$ for all $f \in C(K)$, then $\Pi_1 = \Pi_2$ (assuming that $\Pi_1, \Pi_2 : K \to [0, 1]$ are upper semicontinuous).

Prove it.

Hint: try $f(x) = (1 - M \operatorname{dist}(x, x_0))^+$ for a large M, assuming that $\Pi_1(x_0) < \Pi_2(x_0)$.

It is custom to use the lower semicontinuous function $I: K \to [0, \infty]$ defined by

$$\Pi(x) = \mathrm{e}^{-I(x)} \quad \text{for } x \in K.$$

The function I is well-known as 'the rate function'; the function Π is sometimes called 'deviability'. Defining a seminorm $\|\cdot\|_I$ on C(K) by

$$||f||_{I} = \max_{x \in K} (|f(x)|e^{-I(x)})$$

Tel Aviv University, 2007

Large deviations

we get

$$\lim_{n \to \infty} \|f\|_{L_{p_n}(\mu_n)} = \|f\|_I \text{ for } f \in C(K).$$

For now we are mostly interested in the case $p_n = n$. (The case $p_n = n^c$ for a given $c \in (0, 1)$, relevant to so-called moderate deviations, will be used later.)

2a13 Definition. (a) A sequence $(\mu_n)_n$ of probability measures on a compact metrizable space K is *LD-convergent*, if the limit

$$\lim_{n \to \infty} \left(\int |f|^n \, \mathrm{d}\mu_n \right)^{1/n}$$

exists for all $f \in C(K)$.

(b) The sequence $(\mu_n)_n$ satisfies LDP with a rate function I (a lower semicontinuous function $K \to [0, \infty]$), if

$$\lim_{n \to \infty} \left(\int |f|^n \, \mathrm{d}\mu_n \right)^{1/n} = \max_{x \in K} \left(|f(x)| \mathrm{e}^{-I(x)} \right)$$

for all $f \in C(K)$.

Proposition 2a11 and Exercise 2a12 ensure the following.

2a14 Corollary. If $(\mu_n)_n$ is LD-convergent then $(\mu_n)_n$ satisfies LDP with one and only one rate function I (a lower semicontinuous function $K \to [0, \infty]$), namely,

$$e^{I(x)} = \sup\{f(x) : \lim_{n \to \infty} ||f||_{L_n(\mu_n)} \le 1\}.$$

2a15 Exercise. Let K = [0, 1] and $\mu_n \in P(K)$ be just the Lebesgue measure on [0, 1] (for all n). Prove that $(\mu_n)_n$ satisfies LDP with the rate function $I(\cdot) = 0$.

2a16 Exercise. Let K = [0, 1], and $\mu_{\alpha} \in P(K)$ be defined by

$$\int f \,\mathrm{d}\mu_{\alpha} = (\alpha + 1) \int_0^1 f(x) x^{\alpha} \,\mathrm{d}x \,.$$

(a) Prove that the sequence $(\mu_n)_n$ is LD-convergent, and find its rate function.

(b) The same for the sequence $(\mu_{2n})_n$.

- (c) The same for the sequence $(\mu_{n^2})_n$.
- (d) The same for the sequence $(\mu_{\sqrt{n}})_n$.

2a17 Exercise. (a) If (μ_n)_n is LD-convergent then (μ_{2n})_n is LD-convergent.
(b) If (μ_n)_n satisfies LDP with a rate function I, then (μ_{2n})_n satisfies LDP with the rate function 2I.

Prove it. Hint: $||f||_{L_n(\mu_{2n})} = |||f|^{1/2}||^2_{L_{2n}(\mu_{2n})}.$

2a18 Exercise. Let K = [0, 1], and $(\mu_n)_n$ satisfy LDP with the rate function $I(x) = \ln(1/x)$. Prove that $\mu_n([0, 0.5]) < 0.6^n$ for all *n* large enough. Hint: take $f(\cdot) = 1$ on [0, 0.5] but $f(\cdot) = 0$ on [0.55, 1].

2a19 Exercise. Prove that

$$\min_{x \in K} I(x) = 0 \, .$$

Hint: try $f = \mathbf{1}$.

2a20 Exercise. For every $\varepsilon > 0$,

$$\mu_n(\{x: I(x) \le \varepsilon\}) \to 1 \text{ as } n \to \infty.$$

Prove it, assuming that $I(\cdot)$ is continuous.

Hint: take $f = e^{I}$ and use the Markov inequality, $\mu_n(\{x : f^n(x) \ge e^{n\varepsilon}\}) \le (\int f^n d\mu_n)/(e^{n\varepsilon}).$

2b Contraction principle

Let K_1, K_2 be compact metrizable spaces, $F : K_1 \to K_2$ a continuous map, $(\mu_n)_n$ a sequence of probability measures on K_1 , and $(\nu_n)_n$ its image on K_2 (that is, $\nu_n(B) = \mu_n(F^{-1}(B))$ for Borel sets $B \subset K_2$).

2b1 Theorem. (a) If $(\mu_n)_n$ is LD-convergent, then $(\nu_n)_n$ is LD-convergent.

(b) If $(\mu_n)_n$ satisfies LDP with a rate function I_1 , then $(\nu_n)_n$ satisfies LDP with a rate function I_2 such that

$$I_2(y) = \min\{I_1(x) : x \in K_1, F(x) = y\}.$$

If $F^{-1}(\{y\}) = \emptyset$ then the minimum is $+\infty$ by definition. Otherwise, the minimum is reached since $F^{-1}(\{y\})$ is compact and I_1 is lower semicontinuous.

2b2 Exercise. Prove Theorem 2b1.

Hint: given $g \in C(K_2)$, introduce $f \in C(K_1)$ by f(x) = g(F(x)) and note that $\int |f|^n d\mu_n = \int |g|^n d\nu_n$. Large deviations

2c Change of measure

2c1 Theorem. Let $(\mu_n)_n$, $(\nu_n)_n$ be two sequences of probability measures on a compact metrizable space K, satisfying

$$\frac{\mathrm{d}\nu_n}{\mathrm{d}\mu_n} = c_n \mathrm{e}^{-nh} \quad \text{for all } n$$

for some $h \in C(K)$ and $c_1, c_2, \dots \in (0, \infty)$.

(a) If $(\mu_n)_n$ is LD-convergent then $(\nu_n)_n$ is LD-convergent.

(b) If $(\mu_n)_n$ satisfies LDP with a rate function I, then $(\nu_n)_n$ satisfies LDP with the rate function

$$J = (I+h) - \min_{K}(I+h) = I + h - \lim_{n \to \infty} \frac{1}{n} \ln c_n$$

2c2 Exercise. Prove Theorem 2c1.

Hint: $(\int |f|^n d\nu_n)^{1/n} = (\int (|f|e^{-h})^n d\mu_n)^{1/n} / (\int (e^{-h})^n d\mu_n)^{1/n} \to \max(\dots) / \max(\dots).$

See also [5, Th. III.17] ('tilted LDP').

References

- [1] A. Dembo, O. Zeitouni, *Large deviations techniques and applications*, Jones and Bartlett publ., 1993.
- [2] J.-D. Deuschel, D.W. Stroock, *Large deviations*, Academic Press, 1989.
- [3] P. Dupuis, R.S. Ellis, A weak convergence approach to the theory of large deviations, Wiley, 1997.
- [4] R.S. Ellis, The theory of large deviations and applications to statistical mechanics, 2006, http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf
- [5] F. den Hollander, Large deviations, AMS, 2000.
- [6] D.W. Stroock, An introduction to the theory of large deviations, Springer, 1984.
- [7] S.R.S. Varadhan, Large deviations and applications, Soc. for Industrial and Appl. Math., 1984.

Index

LD-convergent, 8 LDP, 8	C(K), 5 P(K), 5
rate function, 7	I, 7 K 5
semicontinuous, 7	$\Pi, 6$