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The formalism of the probability theory grows on a probability space
(Ω,F , P ) and the corresponding spaces of random variables, Lp(Ω,F , P ).
In spite of their names, these notions belong to analysis (measure theory,
functional analysis) rather than probability theory.

Likewise, the formalism of the large deviations theory grows on notions
(LD-convergence, rate function) of analytical nature. They are explained in
this section.1

2a Large deviation principle (LDP)

Let K be a compact metrizable space.

All continuous functions K → R are a separable Banach space C(K).
All (Borel) probability measures on K are a set P (K). Every µ ∈ P (K)

gives us a linear functional C(K) → R,

f 7→

∫

f dµ ,

satisfying two conditions,

f ≥ 0 =⇒

∫

f dµ ≥ 0 and

∫

1 dµ = 1 .

The linear functional determines µ uniquely.2 The weak convergence of mea-
sures3 is defined by

µn → µ ⇐⇒ ∀f ∈ C(K)

∫

f dµn →

∫

f dµ

for µ, µn ∈ P (K).

1See [1], Sect. 4.3 (‘Varadhan’s integral lemma’) and 4.4 (‘Bryc’s inverse Varadhan
lemma’). “The next theorem could actually be used as a starting point for developing the
large deviation paradigm” [1, before Th. 4.3.1]. See also [4, Def. 6.8 and Th. 6.9] (‘Laplace
principle’), [5, Sect. III.3], [3, Sect. 1.3], [7, Th. 2.2], [2, Th. 2.1.10], [6, Th. 2.6].

2In fact, every such functional corresponds to some measure (Riesz-Markov theorem).
3Sometimes called ‘weak∗ convergence’ by functional analysts.
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Given µ ∈ P (K) and p ∈ [1,∞), we have a seminorm ‖ · ‖Lp(µ) on C(K),

‖f‖Lp(µ) =

(
∫

|f |p dµ

)1/p

for f ∈ C(K) ,

satisfying

|f | ≤ |g| =⇒ ‖f‖ ≤ ‖g‖ ,(2a1)

‖1‖ ≤ 1 ,(2a2)

f, g ≥ 0 =⇒ ‖f ∨ g‖ ≤ 21/p(‖f‖ ∨ ‖g‖)(2a3)

for f, g ∈ C(K); here a ∨ b = max(a, b). Indeed,
∫

(f ∨ g)p dµ ≤
∫

(f p +
gp) dµ ≤ 2

(

(
∫

f p dµ) ∨ (
∫

gp dµ)
)

.

2a4 Exercise. The following two conditions on µ, µn ∈ P (K) are equivalent:
(a) ‖f‖Lp(µn) → ‖f‖Lp(µ) for all f ∈ C(K);
(b) µn → µ (weakly).

(As before, p is a given number of [1,∞).)
Prove it.
Hint: f = |g|p − |h|p. . .

Let µn ∈ P (K), pn ∈ [1,∞), pn → ∞. It happens often1 that the limit

(2a5) lim
n→∞

‖f‖Lpn
(µn)

exists for all f ∈ C(K). Then the limit is another seminorm ‖ ·‖lim on C(K),
satisfying (2a1), (2a2) and

(2a6) f, g ≥ 0 =⇒ ‖f ∨ g‖lim ≤ ‖f‖lim ∨ ‖g‖lim

for all f, g ∈ C(K). In order to describe this new seminorm we introduce a
function Π : K → [0, 1] by

(2a7)
1

Π(x)
= sup{f(x) : ‖f‖lim ≤ 1} .

It need not be continuous. Rather, 1/Π is lower semicontinuous (see below),
thus, Π is upper semicontinuous. (But why Π(·) ≤ 1? Just try f = 1.)

1And no wonder: in fact, the seminorms on C(K) satisfying (2a1), (2a2) are a compact

metrizable space. . .
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2a8 Definition. A function ϕ : K → R is lower semicontinuous, if it satisfies
the following equivalent conditions:

(a) lim infy→x,y 6=x ϕ(y) ≥ ϕ(x) for every x ∈ K;
(b) the set {x ∈ K : ϕ(x) ≤ c} is closed for every c ∈ R;
(c) ϕ is the (pointwise) supremum of some set of continuous functions;
(d) there exist fn ∈ C(K) such that fn(x) ↑ ϕ(x) for every x.

2a9 Exercise. Prove that (a)–(d) are equivalent.
Hint: (d)=⇒(c) is trivial, (c)=⇒(b) is easy; (b)=⇒(a): consider {y :

f(y) ≤ f(x) − ε}; (a)=⇒(d) is harder, consider fn(x) = infy∈K
(

ϕ(y) +
n dist(x, y)

)

.

Upper semicontinuity is defined similarly. Generalization to ϕ : K →
[−∞,+∞] is straightforward.

2a10 Exercise. Every upper semicontinuous function onK reaches its supre-
mum (that is, ∃x ϕ(x) = supy ϕ(y)); every lower semicontinuous function
on K reaches its infimum.

Prove it.
Hint: use compactness.

2a11 Proposition. For every f ∈ C(K),

‖f‖lim = max
x∈K

(

|f(x)|Π(x)
)

.

The proof is postponed to Sect. 4. The supremum is reached due to upper
semicontinuity. The claim holds for every seminorm ‖ · ‖lim satisfying (2a1),
(2a2) and (2a6), irrespective of (2a5).

2a12 Exercise. If maxK(|f |Π1) = maxK(|f |Π2) for all f ∈ C(K), then
Π1 = Π2 (assuming that Π1,Π2 : K → [0, 1] are upper semicontinuous).

Prove it.
Hint: try f(x) =

(

1 − M dist(x, x0)
)

+ for a large M , assuming that
Π1(x0) < Π2(x0).

It is custom to use the lower semicontinuous function I : K → [0,∞]
defined by

Π(x) = e−I(x) for x ∈ K .

The function I is well-known as ‘the rate function’; the function Π is some-
times called ‘deviability’. Defining a seminorm ‖ · ‖I on C(K) by

‖f‖I = max
x∈K

(

|f(x)|e−I(x)
)
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we get
lim
n→∞

‖f‖Lpn
(µn) = ‖f‖I for f ∈ C(K) .

For now we are mostly interested in the case pn = n. (The case pn = nc

for a given c ∈ (0, 1), relevant to so-called moderate deviations, will be used
later.)

2a13 Definition. (a) A sequence (µn)n of probability measures on a compact
metrizable space K is LD-convergent, if the limit

lim
n→∞

(
∫

|f |n dµn

)1/n

exists for all f ∈ C(K).
(b) The sequence (µn)n satisfies LDP with a rate function I (a lower

semicontinuous function K → [0,∞]), if

lim
n→∞

(
∫

|f |n dµn

)1/n

= max
x∈K

(

|f(x)|e−I(x)
)

for all f ∈ C(K).

Proposition 2a11 and Exercise 2a12 ensure the following.

2a14 Corollary. If (µn)n is LD-convergent then (µn)n satisfies LDP with one
and only one rate function I (a lower semicontinuous function K → [0,∞]),
namely,

eI(x) = sup{f(x) : lim
n→∞

‖f‖Ln(µn) ≤ 1} .

2a15 Exercise. Let K = [0, 1] and µn ∈ P (K) be just the Lebesgue measure
on [0, 1] (for all n). Prove that (µn)n satisfies LDP with the rate function
I(·) = 0.

2a16 Exercise. Let K = [0, 1], and µα ∈ P (K) be defined by

∫

f dµα = (α+ 1)

∫ 1

0

f(x)xα dx .

(a) Prove that the sequence (µn)n is LD-convergent, and find its rate function.
(b) The same for the sequence (µ2n)n.
(c) The same for the sequence (µn2)n.
(d) The same for the sequence (µ√

n)n.



Tel Aviv University, 2007 Large deviations 9

2a17 Exercise. (a) If (µn)n is LD-convergent then (µ2n)n is LD-convergent.
(b) If (µn)n satisfies LDP with a rate function I, then (µ2n)n satisfies

LDP with the rate function 2I.
Prove it.
Hint: ‖f‖Ln(µ2n) = ‖|f |1/2‖2L2n(µ2n)

.

2a18 Exercise. Let K = [0, 1], and (µn)n satisfy LDP with the rate function
I(x) = ln(1/x). Prove that µn

(

[0, 0.5]
)

< 0.6n for all n large enough.
Hint: take f(·) = 1 on [0, 0.5] but f(·) = 0 on [0.55, 1].

2a19 Exercise. Prove that

min
x∈K

I(x) = 0 .

Hint: try f = 1.

2a20 Exercise. For every ε > 0,

µn

(

{x : I(x) ≤ ε}
)

→ 1 as n → ∞ .

Prove it, assuming that I(·) is continuous.
Hint: take f = eI and use the Markov inequality, µn

(

{x : fn(x) ≥ enε}
)

≤
(∫

fn dµn

)

/(enε).

2b Contraction principle

Let K1, K2 be compact metrizable spaces, F : K1 → K2 a continuous map,
(µn)n a sequence of probability measures on K1, and (νn)n its image on K2

(that is, νn(B) = µn(F
−1(B)) for Borel sets B ⊂ K2).

2b1 Theorem. (a) If (µn)n is LD-convergent, then (νn)n is LD-convergent.
(b) If (µn)n satisfies LDP with a rate function I1, then (νn)n satisfies LDP

with a rate function I2 such that

I2(y) = min{I1(x) : x ∈ K1, F (x) = y} .

If F−1({y}) = ∅ then the minimum is +∞ by definition. Otherwise, the
minimum is reached since F−1({y}) is compact and I1 is lower semicontinu-
ous.

2b2 Exercise. Prove Theorem 2b1.
Hint: given g ∈ C(K2), introduce f ∈ C(K1) by f(x) = g(F (x)) and

note that
∫

|f |n dµn =
∫

|g|n dνn.
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2c Change of measure

2c1 Theorem. Let (µn)n, (νn)n be two sequences of probability measures
on a compact metrizable space K, satisfying

dνn
dµn

= cne
−nh for all n

for some h ∈ C(K) and c1, c2, · · · ∈ (0,∞).
(a) If (µn)n is LD-convergent then (νn)n is LD-convergent.
(b) If (µn)n satisfies LDP with a rate function I, then (νn)n satisfies LDP

with the rate function

J = (I + h)−min
K

(I + h) = I + h− lim
n→∞

1

n
ln cn .

2c2 Exercise. Prove Theorem 2c1.
Hint:

(∫

|f |n dνn
)

1/n =
(∫

(|f |e−h)n dµn

)

1/n/
(∫

(e−h)n dµn

)

1/n →
max(. . . )/max(. . . ).

See also [5, Th. III.17] (‘tilted LDP’).
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