2 Basic notions

```
2a Large deviation principle (LDP) . . . . . . . . . 5
2b Contraction principle . . . . . . . . . . . . . . . . }
2c Change of measure . . . . . . . . . . . . . . . . . }1
```

The formalism of the probability theory grows on a probability space (Ω, \mathcal{F}, P) and the corresponding spaces of random variables, $L_{p}(\Omega, \mathcal{F}, P)$. In spite of their names, these notions belong to analysis (measure theory, functional analysis) rather than probability theory.

Likewise, the formalism of the large deviations theory grows on notions (LD-convergence, rate function) of analytical nature. They are explained in this section. ${ }^{1}$

2a Large deviation principle (LDP)

Let K be a compact metrizable space.
All continuous functions $K \rightarrow \mathbb{R}$ are a separable Banach space $C(K)$.
All (Borel) probability measures on K are a set $P(K)$. Every $\mu \in P(K)$ gives us a linear functional $C(K) \rightarrow \mathbb{R}$,

$$
f \mapsto \int f \mathrm{~d} \mu
$$

satisfying two conditions,

$$
f \geq 0 \Longrightarrow \int f \mathrm{~d} \mu \geq 0 \quad \text { and } \quad \int 1 \mathrm{~d} \mu=1
$$

The linear functional determines μ uniquely. ${ }^{2}$ The weak convergence of measures 3 is defined by

$$
\mu_{n} \rightarrow \mu \quad \Longleftrightarrow \quad \forall f \in C(K) \quad \int f \mathrm{~d} \mu_{n} \rightarrow \int f \mathrm{~d} \mu
$$

for $\mu, \mu_{n} \in P(K)$.

[^0]Given $\mu \in P(K)$ and $p \in[1, \infty)$, we have a seminorm $\|\cdot\|_{L_{p}(\mu)}$ on $C(K)$,

$$
\|f\|_{L_{p}(\mu)}=\left(\int|f|^{p} \mathrm{~d} \mu\right)^{1 / p} \quad \text { for } f \in C(K)
$$

satisfying

$$
\begin{align*}
|f| \leq|g| & \Longrightarrow \quad\|f\| \leq\|g\| \tag{2a1}\\
& \|\mathbf{1}\| \leq 1 \tag{2a2}\\
f, g \geq 0 & \Longrightarrow \quad\|f \vee g\| \leq 2^{1 / p}(\|f\| \vee\|g\|) \tag{2a3}
\end{align*}
$$

for $f, g \in C(K)$; here $a \vee b=\max (a, b)$. Indeed, $\int(f \vee g)^{p} \mathrm{~d} \mu \leq \int\left(f^{p}+\right.$ $\left.g^{p}\right) \mathrm{d} \mu \leq 2\left(\left(\int f^{p} \mathrm{~d} \mu\right) \vee\left(\int g^{p} \mathrm{~d} \mu\right)\right)$.

2a4 Exercise. The following two conditions on $\mu, \mu_{n} \in P(K)$ are equivalent:
(a) $\|f\|_{L_{p}\left(\mu_{n}\right)} \rightarrow\|f\|_{L_{p}(\mu)}$ for all $f \in C(K)$;
(b) $\mu_{n} \rightarrow \mu$ (weakly).
(As before, p is a given number of $[1, \infty)$.)
Prove it.
Hint: $f=|g|^{p}-|h|^{p} \ldots$
Let $\mu_{n} \in P(K), p_{n} \in[1, \infty), p_{n} \rightarrow \infty$. It happens often ${ }^{1}$ that the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\|f\|_{L_{p_{n}}\left(\mu_{n}\right)} \tag{2a5}
\end{equation*}
$$

exists for all $f \in C(K)$. Then the limit is another seminorm $\|\cdot\|_{\lim }$ on $C(K)$, satisfying (2a1), (2a2) and

$$
\begin{equation*}
f, g \geq 0 \quad \Longrightarrow \quad\|f \vee g\|_{\lim } \leq\|f\|_{\lim } \vee\|g\|_{\lim } \tag{2a6}
\end{equation*}
$$

for all $f, g \in C(K)$. In order to describe this new seminorm we introduce a function $\Pi: K \rightarrow[0,1]$ by

$$
\begin{equation*}
\frac{1}{\Pi(x)}=\sup \left\{f(x):\|f\|_{\lim } \leq 1\right\} \tag{2a7}
\end{equation*}
$$

It need not be continuous. Rather, $1 / \Pi$ is lower semicontinuous (see below), thus, Π is upper semicontinuous. (But why $\Pi(\cdot) \leq 1$? Just try $f=1$.)

[^1]2a8 Definition. A function $\varphi: K \rightarrow \mathbb{R}$ is lower semicontinuous, if it satisfies the following equivalent conditions:
(a) $\liminf _{y \rightarrow x, y \neq x} \varphi(y) \geq \varphi(x)$ for every $x \in K$;
(b) the set $\{x \in K: \varphi(x) \leq c\}$ is closed for every $c \in \mathbb{R}$;
(c) φ is the (pointwise) supremum of some set of continuous functions;
(d) there exist $f_{n} \in C(K)$ such that $f_{n}(x) \uparrow \varphi(x)$ for every x.

2a9 Exercise. Prove that (a)-(d) are equivalent.
Hint: $(\mathrm{d}) \Longrightarrow(\mathrm{c})$ is trivial, $(\mathrm{c}) \Longrightarrow(\mathrm{b})$ is easy; $(\mathrm{b}) \Longrightarrow(\mathrm{a})$: consider $\{y$: $f(y) \leq f(x)-\varepsilon\} ;(\mathrm{a}) \Longrightarrow(\mathrm{d})$ is harder, consider $f_{n}(x)=\inf _{y \in K}(\varphi(y)+$ $n \operatorname{dist}(x, y))$.

Upper semicontinuity is defined similarly. Generalization to $\varphi: K \rightarrow$ $[-\infty,+\infty]$ is straightforward.

2a10 Exercise. Every upper semicontinuous function on K reaches its supremum (that is, $\exists x \varphi(x)=\sup _{y} \varphi(y)$); every lower semicontinuous function on K reaches its infimum.

Prove it.
Hint: use compactness.
2a11 Proposition. For every $f \in C(K)$,

$$
\|f\|_{\lim }=\max _{x \in K}(|f(x)| \Pi(x)) .
$$

The proof is postponed to Sect. 4. The supremum is reached due to upper semicontinuity. The claim holds for every seminorm $\|\cdot\|_{\text {lim }}$ satisfying (2a1), (2a2) and (2a6), irrespective of (2a5).

2a12 Exercise. If $\max _{K}\left(|f| \Pi_{1}\right)=\max _{K}\left(|f| \Pi_{2}\right)$ for all $f \in C(K)$, then $\Pi_{1}=\Pi_{2}$ (assuming that $\Pi_{1}, \Pi_{2}: K \rightarrow[0,1]$ are upper semicontinuous).

Prove it.
Hint: try $f(x)=\left(1-M \operatorname{dist}\left(x, x_{0}\right)\right)^{+}$for a large M, assuming that $\Pi_{1}\left(x_{0}\right)<\Pi_{2}\left(x_{0}\right)$.

It is custom to use the lower semicontinuous function $I: K \rightarrow[0, \infty]$ defined by

$$
\Pi(x)=\mathrm{e}^{-I(x)} \quad \text { for } x \in K
$$

The function I is well-known as 'the rate function'; the function Π is sometimes called 'deviability'. Defining a seminorm $\|\cdot\|_{I}$ on $C(K)$ by

$$
\|f\|_{I}=\max _{x \in K}\left(|f(x)| \mathrm{e}^{-I(x)}\right)
$$

we get

$$
\lim _{n \rightarrow \infty}\|f\|_{L_{p_{n}}\left(\mu_{n}\right)}=\|f\|_{I} \quad \text { for } f \in C(K)
$$

For now we are mostly interested in the case $p_{n}=n$. (The case $p_{n}=n^{c}$ for a given $c \in(0,1)$, relevant to so-called moderate deviations, will be used later.)

2a13 Definition. (a) A sequence $\left(\mu_{n}\right)_{n}$ of probability measures on a compact metrizable space K is $L D$-convergent, if the limit

$$
\lim _{n \rightarrow \infty}\left(\int|f|^{n} \mathrm{~d} \mu_{n}\right)^{1 / n}
$$

exists for all $f \in C(K)$.
(b) The sequence $\left(\mu_{n}\right)_{n}$ satisfies LDP with a rate function I (a lower semicontinuous function $K \rightarrow[0, \infty]$), if

$$
\lim _{n \rightarrow \infty}\left(\int|f|^{n} \mathrm{~d} \mu_{n}\right)^{1 / n}=\max _{x \in K}\left(|f(x)| \mathrm{e}^{-I(x)}\right)
$$

for all $f \in C(K)$.
Proposition $2 a 11$ and Exercise $2 a 12$ ensure the following.
2a14 Corollary. If $\left(\mu_{n}\right)_{n}$ is LD-convergent then $\left(\mu_{n}\right)_{n}$ satisfies LDP with one and only one rate function I (a lower semicontinuous function $K \rightarrow[0, \infty]$), namely,

$$
\mathrm{e}^{I(x)}=\sup \left\{f(x): \lim _{n \rightarrow \infty}\|f\|_{L_{n}\left(\mu_{n}\right)} \leq 1\right\} .
$$

2a15 Exercise. Let $K=[0,1]$ and $\mu_{n} \in P(K)$ be just the Lebesgue measure on $[0,1]$ (for all n). Prove that $\left(\mu_{n}\right)_{n}$ satisfies LDP with the rate function $I(\cdot)=0$.

2a16 Exercise. Let $K=[0,1]$, and $\mu_{\alpha} \in P(K)$ be defined by

$$
\int f \mathrm{~d} \mu_{\alpha}=(\alpha+1) \int_{0}^{1} f(x) x^{\alpha} \mathrm{d} x
$$

(a) Prove that the sequence $\left(\mu_{n}\right)_{n}$ is LD-convergent, and find its rate function.
(b) The same for the sequence $\left(\mu_{2 n}\right)_{n}$.
(c) The same for the sequence $\left(\mu_{n^{2}}\right)_{n}$.
(d) The same for the sequence $\left(\mu_{\sqrt{n}}\right)_{n}$.

2a17 Exercise. (a) If $\left(\mu_{n}\right)_{n}$ is LD-convergent then $\left(\mu_{2 n}\right)_{n}$ is LD-convergent.
(b) If $\left(\mu_{n}\right)_{n}$ satisfies LDP with a rate function I, then $\left(\mu_{2 n}\right)_{n}$ satisfies LDP with the rate function $2 I$.

Prove it.
Hint: $\|f\|_{L_{n}\left(\mu_{2 n}\right)}=\left\||f|^{1 / 2}\right\|_{L_{2 n}\left(\mu_{2 n}\right)}^{2}$.
2a18 Exercise. Let $K=[0,1]$, and $\left(\mu_{n}\right)_{n}$ satisfy LDP with the rate function $I(x)=\ln (1 / x)$. Prove that $\mu_{n}([0,0.5])<0.6^{n}$ for all n large enough.

Hint: take $f(\cdot)=1$ on $[0,0.5]$ but $f(\cdot)=0$ on $[0.55,1]$.
2a19 Exercise. Prove that

$$
\min _{x \in K} I(x)=0 .
$$

Hint: $\operatorname{try} f=1$.
2a20 Exercise. For every $\varepsilon>0$,

$$
\mu_{n}(\{x: I(x) \leq \varepsilon\}) \rightarrow 1 \quad \text { as } n \rightarrow \infty .
$$

Prove it, assuming that $I(\cdot)$ is continuous.
Hint: take $f=\mathrm{e}^{I}$ and use the Markov inequality, $\mu_{n}\left(\left\{x: f^{n}(x) \geq \mathrm{e}^{n \varepsilon}\right\}\right) \leq$ $\left(\int f^{n} \mathrm{~d} \mu_{n}\right) /\left(\mathrm{e}^{n \varepsilon}\right)$.

2b Contraction principle

Let K_{1}, K_{2} be compact metrizable spaces, $F: K_{1} \rightarrow K_{2}$ a continuous map, $\left(\mu_{n}\right)_{n}$ a sequence of probability measures on K_{1}, and $\left(\nu_{n}\right)_{n}$ its image on K_{2} (that is, $\nu_{n}(B)=\mu_{n}\left(F^{-1}(B)\right)$ for Borel sets $B \subset K_{2}$).

2b1 Theorem. (a) If $\left(\mu_{n}\right)_{n}$ is LD-convergent, then $\left(\nu_{n}\right)_{n}$ is LD-convergent.
(b) If $\left(\mu_{n}\right)_{n}$ satisfies LDP with a rate function I_{1}, then $\left(\nu_{n}\right)_{n}$ satisfies LDP with a rate function I_{2} such that

$$
I_{2}(y)=\min \left\{I_{1}(x): x \in K_{1}, F(x)=y\right\} .
$$

If $F^{-1}(\{y\})=\emptyset$ then the minimum is $+\infty$ by definition. Otherwise, the minimum is reached since $F^{-1}(\{y\})$ is compact and I_{1} is lower semicontinuous.

2b2 Exercise. Prove Theorem 2b1.
Hint: given $g \in C\left(K_{2}\right)$, introduce $f \in C\left(K_{1}\right)$ by $f(x)=g(F(x))$ and note that $\int|f|^{n} \mathrm{~d} \mu_{n}=\int|g|^{n} \mathrm{~d} \nu_{n}$.

2c Change of measure

2c1 Theorem. Let $\left(\mu_{n}\right)_{n},\left(\nu_{n}\right)_{n}$ be two sequences of probability measures on a compact metrizable space K, satisfying

$$
\frac{\mathrm{d} \nu_{n}}{\mathrm{~d} \mu_{n}}=c_{n} \mathrm{e}^{-n h} \quad \text { for all } n
$$

for some $h \in C(K)$ and $c_{1}, c_{2}, \cdots \in(0, \infty)$.
(a) If $\left(\mu_{n}\right)_{n}$ is LD-convergent then $\left(\nu_{n}\right)_{n}$ is LD-convergent.
(b) If $\left(\mu_{n}\right)_{n}$ satisfies LDP with a rate function I, then $\left(\nu_{n}\right)_{n}$ satisfies LDP with the rate function

$$
J=(I+h)-\min _{K}(I+h)=I+h-\lim _{n \rightarrow \infty} \frac{1}{n} \ln c_{n} .
$$

2c2 Exercise. Prove Theorem 2c1,

Hint: $\quad\left(\int|f|^{n} \mathrm{~d} \nu_{n}\right)^{1 / n}=\left(\int\left(|f| \mathrm{e}^{-h}\right)^{n} \mathrm{~d} \mu_{n}\right)^{1 / n} /\left(\int\left(\mathrm{e}^{-h}\right)^{n} \mathrm{~d} \mu_{n}\right)^{1 / n} \rightarrow$ $\max (\ldots) / \max (\ldots)$.

See also [5, Th. III.17] ('tilted LDP').

References

[1] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett publ., 1993.
[2] J.-D. Deuschel, D.W. Stroock, Large deviations, Academic Press, 1989.
[3] P. Dupuis, R.S. Ellis, A weak convergence approach to the theory of large deviations, Wiley, 1997.
[4] R.S. Ellis, The theory of large deviations and applications to statistical mechanics, 2006,
http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf
[5] F. den Hollander, Large deviations, AMS, 2000.
[6] D.W. Stroock, An introduction to the theory of large deviations, Springer, 1984.
[7] S.R.S. Varadhan, Large deviations and applications, Soc. for Industrial and Appl. Math., 1984.

Index

LD-convergent, 8
LDP, 8
rate function, 7
semicontinuous, 7
$C(K), 5$ $P(K)$, 5
I, 7
$K, 5$
П, 6

[^0]: ${ }^{1}$ See [1, Sect. 4.3 ('Varadhan's integral lemma') and 4.4 ('Bryc's inverse Varadhan lemma'). "The next theorem could actually be used as a starting point for developing the large deviation paradigm" (1) before Th. 4.3.1]. See also [4, Def. 6.8 and Th. 6.9] ('Laplace principle'), [5, Sect. III.3], [3, Sect. 1.3], [7, Th. 2.2], [2, Th. 2.1.10], [6, Th. 2.6].
 ${ }^{2}$ In fact, every such functional corresponds to some measure (Riesz-Markov theorem).
 ${ }^{3}$ Sometimes called 'weak* convergence' by functional analysts.

[^1]: ${ }^{1}$ And no wonder: in fact, the seminorms on $C(K)$ satisfying (2a1), (2a2) are a compact metrizable space...

