3 Entropy appears

3a	Binomial LDP: The simplest case of Sanov's the-	
	orem	12
3b	Multinomial LDP: Sanov's theorem	15
3 c	The simplest case of Cramer's theorem via Gibbs's	
	$\operatorname{conditioning}$	16
$\mathbf{3d}$	Back to the physical question	19

3a Binomial LDP: The simplest case of Sanov's theorem

Tossing a fair coin *n* times we get $k \in \{0, 1, ..., n\}$ 'heads' with the probability $2^{-n} \binom{n}{k} = 2^{-n} \frac{n!}{k!(n-k)!}$. The frequency of heads is k/n. We consider the distribution μ_n of the frequency,

(3a1)
$$\mu_n \in P([0,1]), \quad \int f \, \mathrm{d}\mu_n = \sum_{k=0}^n 2^{-n} \binom{n}{k} f\left(\frac{k}{n}\right).$$

3a2 Exercise. Prove that

$$1 \le \frac{\|f\|_{L_n(\mu_n)}}{\max_{k=0,1,\dots,n} \left(|f(k/n)| \cdot \left(2^{-n} \binom{n}{k}\right)^{1/n} \right)} \le \underbrace{(n+1)^{1/n}}_{\to 1}.$$

3a3 Exercise. Prove that

$$\left(2^{-n}\binom{n}{k}\right)^{1/n} \sim \frac{1}{2} \exp\left(-\frac{k}{n}\ln\frac{k}{n} - \frac{n-k}{n}\ln\frac{n-k}{n}\right) = \left(\frac{n}{2k}\right)^{\frac{k}{n}} \left(\frac{n}{2(n-k)}\right)^{\frac{n-k}{n}}$$

as $n \to \infty$, uniformly in $k \in \{0, 1, \dots, n\}$ (here $0^0 = 1$ and $0 \ln 0 = 0$).

Hint: you do not need Stirling's formula; instead, note that $(n!)^{1/n} \sim n/e$, since

$$-\int_{1/n}^{1} \ln x \, \mathrm{d}x \le -\frac{1}{n} \Big(\ln \frac{1}{n} + \dots + \ln \frac{n}{n} \Big) \le -\int_{0}^{1} \ln x \, \mathrm{d}x \, \mathrm{d}x$$

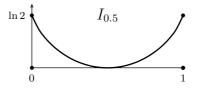
Further, $(k!)^{1/n} \sim (k/e)^{k/n}$; you may prove it separately for relatively small k (say, $k \leq \sqrt{n}$) and for other k.

3a4 Exercise. $(\mu_n)_n$ satisfies LDP with the rate function $I = I_{0.5}$ defined by

(3a5)
$$I_{0.5}(x) = x \ln x + (1-x) \ln(1-x) + \ln 2 =$$

= $x \ln(2x) + (1-x) \ln((2(1-x)))$ for $0 < x < 1$, $I(0) = I(1) = \ln 2$.

Prove it.



The expression $-x \ln x - (1-x) \ln(1-x)$ is well-known as the entropy of the distribution consisting of two atoms of masses x and 1-x.

See [5, Th. 1.3.1].

The statement 3a4 suggests an approximation

$$2^{-n} \binom{n}{k} \approx \exp\left(-nI_{0.5}\left(\frac{k}{n}\right)\right) = \left(\frac{n}{2k}\right)^k \left(\frac{n}{2(n-k)}\right)^{n-k}.$$

But on the other hand, the central limit theorem (or its special case, the De Moivre-Laplace theorem) suggests another approximation,

$$2^{-n} \binom{n}{k} \approx \sqrt{\frac{2}{\pi n}} \exp\left(-\frac{(2k-n)^2}{2n}\right) \approx \exp\left(-n \cdot 2\left(\frac{k}{n} - \frac{1}{2}\right)^2\right).$$

Of course, $I_{0.5}(x) \neq 2(x - 0.5)^2$. However,

(3a6)
$$I_{0.5}(x) \sim 2(x - 0.5)^2$$
 as $x \to 0.5$,

since $I_{0.5}(0.5) = 0$, $I'_{0.5}(0.5) = 0$ and $I''_{0.5}(0.5) = 4$. Look at some numerics: for n = 200,

Large deviations

Tossing an unfair coin n times we get $k \in \{0, 1, ..., n\}$ 'heads' with the probability $\binom{n}{k}p^k(1-p)^{n-k}$; here $p \in (0,1)$ is a parameter of the coin. Similarly to (3a1),

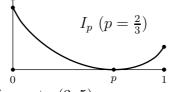
(3a7)
$$\mu_n^{(p)} \in P([0,1]), \quad \int f \, \mathrm{d}\mu_n^{(p)} = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} f\left(\frac{k}{n}\right).$$

3a8 Exercise. $(\mu_n^{(p)})_n$ satisfies LDP with the rate function I_p defined by

(3a9)
$$I_p(x) = x \ln \frac{x}{p} + (1-x) \ln \frac{1-x}{1-p}$$
 for $0 < x < 1$,
 $I_p(0) = -\ln(1-p), I_p(1) = -\ln p$.

Prove it.

Hint: similar to 3a4.



The case p = 0.5 conforms to (3a5).

The expression (3a9) for $I_p(x)$ is well-known as the relative entropy of the distribution (x, 1-x) w.r.t. the distribution (p, 1-p); it may also be written as

$$I_p(x) = \left(\frac{x}{p}\ln\frac{x}{p}\right) \cdot p + \left(\frac{1-x}{1-p}\ln\frac{1-x}{1-p}\right) \cdot (1-p) \,.$$

Alternatively, we can derive LDP for $(\mu_n^{(p)})_n$ from the case p = 0.5 by means of 2c (change of measure). Indeed,

$$\frac{\mathrm{d}\mu_n^{(p)}}{\mathrm{d}\mu_n^{(0.5)}} \left(\frac{k}{n}\right) = c_n \left(\frac{p}{1-p}\right)^k, \quad c_n = (2(1-p))^n,$$

thus,

$$\frac{\mathrm{d}\mu_n^{(p)}}{\mathrm{d}\mu_n^{(0.5)}}(x) = c_n \mathrm{e}^{-nh(x)}, \quad h(x) = -x \ln \frac{p}{1-p}$$

By Theorem 2c1, $(\mu_n^{(p)})_n$ satisfies LDP with the rate function $J = I_{0.5} + h - \lim_n \frac{1}{n} \ln c_n$;

$$J(x) = x \ln x + (1-x) \ln(1-x) + \ln 2 - x \ln p + x \ln(1-p) - \ln 2 - \ln(1-p) =$$
$$= x \ln \frac{x}{p} + (1-x) \ln \frac{1-x}{1-p} = I_p(x).$$

3b Multinomial LDP: Sanov's theorem

Throwing a fair die *n* times we get an outcome $k = (k_1, \ldots, k_6)$ (satisfying $k_1, \ldots, k_6 \in \{0, 1, 2, \ldots\}, k_1 + \cdots + k_6 = n$) with the probability

$$6^{-n}\binom{n}{k_1,\ldots,k_6} = 6^{-n}\frac{n!}{k_1!\ldots k_6!}$$

The frequencies $k_1/n, \ldots, k_6/n$ may be treated as a (random) probability measure (well-known as the empirical measure or the empirical distribution),

$$\frac{1}{n}k \in P(\{1,\ldots,6\}).$$

Similarly to (3a1), the distribution μ_n of the frequency is

(3b1)
$$\mu_n \in P(P(\{1, \dots, 6\})),$$

$$\int f \, \mathrm{d}\mu_n = \sum_{k_1, \dots, k_6} 6^{-n} \binom{n}{k_1, \dots, k_6} f\left(\frac{k_1}{n}, \dots, \frac{k_6}{n}\right).$$

Do not be afraid of $P(P(\{1,\ldots,6\}))$; this is the set of probability measures on the 5-dimensional simplex $P(\{1,\ldots,6\}) = \{(x_1,\ldots,x_6) : x_1,\ldots,x_6 \ge 0, x_1 + \cdots + x_6 = 1\}.$

3b2 Exercise. Prove that

$$\left(6^{-n}\binom{n}{k_1,\ldots,k_6}\right)^{1/n} \sim \frac{1}{6} \exp\left(-\frac{k_1}{n}\ln\frac{k_1}{n} - \cdots - \frac{k_6}{n}\ln\frac{k_6}{n}\right) = \left(\frac{n}{6k_1}\right)^{\frac{k_1}{n}} \cdots \left(\frac{n}{6k_6}\right)^{\frac{k_6}{n}}$$

as $n \to \infty$, uniformly in k_1, \ldots, k_6 .

Hint: similar to 3a3.

3b3 Exercise. $(\mu_n)_n$ satisfies LDP with the rate function (on the simplex)

$$I(x_1, \dots, x_6) = x_1 \ln x_1 + \dots + x_6 \ln x_6 + \ln 6 = x_1 \ln(6x_1) + \dots + x_6 \ln(6x_6)$$

Prove it.

Hint: similar to 3a4.

An unfair die has a parameter $p \in P(\{1, \ldots, 6\}); p = (p_1, \ldots, p_6),$ $p_1, \ldots, p_6 > 0, p_1 + \cdots + p_6 = 1.$ The probability of an outcome $k = (k_1, \ldots, k_6)$ is

$$\binom{n}{k_1,\ldots,k_6} p_1^{k_1}\ldots p_6^{k_6}$$

Large deviations

The distribution $\mu_n^{(p)}$ of the frequency is

$$\int f \, \mathrm{d}\mu_n^{(p)} = \sum_{k_1, \dots, k_6} \binom{n}{k_1, \dots, k_6} p_1^{k_1} \dots p_6^{k_6} f\left(\frac{k_1}{n}, \dots, \frac{k_6}{n}\right).$$

Thus,

$$\frac{\mathrm{d}\mu_n^{(p)}}{\mathrm{d}\mu_n} \left(\frac{k_1}{n}, \dots, \frac{k_6}{n}\right) = (6p_1)^{k_1} \dots (6p_6)^{k_6}.$$

Applying Theorem 2c1 (change of measure) for $c_n = 1$ and $h(x_1, \ldots, x_6) = -x_1 \ln(6p_1) - \cdots - x_6 \ln(6p_6)$, we get LDP for $(\mu_n^{(p)})_n$ with the rate function

$$I_p(x_1,\ldots,x_6) = x_1 \ln \frac{x_1}{p_1} + \cdots + x_6 \ln \frac{x_6}{p_6}.$$

The latter is well-known as the relative entropy, H(x|p).

Replacing 6 with an arbitrary number we get Sanov's theorem.

3b4 Theorem. Let A be a finite set and $p \in P(A)$ a probability measure on A. Define $\mu_n^{(p)} \in P(P(A))$ as the distribution of the empirical measure (in other words, frequencies) in a sample of size n from the measure p. Then the sequence $(\mu_n^{(p)})_n$ satisfies LDP with the rate function $x \mapsto H(x|p)$.

Here H(x|p) is the relative entropy,

$$H(x|p) = \sum_{a \in A} x_a \ln \frac{x_a}{p_a} \quad \text{for } x \in P(A);$$

by convention, $0 \ln \frac{0}{p_a} = 0$ (be p_a positive or zero), and $x_a \ln \frac{x_a}{0} = +\infty$ for $x_a > 0$.

See [2, Th. 2.1.10], [5, Th. 1.4.3].

3c The simplest case of Cramer's theorem via Gibbs's conditioning

Let X_1, X_2, \ldots be independent, identically distributed random variables, each taking on the three values -1, 0, 1 with equal probabilities (1/3). We consider the distribution μ_n of the mean value $(X_1 + \cdots + X_n)/n$;

(3c1)
$$\mu_n \in P([-1,1]), \quad \int f \, \mathrm{d}\mu_n = 3^{-n} \sum_{x_1,\dots,x_n \in \{-1,0,1\}} f\left(\frac{x_1 + \dots + x_n}{n}\right).$$

Large deviations

17

In order to use Sanov's theorem (and the contraction principle), we introduce the frequencies $\frac{k_-}{n}, \frac{k_0}{n}, \frac{k_+}{n}$, where

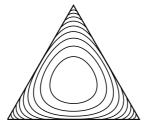
$$k_{-} = \#\{i : x_{i} = -1\}, \quad k_{0} = \#\{i : x_{i} = 0\}, \quad k_{+} = \#\{i : x_{i} = 1\}.$$

By Sanov's theorem, distributions ν_n of $(\frac{k_-}{n}, \frac{k_0}{n}, \frac{k_+}{n})$ satisfy LDP with the rate function

$$I_1(x_-, x_0, x_+) = x_- \ln(3x_-) + x_0 \ln(3x_0) + x_+ \ln(3x_+) = \ln 3 - H(x_-, x_0, x_+),$$

$$H(x_-, x_0, x_+) = -x_- \ln x_- - x_0 \ln x_0 - x_+ \ln x_+$$

for $x_{-}, x_{0}, x_{+} \ge 0, x_{-} + x_{0} + x_{+} = 1$. (As before, $0 \ln 0 = 0$.)



On the other hand,

$$\frac{x_1 + \dots + x_n}{n} = \frac{k_+}{n} - \frac{k_-}{n}.$$

The contraction principle 2b1, applied to

$$F: \{(x_{-}, x_{0}, x_{+}) : x_{-}, x_{0}, x_{+} \ge 0, x_{-} + x_{0} + x_{+} = 1\} \rightarrow [-1, 1],$$

$$F(x_{-}, x_{0}, x_{+}) = x_{+} - x_{-},$$

tells us that $(\mu_n)_n$ satisfies LDP with the rate function

$$I_2(y) = \min\{I_1(x_-, x_0, x_+) : x_+ - x_- = y\}.$$

On the line $x_{+} - x_{-} = y$ we have $x_{+} = (1 - x_{0} + y)/2$, $x_{-} = (1 - x_{0} - y)/2$, thus,

$$\frac{\mathrm{d}}{\mathrm{d}x_0} I_1 \left(\frac{1 - x_0 - y}{2}, x_0, \frac{1 - x_0 + y}{2} \right) = -\frac{1}{2} \left(1 + \ln \frac{1 - x_0 - y}{2} \right) + (1 + \ln x_0) - \frac{1}{2} \left(1 + \ln \frac{1 - x_0 + y}{2} \right) = \ln x_0 - \frac{\ln x_- + \ln x_+}{2}$$

Large deviations

The minimizer satisfies $x_0 = \sqrt{x_-x_+}$; that is, x_-, x_0, x_+ are a geometric progression. (The boundary values are local maxima, not minima.) We may write (recall 1d)

$$(x_{-}, x_{0}, x_{+}) = \frac{1}{e^{b} + 1 + e^{-b}} \cdot (e^{b}, 1, e^{-b})$$

where $b \in \mathbb{R}$ is determined by the equation

(3c2)
$$\frac{e^b - e^{-b}}{e^b + 1 + e^{-b}} = -y$$

(the left-hand side is strictly increasing in b, from -1 to 1). We get

$$I_{2}(y) = \ln 3 + x_{-} \ln x_{-} + x_{0} \ln x_{0} + x_{+} \ln x_{+} =$$

= $\ln 3 - \underbrace{(x_{-} + x_{0} + x_{+})}_{=1} \ln(e^{b} + 1 + e^{-b}) + \frac{be^{b} - be^{-b}}{e^{b} + 1 + e^{-b}} =$
= $-by - \ln \frac{e^{b} + 1 + e^{-b}}{3}.$

The equation (3c2) may be written as

$$\frac{\mathrm{d}}{\mathrm{d}b}\left(by + \ln\frac{\mathrm{e}^b + 1 + \mathrm{e}^{-b}}{3}\right) = 0\,,$$

thus, b is nothing but the minimizer of the (strictly convex) function $b \mapsto by + \ln \frac{e^b + 1 + e^{-b}}{3}$, which leads to another formula for I_2 ,

(3c3)
$$I_2(y) = \max_{b \in \mathbb{R}} \left(-by - \ln \frac{e^b + 1 + e^{-b}}{3} \right)$$

Note that

$$\frac{\mathrm{e}^{b} + 1 + \mathrm{e}^{-b}}{3} = \mathbb{E} \,\mathrm{e}^{bX_{1}} = \left(\mathbb{E} \,\mathrm{e}^{b(X_{1} + \dots + X_{n})}\right)^{1/n} = \|f_{b}\|_{L_{n}(\mu_{n})},$$

where $f_b(x) = e^{bx}$ for $x \in [-1, 1]$. Therefore

$$\max_{x \in [-1,1]} \left(e^{bx} e^{-I_2(x)} \right) = \frac{e^b + 1 + e^{-b}}{3},$$

that is,

(3c4)
$$\min_{x \in [-1,1]} (I_2(x) - bx) = -\ln \frac{e^b + 1 + e^{-b}}{3}$$

In fact, (3c3) can be deduced from (3c4), which is another way to (3c3) (assuming LD-convergence).

See also [4, Sect. 4], [5, Sect. VIII.3], [1, Kullback's lemma on page 30], [3, Exercise 3.3.12] and [2, Sect. 2.2].

3d Back to the physical question

We return to the physical question of 1a. On the configuration space $\{-1, 0, 1\}^n$ we have two probability measures, the uniform distribution U_n and the so-called Gibbs measure G_n ;

$$\int f \, \mathrm{d}U_n = 3^{-n} \sum_{x \in \{-1,0,1\}^n} f(x) \,,$$
$$\int f \, \mathrm{d}G_n = \mathrm{const}_n \cdot \int f \exp(-\beta H_n) \, \mathrm{d}U_n = \frac{\int f \mathrm{e}^{-\beta H_n} \, \mathrm{d}U_n}{\int \mathrm{e}^{-\beta H_n} \, \mathrm{d}U_n} \,;$$

here (as in Sect. 1), $\beta = \frac{1}{k_{\rm B}T}$ is the inverse temperature, and H_n is the Hamiltonian; recall that

$$H_n(s_1,\ldots,s_n) = nf\left(\frac{s_1+\cdots+s_n}{n}\right),$$

where $f: [-1, 1] \to \mathbb{R}$ is a given smooth function (not depending on n).

Accordingly, on [-1, 1] we have two probability measures, μ_n (recall (3c1)) and ν_n ,

$$\frac{\mathrm{d}\nu_n}{\mathrm{d}\mu_n} = \frac{\mathrm{e}^{-n\beta f}}{\int \mathrm{e}^{-n\beta f} \,\mathrm{d}\mu_n}$$

They are the images of U_n and G_n respectively, under the map $(s_1, \ldots, s_n) \mapsto (s_1 + \cdots + s_n)/n$.

By 3c, $(\mu_n)_n$ satisfies LDP with the rate function I_2 (recall (3c3)). By Theorem 2c1 (change of measure), $(\nu_n)_n$ satisfies LDP with the rate function

$$I = (I_2 + \beta f) - \min_{[-1,1]} (I_2 + \beta f).$$

By 2a20, ν_n concentrate near zeros of I (in the sense that $\nu_n(\{x : I(x) \leq \varepsilon\}) \to 1$ as $n \to \infty$), that is, minima of $I_2 + \beta f$. Assuming that $I_2 + \beta f$ has a unique minimum at some $x_\beta \in [-1, 1]$ we conclude that ν_n concentrate near x_β (that is, $\nu_n([x_\beta - \varepsilon, x_\beta + \varepsilon]) \to 1$ as $n \to \infty$, for every $\varepsilon > 0$). Thus, for large n, with high probability, $(s_1 + \cdots + s_n)/n$ is close to x_β , therefore the energy per particle $f(\frac{s_1 + \cdots + s_n}{n})$ is close to $f(x_\beta)$.

It remains to note that the entropy S of 1d is $-I_2(x) + \ln 3$, thus x_β in 1d is the same as x_β here. The 'physical approach' of 1d conforms to the theory of large deviations.

Large deviations

References

- [1] J.A. Bucklev, Large deviation techniques in decision, simulation, and estimation, Wiley, 1990.
- [2] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett publ., 1993.
- [3] J.-D. Deuschel, D.W. Stroock, Large deviations, Academic Press, 1989.
- [4] R.S. Ellis, The theory of large deviations and applications to statistical mechanics, 2006, http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf
- [5] R.S. Ellis, *Entropy*, large deviations, and statistical mechanics, Springer, 1985.

Index

entropy, 13	$I_2, 17$
relative entropy, 16	$I_p, 14 I_{0.5}, 13$
<i>b</i> , 18	$k_{-}, k_{0}, k_{+}, 17$
H, 17	$\mu_n, 12, 15, 16$
H(x p), 16	$\mu_n^{(p)}, 14, 16$
$I_1, 17$	P(P()), 15