3 Entropy appears

3a Binomial LDP: The simplest case of Sanov's the-orem12
3b Multinomial LDP: Sanov's theorem 15
3c The simplest case of Cramer's theorem via Gibbs's conditioning 16
3d Back to the physical question 19

3a Binomial LDP: The simplest case of Sanov's theorem

Tossing a fair coin n times we get $k \in\{0,1, \ldots, n\}$ 'heads' with the probability $2^{-n}\binom{n}{k}=2^{-n} \frac{n!}{k!(n-k)!}$. The frequency of heads is k / n. We consider the distribution μ_{n} of the frequency,

$$
\begin{equation*}
\mu_{n} \in P([0,1]), \quad \int f \mathrm{~d} \mu_{n}=\sum_{k=0}^{n} 2^{-n}\binom{n}{k} f\left(\frac{k}{n}\right) . \tag{3a1}
\end{equation*}
$$

3a2 Exercise. Prove that

$$
1 \leq \frac{\|f\|_{L_{n}\left(\mu_{n}\right)}}{\max _{k=0,1, \ldots, n}\left(|f(k / n)| \cdot\left(2^{-n}\binom{n}{k}\right)^{1 / n}\right)} \leq \underbrace{(n+1)^{1 / n}}_{\rightarrow 1} .
$$

3a3 Exercise. Prove that

$$
\left(2^{-n}\binom{n}{k}\right)^{1 / n} \sim \frac{1}{2} \exp \left(-\frac{k}{n} \ln \frac{k}{n}-\frac{n-k}{n} \ln \frac{n-k}{n}\right)=\left(\frac{n}{2 k}\right)^{\frac{k}{n}}\left(\frac{n}{2(n-k)}\right)^{\frac{n-k}{n}}
$$

as $n \rightarrow \infty$, uniformly in $k \in\{0,1, \ldots, n\}$ (here $0^{0}=1$ and $0 \ln 0=0$).
Hint: you do not need Stirling's formula; instead, note that $(n!)^{1 / n} \sim n / e$, since

$$
-\int_{1 / n}^{1} \ln x \mathrm{~d} x \leq-\frac{1}{n}\left(\ln \frac{1}{n}+\cdots+\ln \frac{n}{n}\right) \leq-\int_{0}^{1} \ln x \mathrm{~d} x .
$$

Further, $(k!)^{1 / n} \sim(k / \mathrm{e})^{k / n}$; you may prove it separately for relatively small k (say, $k \leq \sqrt{n}$) and for other k.

3a4 Exercise. $\left(\mu_{n}\right)_{n}$ satisfies LDP with the rate function $I=I_{0.5}$ defined by
(3a5) $I_{0.5}(x)=x \ln x+(1-x) \ln (1-x)+\ln 2=$
$=x \ln (2 x)+(1-x) \ln ((2(1-x)) \quad$ for $0<x<1, \quad I(0)=I(1)=\ln 2$.
Prove it.

The expression $-x \ln x-(1-x) \ln (1-x)$ is well-known as the entropy of the distribution consisting of two atoms of masses x and $1-x$.

See [5, Th. 1.3.1].
The statement 3a4 suggests an approximation

$$
2^{-n}\binom{n}{k} \approx \exp \left(-n I_{0.5}\left(\frac{k}{n}\right)\right)=\left(\frac{n}{2 k}\right)^{k}\left(\frac{n}{2(n-k)}\right)^{n-k}
$$

But on the other hand, the central limit theorem (or its special case, the De Moivre-Laplace theorem) suggests another approximation,

$$
2^{-n}\binom{n}{k} \approx \sqrt{\frac{2}{\pi n}} \exp \left(-\frac{(2 k-n)^{2}}{2 n}\right) \approx \exp \left(-n \cdot 2\left(\frac{k}{n}-\frac{1}{2}\right)^{2}\right)
$$

Of course, $I_{0.5}(x) \neq 2(x-0.5)^{2}$. However,

$$
\begin{equation*}
I_{0.5}(x) \sim 2(x-0.5)^{2} \quad \text { as } x \rightarrow 0.5 \tag{3a6}
\end{equation*}
$$

since $I_{0.5}(0.5)=0, I_{0.5}^{\prime}(0.5)=0$ and $I_{0.5}^{\prime \prime}(0.5)=4$. Look at some numerics: for $n=200$,

k	100	115	130	145	160	175	190
$2^{-n}\binom{n}{k}$	$6 \cdot 10^{-2}$	$6 \cdot 10^{-3}$	$6 \cdot 10^{-6}$	$5 \cdot 10^{-11}$	$1 \cdot 10^{-18}$	$3 \cdot 10^{-29}$	$1 \cdot 10^{-44}$
$\sqrt{\frac{2}{\pi n}} \exp \left(-\frac{(2 k-n)^{2}}{2 n}\right)$	$6 \cdot 10^{-2}$	$6 \cdot 10^{-3}$	$7 \cdot 10^{-6}$	$9 \cdot 10^{-11}$	$1 \cdot 10^{-17}$	$2 \cdot 10^{-26}$	$4 \cdot 10^{-37}$
$\exp \left(-n I_{0.5}\left(\frac{k}{n}\right)\right)$	1	$1 \cdot 10^{-1}$	$1 \cdot 10^{-4}$	$8 \cdot 10^{-10}$	$2 \cdot 10^{-17}$	$3 \cdot 10^{-28}$	$1 \cdot 10^{-43}$

Tossing an unfair coin n times we get $k \in\{0,1, \ldots, n\}$ 'heads' with the probability $\binom{n}{k} p^{k}(1-p)^{n-k}$; here $p \in(0,1)$ is a parameter of the coin. Similarly to (3a1),

$$
\begin{equation*}
\mu_{n}^{(p)} \in P([0,1]), \quad \int f \mathrm{~d} \mu_{n}^{(p)}=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} f\left(\frac{k}{n}\right) . \tag{3a7}
\end{equation*}
$$

3a8 Exercise. $\left(\mu_{n}^{(p)}\right)_{n}$ satisfies LDP with the rate function I_{p} defined by
(3a9) $\quad I_{p}(x)=x \ln \frac{x}{p}+(1-x) \ln \frac{1-x}{1-p} \quad$ for $0<x<1$,

$$
I_{p}(0)=-\ln (1-p), I_{p}(1)=-\ln p
$$

Prove it.
Hint: similar to 3a4

The case $p=0.5$ conforms to (3a5).
The expression (3a9) for $I_{p}(x)$ is well-known as the relative entropy of the distribution $(x, 1-x)$ w.r.t. the distribution $(p, 1-p)$; it may also be written as

$$
I_{p}(x)=\left(\frac{x}{p} \ln \frac{x}{p}\right) \cdot p+\left(\frac{1-x}{1-p} \ln \frac{1-x}{1-p}\right) \cdot(1-p) .
$$

Alternatively, we can derive LDP for $\left(\mu_{n}^{(p)}\right)_{n}$ from the case $p=0.5$ by means of 2c (change of measure). Indeed,

$$
\frac{\mathrm{d} \mu_{n}^{(p)}}{\mathrm{d} \mu_{n}^{(0.5)}}\left(\frac{k}{n}\right)=c_{n}\left(\frac{p}{1-p}\right)^{k}, \quad c_{n}=(2(1-p))^{n}
$$

thus,

$$
\frac{\mathrm{d} \mu_{n}^{(p)}}{\mathrm{d} \mu_{n}^{(0.5)}}(x)=c_{n} \mathrm{e}^{-n h(x)}, \quad h(x)=-x \ln \frac{p}{1-p} .
$$

By Theorem 2c1, $\left(\mu_{n}^{(p)}\right)_{n}$ satisfies LDP with the rate function $J=I_{0.5}+h-$ $\lim _{n} \frac{1}{n} \ln c_{n}$;

$$
\begin{aligned}
J(x)=x \ln x+(1-x) \ln (1-x)+\ln 2 & -x \ln p+x \ln (1-p)-\ln 2-\ln (1-p)= \\
& =x \ln \frac{x}{p}+(1-x) \ln \frac{1-x}{1-p}=I_{p}(x)
\end{aligned}
$$

3b Multinomial LDP: Sanov's theorem

Throwing a fair die n times we get an outcome $k=\left(k_{1}, \ldots, k_{6}\right)$ (satisfying $k_{1}, \ldots, k_{6} \in\{0,1,2, \ldots\}, k_{1}+\cdots+k_{6}=n$) with the probability

$$
6^{-n}\binom{n}{k_{1}, \ldots, k_{6}}=6^{-n} \frac{n!}{k_{1}!\ldots k_{6}!} .
$$

The frequencies $k_{1} / n, \ldots, k_{6} / n$ may be treated as a (random) probability measure (well-known as the empirical measure or the empirical distribution),

$$
\frac{1}{n} k \in P(\{1, \ldots, 6\})
$$

Similarly to (3a1), the distribution μ_{n} of the frequency is
(3b1) $\mu_{n} \in P(P(\{1, \ldots, 6\}))$,

$$
\int f \mathrm{~d} \mu_{n}=\sum_{k_{1}, \ldots, k_{6}} 6^{-n}\binom{n}{k_{1}, \ldots, k_{6}} f\left(\frac{k_{1}}{n}, \ldots, \frac{k_{6}}{n}\right) .
$$

Do not be afraid of $P(P(\{1, \ldots, 6\}))$; this is the set of probability measures on the 5 -dimensional simplex $P(\{1, \ldots, 6\})=\left\{\left(x_{1}, \ldots, x_{6}\right): x_{1}, \ldots, x_{6} \geq\right.$ $\left.0, x_{1}+\cdots+x_{6}=1\right\}$.

3b2 Exercise. Prove that

$$
\begin{aligned}
\left(6^{-n}\binom{n}{k_{1}, \ldots, k_{6}}\right)^{1 / n} \sim \frac{1}{6} \exp \left(-\frac{k_{1}}{n} \ln \frac{k_{1}}{n}-\cdots\right. & \left.-\frac{k_{6}}{n} \ln \frac{k_{6}}{n}\right)= \\
& =\left(\frac{n}{6 k_{1}}\right)^{\frac{k_{1}}{n}} \cdots\left(\frac{n}{6 k_{6}}\right)^{\frac{k_{6}}{n}}
\end{aligned}
$$

as $n \rightarrow \infty$, uniformly in k_{1}, \ldots, k_{6}.
Hint: similar to 3 a 3
3b3 Exercise. $\left(\mu_{n}\right)_{n}$ satisfies LDP with the rate function (on the simplex)
$I\left(x_{1}, \ldots, x_{6}\right)=x_{1} \ln x_{1}+\cdots+x_{6} \ln x_{6}+\ln 6=x_{1} \ln \left(6 x_{1}\right)+\cdots+x_{6} \ln \left(6 x_{6}\right)$.
Prove it.
Hint: similar to 3 a 4
An unfair die has a parameter $p \in P(\{1, \ldots, 6\}) ; p=\left(p_{1}, \ldots, p_{6}\right)$, $p_{1}, \ldots, p_{6}>0, p_{1}+\cdots+p_{6}=1$. The probability of an outcome $k=$ $\left(k_{1}, \ldots, k_{6}\right)$ is

$$
\binom{n}{k_{1}, \ldots, k_{6}} p_{1}^{k_{1}} \ldots p_{6}^{k_{6}}
$$

The distribution $\mu_{n}^{(p)}$ of the frequency is

$$
\int f \mathrm{~d} \mu_{n}^{(p)}=\sum_{k_{1}, \ldots, k_{6}}\binom{n}{k_{1}, \ldots, k_{6}} p_{1}^{k_{1}} \ldots p_{6}^{k_{6}} f\left(\frac{k_{1}}{n}, \ldots, \frac{k_{6}}{n}\right) .
$$

Thus,

$$
\frac{\mathrm{d} \mu_{n}^{(p)}}{\mathrm{d} \mu_{n}}\left(\frac{k_{1}}{n}, \ldots, \frac{k_{6}}{n}\right)=\left(6 p_{1}\right)^{k_{1}} \ldots\left(6 p_{6}\right)^{k_{6}}
$$

Applying Theorem 2c1 (change of measure) for $c_{n}=1$ and $h\left(x_{1}, \ldots, x_{6}\right)=$ $-x_{1} \ln \left(6 p_{1}\right)-\cdots-x_{6} \ln \left(6 p_{6}\right)$, we get LDP for $\left(\mu_{n}^{(p)}\right)_{n}$ with the rate function

$$
I_{p}\left(x_{1}, \ldots, x_{6}\right)=x_{1} \ln \frac{x_{1}}{p_{1}}+\cdots+x_{6} \ln \frac{x_{6}}{p_{6}}
$$

The latter is well-known as the relative entropy, $H(x \mid p)$.
Replacing 6 with an arbitrary number we get Sanov's theorem.
3b4 Theorem. Let A be a finite set and $p \in P(A)$ a probability measure on A. Define $\mu_{n}^{(p)} \in P(P(A))$ as the distribution of the empirical measure (in other words, frequencies) in a sample of size n from the measure p. Then the sequence $\left(\mu_{n}^{(p)}\right)_{n}$ satisfies LDP with the rate function $x \mapsto H(x \mid p)$.

Here $H(x \mid p)$ is the relative entropy,

$$
H(x \mid p)=\sum_{a \in A} x_{a} \ln \frac{x_{a}}{p_{a}} \quad \text { for } x \in P(A)
$$

by convention, $0 \ln \frac{0}{p_{a}}=0$ (be p_{a} positive or zero), and $x_{a} \ln \frac{x_{a}}{0}=+\infty$ for $x_{a}>0$.

See [2, Th. 2.1.10], [5, Th. 1.4.3].

3c The simplest case of Cramer's theorem via Gibbs's conditioning

Let X_{1}, X_{2}, \ldots be independent, identically distributed random variables, each taking on the three values $-1,0,1$ with equal probabilities $(1 / 3)$. We consider the distribution μ_{n} of the mean value $\left(X_{1}+\cdots+X_{n}\right) / n$;
(3c1) $\quad \mu_{n} \in P([-1,1]), \quad \int f \mathrm{~d} \mu_{n}=3^{-n} \sum_{x_{1}, \ldots, x_{n} \in\{-1,0,1\}} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right)$.

In order to use Sanov's theorem (and the contraction principle), we introduce the frequencies $\frac{k_{-}}{n}, \frac{k_{0}}{n}, \frac{k_{+}}{n}$, where

$$
k_{-}=\#\left\{i: x_{i}=-1\right\}, \quad k_{0}=\#\left\{i: x_{i}=0\right\}, \quad k_{+}=\#\left\{i: x_{i}=1\right\} .
$$

By Sanov's theorem, distributions ν_{n} of $\left(\frac{k_{-}}{n}, \frac{k_{0}}{n}, \frac{k_{+}}{n}\right)$ satisfy LDP with the rate function

$$
\begin{gathered}
I_{1}\left(x_{-}, x_{0}, x_{+}\right)=x_{-} \ln \left(3 x_{-}\right)+x_{0} \ln \left(3 x_{0}\right)+x_{+} \ln \left(3 x_{+}\right)=\ln 3-H\left(x_{-}, x_{0}, x_{+}\right), \\
H\left(x_{-}, x_{0}, x_{+}\right)=-x_{-} \ln x_{-}-x_{0} \ln x_{0}-x_{+} \ln x_{+}
\end{gathered}
$$

for $x_{-}, x_{0}, x_{+} \geq 0, x_{-}+x_{0}+x_{+}=1$. (As before, $0 \ln 0=0$.)

On the other hand,

$$
\frac{x_{1}+\cdots+x_{n}}{n}=\frac{k_{+}}{n}-\frac{k_{-}}{n} .
$$

The contraction principle 2 b 1 , applied to

$$
\begin{gathered}
F:\left\{\left(x_{-}, x_{0}, x_{+}\right): x_{-}, x_{0}, x_{+} \geq 0, x_{-}+x_{0}+x_{+}=1\right\} \rightarrow[-1,1], \\
F\left(x_{-}, x_{0}, x_{+}\right)=x_{+}-x_{-},
\end{gathered}
$$

tells us that $\left(\mu_{n}\right)_{n}$ satisfies LDP with the rate function

$$
I_{2}(y)=\min \left\{I_{1}\left(x_{-}, x_{0}, x_{+}\right): x_{+}-x_{-}=y\right\}
$$

On the line $x_{+}-x_{-}=y$ we have $x_{+}=\left(1-x_{0}+y\right) / 2, x_{-}=\left(1-x_{0}-y\right) / 2$, thus,

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x_{0}} I_{1}\left(\frac{1-x_{0}-y}{2}, x_{0}, \frac{1-x_{0}+y}{2}\right)= \\
&-\frac{1}{2}\left(1+\ln \frac{1-x_{0}-y}{2}\right)+\left(1+\ln x_{0}\right)-\frac{1}{2}\left(1+\ln \frac{1-x_{0}+y}{2}\right)=\ln x_{0}-\frac{\ln x_{-}+\ln x_{+}}{2} .
\end{aligned}
$$

The minimizer satisfies $x_{0}=\sqrt{x_{-} x_{+}}$; that is, x_{-}, x_{0}, x_{+}are a geometric progression. (The boundary values are local maxima, not minima.) We may write (recall 1d)

$$
\left(x_{-}, x_{0}, x_{+}\right)=\frac{1}{\mathrm{e}^{b}+1+\mathrm{e}^{-b}} \cdot\left(\mathrm{e}^{b}, 1, \mathrm{e}^{-b}\right)
$$

where $b \in \mathbb{R}$ is determined by the equation

$$
\begin{equation*}
\frac{\mathrm{e}^{b}-\mathrm{e}^{-b}}{\mathrm{e}^{b}+1+\mathrm{e}^{-b}}=-y \tag{3c2}
\end{equation*}
$$

(the left-hand side is strictly increasing in b, from -1 to 1). We get

$$
\begin{aligned}
& I_{2}(y)=\ln 3+x_{-} \ln x_{-}+x_{0} \ln x_{0}+x_{+} \ln x_{+}= \\
& \qquad \begin{aligned}
=\ln 3-\underbrace{\left(x_{-}+x_{0}+x_{+}\right)}_{=1} \ln \left(\mathrm{e}^{b}+1+\mathrm{e}^{-b}\right) & +\frac{b \mathrm{e}^{b}-b \mathrm{e}^{-b}}{\mathrm{e}^{b}+1+\mathrm{e}^{-b}}= \\
& =-b y-\ln \frac{\mathrm{e}^{b}+1+\mathrm{e}^{-b}}{3} .
\end{aligned}
\end{aligned}
$$

The equation (3c2) may be written as

$$
\frac{\mathrm{d}}{\mathrm{~d} b}\left(b y+\ln \frac{\mathrm{e}^{b}+1+\mathrm{e}^{-b}}{3}\right)=0
$$

thus, b is nothing but the minimizer of the (strictly convex) function $b \mapsto$ $b y+\ln \frac{\mathrm{e}^{b}+1+\mathrm{e}^{-b}}{3}$, which leads to another formula for I_{2},

$$
\begin{equation*}
I_{2}(y)=\max _{b \in \mathbb{R}}\left(-b y-\ln \frac{\mathrm{e}^{b}+1+\mathrm{e}^{-b}}{3}\right) . \tag{3c3}
\end{equation*}
$$

Note that

$$
\frac{\mathrm{e}^{b}+1+\mathrm{e}^{-b}}{3}=\mathbb{E} \mathrm{e}^{b X_{1}}=\left(\mathbb{E} \mathrm{e}^{b\left(X_{1}+\cdots+X_{n}\right)}\right)^{1 / n}=\left\|f_{b}\right\|_{L_{n}\left(\mu_{n}\right)},
$$

where $f_{b}(x)=\mathrm{e}^{b x}$ for $x \in[-1,1]$. Therefore

$$
\max _{x \in[-1,1]}\left(\mathrm{e}^{b x} \mathrm{e}^{-I_{2}(x)}\right)=\frac{\mathrm{e}^{b}+1+\mathrm{e}^{-b}}{3}
$$

that is,

$$
\begin{equation*}
\min _{x \in[-1,1]}\left(I_{2}(x)-b x\right)=-\ln \frac{\mathrm{e}^{b}+1+\mathrm{e}^{-b}}{3} . \tag{3c4}
\end{equation*}
$$

In fact, (3c3) can be deduced from (3c4), which is another way to (3c3) (assuming LD-convergence).

See also [4, Sect. 4], [5, Sect. VIII.3], 1, Kullback's lemma on page 30], [3, Exercise 3.3.12] and [2, Sect. 2.2].

3d Back to the physical question

We return to the physical question of 1a. On the configuration space $\{-1,0,1\}^{n}$ we have two probability measures, the uniform distribution U_{n} and the so-called Gibbs measure G_{n};

$$
\begin{gathered}
\int f \mathrm{~d} U_{n}=3^{-n} \sum_{x \in\{-1,0,1\}^{n}} f(x), \\
\int f \mathrm{~d} G_{n}=\operatorname{const}_{n} \cdot \int f \exp \left(-\beta H_{n}\right) \mathrm{d} U_{n}=\frac{\int f \mathrm{e}^{-\beta H_{n}} \mathrm{~d} U_{n}}{\int \mathrm{e}^{-\beta H_{n}} \mathrm{~d} U_{n}} ;
\end{gathered}
$$

here (as in Sect. 1), $\beta=\frac{1}{k_{\mathrm{B}} T}$ is the inverse temperature, and H_{n} is the Hamiltonian; recall that

$$
H_{n}\left(s_{1}, \ldots, s_{n}\right)=n f\left(\frac{s_{1}+\cdots+s_{n}}{n}\right)
$$

where $f:[-1,1] \rightarrow \mathbb{R}$ is a given smooth function (not depending on n).
Accordingly, on $[-1,1]$ we have two probability measures, μ_{n} (recall (3c1)) and ν_{n},

$$
\frac{\mathrm{d} \nu_{n}}{\mathrm{~d} \mu_{n}}=\frac{\mathrm{e}^{-n \beta f}}{\int \mathrm{e}^{-n \beta f} \mathrm{~d} \mu_{n}} .
$$

They are the images of U_{n} and G_{n} respectively, under the map $\left(s_{1}, \ldots, s_{n}\right) \mapsto$ $\left(s_{1}+\cdots+s_{n}\right) / n$.

By 3C, $\left(\mu_{n}\right)_{n}$ satisfies LDP with the rate function I_{2} (recall (3c31)). By Theorem 2c1 (change of measure), $\left(\nu_{n}\right)_{n}$ satisfies LDP with the rate function

$$
I=\left(I_{2}+\beta f\right)-\min _{[-1,1]}\left(I_{2}+\beta f\right)
$$

By $2 \mathrm{a} 20, \nu_{n}$ concentrate near zeros of I (in the sense that $\nu_{n}(\{x: I(x) \leq$ $\varepsilon\}) \rightarrow 1$ as $n \rightarrow \infty)$, that is, minima of $I_{2}+\beta f$. Assuming that $I_{2}+\beta f$ has a unique minimum at some $x_{\beta} \in[-1,1]$ we conclude that ν_{n} concentrate near x_{β} (that is, $\nu_{n}\left(\left[x_{\beta}-\varepsilon, x_{\beta}+\varepsilon\right]\right) \rightarrow 1$ as $n \rightarrow \infty$, for every $\left.\varepsilon>0\right)$. Thus, for large n, with high probability, $\left(s_{1}+\cdots+s_{n}\right) / n$ is close to x_{β}, therefore the energy per particle $f\left(\frac{s_{1}+\cdots+s_{n}}{n}\right)$ is close to $f\left(x_{\beta}\right)$.

It remains to note that the entropy S of 1 d is $-I_{2}(x)+\ln 3$, thus x_{β} in 1 d is the same as x_{β} here. The 'physical approach' of 1 d conforms to the theory of large deviations.

References

[1] J.A. Bucklev, Large deviation techniques in decision, simulation, and estimation, Wiley, 1990.
[2] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett publ., 1993.
[3] J.-D. Deuschel, D.W. Stroock, Large deviations, Academic Press, 1989.
[4] R.S. Ellis, The theory of large deviations and applications to statistical mechanics, 2006,
http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf
[5] R.S. Ellis, Entropy, large deviations, and statistical mechanics, Springer, 1985.

Index

entropy, 13
relative entropy, 16
b, 18
H, 17
$H(x \mid p), 16$
I_{1}, 17
I_{2}, 17
I_{p}, 14
$I_{0.5}$, 13
$k_{-}, k_{0}, k_{+}, 17$
μ_{n}, [12] 15]
$\mu_{n}^{(p)}$, 14 16
$P(P(\ldots))$, 15

