4 More on the basic notions

4a Every LD-convergent sequence satisfies LDP 21
4b The probability decay rate 21
4c Restriction and conditioning 25
4d LDP for product measures 27

4a Every LD-convergent sequence satisfies LDP

Here we prove Prop. 2 a 11 for every seminorm $\|\cdot\|$ on $C(K)$ that satisfies (2a1), (2a2) and (2a6).

First, let $f \in C(K)$ satisfy $\|f\| \leq 1$; we have to prove that $\max (|f| \Pi) \leq 1$, that is, $|f(x)| \Pi(x) \leq 1$ for all x. However, $1 / \Pi(x) \geq|f(x)|$ by (2a7).

Second, let $f \in C(K)$ satisfy $\max (|f| \Pi) \leq 1$; we have to prove that $\|f\| \leq 1$. By (2a7),

$$
|f(x)| \leq \frac{1}{\Pi(x)}=\sup \{g(x):\|g\| \leq 1\}
$$

for every $x \in K$.
Let $\varepsilon>0$ be given. For every $x \in K$ there exists $g \in C(K)$ such that $\|g\| \leq 1$ and $g(x)>|f(x)|-\varepsilon$. The inequality still holds on some neighborhood of x. By compactness we may cover K by a finite number of such neighborhoods. In other words, we have $g_{1}, \ldots, g_{n} \in C(K)$ such that $\left\|g_{1}\right\| \leq 1, \ldots,\left\|g_{n}\right\| \leq 1$ and $g_{1} \vee \cdots \vee g_{n}>|f|-\varepsilon$ on K. By (2a6), $\left\|g_{1} \vee \cdots \vee g_{n}\right\| \leq\left\|g_{1}\right\| \vee \cdots \vee\left\|g_{n}\right\| \leq 1$. By (2a1) and (2a2), $\|f\| \leq 1+\varepsilon$ for every $\varepsilon>0$, which completes the proof.

4b The probability decay rate

We deal with a compact metrizable space K and probability measures μ_{n} on K satisfying LDP with a rate function I. However, our first lemma does not use μ_{n} (and its first item does not use the topology of K).

4b1 Lemma. (a) Let $\varphi_{n}, \varphi: K \rightarrow \mathbb{R}, \varphi_{n} \uparrow \varphi$ pointwise; then $\left(\sup _{K} \varphi_{n}\right) \uparrow$ $\left(\sup _{K} \varphi\right)$ as $n \rightarrow \infty$.
(b) Let $\varphi_{n}, \varphi: K \rightarrow \mathbb{R}$ be upper semicontinuous, and $\varphi_{n} \downarrow \varphi$ pointwise; then $\left(\max _{K} \varphi_{n}\right) \downarrow\left(\max _{K} \varphi\right)$ as $n \rightarrow \infty$.

Proof. (a) For every $\varepsilon>0$ we take $x \in K$ such that $\varphi(x)>\left(\sup _{K} \varphi\right)-\varepsilon$ and n such that $\varphi_{n}(x)>\left(\sup _{K} \varphi\right)-\varepsilon$; then $\left(\sup _{K} \varphi_{n}\right)>\left(\sup _{K} \varphi\right)-\varepsilon$.
(b) We have $\left(\max _{K} \varphi_{n}\right) \downarrow c$ for some $c \in \mathbb{R}$. For every $\varepsilon>0$ the sets $\left\{x \in K: \varphi_{n}(x) \geq c-\varepsilon\right\}$ are a decreasing sequence of nonempty closed sets. By compactness, some x belongs to all these sets. Thus, $\varphi(x)=\lim _{n} \varphi_{n}(x) \geq$ $c-\varepsilon$ and $\max _{K} \varphi \geq c-\varepsilon$.

4b2 Exercise. Without the semicontinuity 4b1(b) need not hold.
Find a counterexample.
4b3 Lemma. Let $f: K \rightarrow \mathbb{R}$.
(a) If $|f|$ is lower semicontinuous then

$$
\liminf _{n}\|f\|_{L_{n}\left(\mu_{n}\right)} \geq \sup _{K}\left(|f| \mathrm{e}^{-I}\right)
$$

(b) if $|f|$ is upper semicontinuous then

$$
\limsup _{n}\|f\|_{L_{n}\left(\mu_{n}\right)} \leq \max _{K}\left(|f| \mathrm{e}^{-I}\right) .
$$

Proof. (a) We take $f_{n} \in C(K)$ such that $0 \leq f_{n} \uparrow|f|$. For every j,

$$
\liminf _{n}\|f\|_{L_{n}\left(\mu_{n}\right)} \geq \liminf _{n}\left\|f_{j}\right\|_{L_{n}\left(\mu_{n}\right)}=\max _{K}\left(f_{j} \mathrm{e}^{-I}\right) ;
$$

however,

$$
\max _{K}\left(f_{j} \mathrm{e}^{-I}\right) \uparrow \sup _{K}\left(|f| \mathrm{e}^{-I}\right) \quad \text { as } j \rightarrow \infty
$$

by 4b1(a).
(b): similar (but using semicontinuity).

4b4 Corollary.

(a) $\quad \liminf _{n}\left(\mu_{n}(G)\right)^{1 / n} \geq \exp \left(-\inf _{G} I\right) \quad$ for every open $G \subset K$,
(b) $\quad \limsup _{n}\left(\mu_{n}(F)\right)^{1 / n} \leq \exp \left(-\min _{F} I\right) \quad$ for every closed $F \subset K$.

4b5 Exercise. Reconsider 2a18 and 2 a 20 in the light of 4b4.
4b6 Corollary. If an open set $G \subset K$ satisfies
(a)

$$
\inf _{G} I=\min _{\bar{G}} I
$$

then
(b) $\quad \lim _{n}\left(\mu_{n}(G)\right)^{1 / n}=\lim _{n}\left(\mu_{n}(\bar{G})\right)^{1 / n}=\exp \left(-\inf _{G} I\right)=\exp \left(-\min _{\bar{G}} I\right)$,
that is,

$$
\begin{equation*}
\lim _{n} \frac{1}{n} \ln \mu_{n}(G)=\lim _{n} \frac{1}{n} \ln \mu_{n}(\bar{G})=-\inf _{G} I=-\min _{\bar{G}} I . \tag{c}
\end{equation*}
$$

4b7 Exercise. 4b6(a) does not imply $\mu_{n}(\bar{G}) \sim \mu_{n}(G)$ as $n \rightarrow \infty$.
Find a counterexample.
Hint: try $K=[0,1], G=(0,1]$, combine μ_{n} from Lebesgue measure and an atom at 0 , and find appropriate coefficients.

Continuity of I is, of course, sufficient for 4b6(a). Here is a weaker sufficient condition:

$$
\begin{equation*}
\limsup _{y \rightarrow x, y \in G} I(y) \leq I(x) \quad \text { for all } x \in \partial G \tag{4b8}
\end{equation*}
$$

We may also consider $\mu_{n}\left(A_{n}\right)$ assuming that A_{n} converge to G in an appropriate sense. To this end we choose a metric on K and, given a set $A \subset K$, we introduce (for any $\varepsilon>0$)

$$
\begin{align*}
& A_{+\varepsilon}=\{x \in K: \operatorname{dist}(x, A) \leq \varepsilon\}, \tag{4b9}\\
& A_{-\varepsilon}=\{x \in K: \operatorname{dist}(x, \complement A)>\varepsilon\} ; \tag{4b10}
\end{align*}
$$

here $\operatorname{dist}(x, A)=\inf _{y \in A} \operatorname{dist}(x, y)$, and $C A=\{x \in K: x \notin A\}$. Note that $A_{+\varepsilon}$ is closed, $A_{-\varepsilon}$ is open, $\cap_{\varepsilon} A_{+\varepsilon}=\bar{A}$ is the closure of A, and $\cup_{\varepsilon} A_{-\varepsilon}=A^{\circ}$ is the interior of A.

4b11 Exercise. Let $A_{n} \subset K$ be such that A_{n} is μ_{n}-measurable.
(a) Let $G \subset K$ be an open set, and

$$
A_{n} \supset G_{-\varepsilon_{n}} \text { for some } \varepsilon_{n} \downarrow 0
$$

Then

$$
\liminf _{n}\left(\mu_{n}\left(A_{n}\right)\right)^{1 / n} \geq \exp \left(-\inf _{G} I\right)
$$

(b) Let $F \subset K$ be a closed set, and

$$
A_{n} \subset F_{+\varepsilon_{n}} \quad \text { for some } \varepsilon_{n} \downarrow 0 .
$$

Then

$$
\limsup _{n}\left(\mu_{n}\left(A_{n}\right)\right)^{1 / n} \leq \exp \left(-\min _{F} I\right) .
$$

(c) Let $G \subset K$ be an open set such that $\inf _{G} I=\min _{\bar{G}} I$, and

$$
G_{-\varepsilon_{n}} \subset A_{n} \subset G_{+\varepsilon_{n}} \quad \text { for some } \varepsilon_{n} \downarrow 0
$$

Then

$$
\lim _{n}\left(\mu_{n}\left(A_{n}\right)\right)^{1 / n}=\exp \left(-\inf _{G} I\right)=\exp \left(-\min _{\bar{G}} I\right) .
$$

Prove it.
Hint: (a) the argument of the proof of 4b3(a) works for appropriate f_{n}, say, $f_{n}(x)=\left(1 / \varepsilon_{n}\right) \operatorname{dist}(x,\lceil G)-1$ if this number lies on $[0,1]$, otherwise 0 (if the number is negative) or 1 (if it exceeds 1); (b) similar (but using semicontinuity), (c) follows from (a), (b).

We can also describe the value $I(x)$ of the rate function at a given point x in terms of probabilities. To this end we choose (once again) a metric on K and use open and closed balls,
$B(x, r-)=\{y \in K: \operatorname{dist}(x, y)<r\}, \quad B(x, r+)=\{y \in K: \operatorname{dist}(x, y \leq r\}$.
4b12 Proposition. For every $x \in K$ there exists a function $(0,1) \rightarrow$ $\{1,2, \ldots\}, r \mapsto n_{r}$, such that

$$
\frac{1}{n} \ln \mu_{n}(B(x, r \pm)) \rightarrow-I(x) \quad \text { as } r \rightarrow 0+
$$

uniformly in $n \geq n_{r}$. (Here ' \pm ' means that the claim holds for closed and open balls.)
Proof. By 4b4

$$
\begin{aligned}
& \liminf _{n}\left(\mu_{n}(B(x, r-))\right)^{1 / n} \geq \exp \left(-\inf _{B(x, r-)} I\right), \\
& \limsup _{n}\left(\mu_{n}(B(x, r+))\right)^{1 / n} \leq \exp \left(-\min _{B(x, r+)} I\right) .
\end{aligned}
$$

We choose n_{r} such that

$$
\begin{aligned}
& \left(\mu_{n}(B(x, r-))\right)^{1 / n} \geq \exp \left(-\inf _{B(x, r-)} I\right)-r, \\
& \left(\mu_{n}(B(x, r+))\right)^{1 / n} \leq \exp \left(-\min _{B(x, r+)} I\right)+r
\end{aligned}
$$

for all $n \geq n_{r}$. By lower semicontinuity of I,

$$
\inf _{B(x, r \pm)} I \uparrow I(x) \quad \text { as } r \rightarrow 0+
$$

We have

$$
\exp \left(-\inf _{B(x, r-)} I\right)-\underbrace{r \leq\left(\mu_{n}(B(x, r-))\right)^{\frac{1}{n}} \leq\left(\mu_{n}(B(x, r+))\right)^{\frac{1}{n}} \leq \exp \left(-\min _{B(x, r+)} I\right)+r}_{\mathrm{e}^{-I(x)}}
$$

therefore

$$
\left(\mu_{n}(B(x, r \pm))\right)^{1 / n} \rightarrow \mathrm{e}^{-I(x)} \quad \text { as } r \rightarrow 0+
$$

uniformly in $n \geq n_{r}$.
In fact, the (necessary) condition

$$
\begin{equation*}
\lim _{r \rightarrow 0+} \liminf _{n}\left(\mu_{n}(B(x, r-))\right)^{1 / n}=\lim _{r \rightarrow 0+} \limsup _{n}\left(\mu_{n}(B(x, r+))\right)^{1 / n} \quad \text { for } x \in K \tag{4b13}
\end{equation*}
$$

is also sufficient for LD-convergence of $\left(\mu_{n}\right)_{n}$. I give no proof. (See also [3, Sect. 3.1, Remark 3.1(c)] and [1, Th. 4.1.11].)

4c Restriction and conditioning

> Any large deviation is done in the least unlikely of all the unlikely ways! $$
\text { den Hollander [4. p. 10] }
$$

Let probability measures μ_{n} on a compact metrizable space K satisfy LDP with a rate function I. Assume that an open set $G \subset K$ satisfies (4b8) (which always holds if I is continuous).
4c1 Proposition. For every $f \in C(K)$,
$\lim _{n}\left(\int_{G}|f|^{n} \mathrm{~d} \mu_{n}\right)^{1 / n}=\lim _{n}\left(\int_{\bar{G}}|f|^{n} \mathrm{~d} \mu_{n}\right)^{1 / n}=\sup _{G}\left(|f| \mathrm{e}^{-I}\right)=\max _{\bar{G}}\left(|f| \mathrm{e}^{-I}\right)$.
Proof. We may assume that $f(\cdot) \geq 0$, since only $|f|$ is relevant. Moreover, we may assume that $f(\cdot)>0$, since strictly positive functions are dense among weakly positive functions. Thus, we assume that $f=\mathrm{e}^{-h}, h \in C(K)$.

We define probability measures ν_{n} on K by

$$
\frac{\mathrm{d} \nu_{n}}{\mathrm{~d} \mu_{n}}=c_{n} \mathrm{e}^{-n h}
$$

and apply Theorem 2c1 (change of measure): $\left(\nu_{n}\right)_{n}$ satisfies LDP with the rate function $J=I+h-a, a=\lim _{n} \frac{1}{n} \ln c_{n}$. Condition (4b8) is satisfied also by J, thus 4b6 can be applied to $\left(\nu_{n}\right)_{n}$ giving

$$
\lim _{n}\left(\nu_{n}(G)\right)^{1 / n}=\lim _{n}\left(\nu_{n}(\bar{G})\right)^{1 / n}=\exp \left(-\inf _{G} J\right)=\exp \left(-\min _{\bar{G}} J\right) .
$$

However,

$$
\left(\int_{G} f^{n} \mathrm{~d} \mu_{n}\right)^{1 / n}=\left(\int_{G} \mathrm{e}^{-n h} \mathrm{~d} \mu_{n}\right)^{1 / n}=\left(c_{n}^{-1} \nu_{n}(G)\right)^{1 / n} \rightarrow \mathrm{e}^{-a} \lim _{n}\left(\nu_{n}(G)\right)^{1 / n}
$$

as $n \rightarrow \infty$; the same holds for \bar{G}. Also,

$$
\sup _{G}\left(f \mathrm{e}^{-I}\right)=\sup _{G} \mathrm{e}^{-(h+I)}=\sup _{G} \mathrm{e}^{-(J+a)}=\mathrm{e}^{-a} \exp \left(-\inf _{G} J\right) ;
$$

the same holds for \bar{G}.
It may happen that $I(x)=+\infty$ for all $x \in \bar{G}$. Let us exclude this case. Then $\mu_{n}(\bar{G}) \neq 0$ for all n large enough, and we may introduce conditional measures, - probability measures ν_{n} on \bar{G} such that

$$
\begin{equation*}
\int f \mathrm{~d} \nu_{n}=\frac{1}{\mu_{n}(\bar{G})} \int_{\bar{G}} f \mathrm{~d} \mu_{n} \tag{4c2}
\end{equation*}
$$

for all bounded Borel functions $f: \bar{G} \rightarrow \mathbb{R}$. The set \bar{G} is another compact metrizable space, and we may consider LDP on this space.

4c3 Proposition. Let $\min _{\bar{G}} I \neq+\infty$, then the sequence $\left(\nu_{n}\right)_{n}$ of conditional measures on \bar{G} satisfies LDP with the rate function $J: \bar{G} \rightarrow[0, \infty]$,

$$
J(x)=I(x)-\min _{\bar{G}} I \quad \text { for } x \in \bar{G} .
$$

Proof. Let $f \in C(\bar{G})$; we have to prove that $\left(\int_{\bar{G}}|f|^{n} \mathrm{~d} \nu_{n}\right)^{1 / n} \rightarrow$ $\max _{\bar{G}}\left(|f| \mathrm{e}^{-J}\right)$. By 4c1 (applied to any continuous extension of f), $\left(\int_{\bar{G}}|f|^{n} \mathrm{~d} \mu_{n}\right)^{1 / n} \rightarrow \max _{\bar{G}}\left(|f| \mathrm{e}^{-I}\right)$. Therefore

$$
\left(\int_{\bar{G}}|f|^{n} \mathrm{~d} \nu_{n}\right)^{1 / n}=\left(\frac{\int_{\bar{G}}|f|^{n} \mathrm{~d} \mu_{n}}{\mu_{n}(\bar{G})}\right)^{1 / n} \rightarrow \frac{\max _{\bar{G}}\left(|f| \mathrm{e}^{-I}\right)}{\max _{\bar{G}}\left(\mathrm{e}^{-I}\right)}=\max _{\bar{G}}\left(|f| \mathrm{e}^{-J}\right)
$$

4c4 Exercise. Let I be continuous and $\min _{\bar{G}} I \neq+\infty$, then

$$
\frac{\mu_{n}\left(\left\{x \in \bar{G}: I(x) \leq \min _{\bar{G}} I+\varepsilon\right\}\right)}{\mu_{n}(\bar{G})} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

for all $\varepsilon>0$.
Prove it.
Hint: use 4c3, and apply 2 a 20 (a) to ν_{n}.
4c5 Exercise. A fair coin is tossed n times, giving S_{n} 'heads'. Prove that

$$
\mathbb{P}\left(S_{n} \leq 0.71 n \mid S_{n} \geq 0.7 n\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

Hint: 3 a 4 and 4c4
4c6 Exercise. A fair die is throwed n times, giving the outcomes $1, \ldots, 6$ respectively $S_{n}^{(1)}, \ldots, S_{n}^{(6)}$ times. Prove that

$$
\mathbb{P}\left(0.15 n \leq S_{n}^{(2)}, \ldots, S_{n}^{(6)} \leq 0.17 n \mid S_{n}^{(1)} \geq 0.2 n\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

Hint: 3b3 and 4c4.
4 c 7 Exercise. Let X_{1}, \ldots, X_{n} be independent, identically distributed random variables, each taking on the three values $-1,0,1$ with equal probabilities $(1 / 3)$. Prove that
$\mathbb{P}\left(\left.\frac{5}{7}-\varepsilon \leq \frac{X_{1}^{2}+\cdots+X_{n}^{2}}{n} \leq \frac{5}{7}+\varepsilon \right\rvert\, \frac{X_{1}+\cdots+X_{n}}{n} \geq \frac{3}{7}\right) \rightarrow 1 \quad$ as $n \rightarrow \infty$
for every $\varepsilon>0$.
Hint: 3c, and 4c4.

You may also think about the conditional distribution of the frequencies $\frac{k_{-}}{n}, \frac{k_{0}}{n}, \frac{k_{+}}{n}$ (and the mean $\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)=\frac{k_{+}}{n}-\frac{k_{-}}{n}$), where

$$
k_{-}=\#\left\{j: X_{j}=-1\right\}, \quad k_{0}=\#\left\{j: X_{j}=0\right\}, \quad k_{+}=\#\left\{j: X_{j}=1\right\}
$$

(recall 3c), the condition being a large deviation of the frequencies from the probabilities in the sense that

$$
\left|\frac{k_{-}}{n}-\frac{1}{3}\right|^{2}+\left|\frac{k_{0}}{n}-\frac{1}{3}\right|^{2}+\left|\frac{k_{+}}{n}-\frac{1}{3}\right|^{2} \geq c
$$

In terms of the so-called χ^{2} statistics, $\chi^{2}=\frac{3}{n}\left(\left(k_{-}-\frac{n}{3}\right)^{2}+\left(k_{0}-\frac{n}{3}\right)^{2}+\left(k_{+}-\right.\right.$ $\left.\frac{n}{3}\right)^{2}$, it means $\chi^{2} \geq 3 \mathrm{cn}$.

4c8 Exercise. Generalize 4c1, 4c3 and 4c4, replacing the single set \bar{G} with a sequence of sets A_{n} such that A_{n} is μ_{n}-measurable, and

$$
G_{-\varepsilon_{n}} \subset A_{n} \subset G_{+\varepsilon_{n}} \quad \text { for some } \varepsilon_{n} \downarrow 0
$$

Hint: use 4b11 (c).
See also [2, Sect. 4] and [1, Sect. 3.3].

4d LDP for product measures

Let K_{1}, K_{2} be compact metrizable spaces, then their product $K=K_{1} \times K_{2}$ is also a compact metrizable space.

Let $\mu_{n}^{(1)}$ be probability measures on K_{1}, and $\mu_{n}^{(2)}-$ on K_{2}, then their products $\mu_{n}=\mu_{n}^{(1)} \times \mu_{n}^{(2)}$ are probability measures on K.
4d1 Proposition. If $\left(\mu_{n}^{(1)}\right)_{n}$ satisfies LDP with a rate function I_{1} and $\left(\mu_{n}^{(2)}\right)_{n}$ - with I_{2}, then $\left(\mu_{n}\right)_{n}$ satisfies LDP with the rate function I defined by

$$
I(x, y)=I_{1}(x)+I_{2}(y) \quad \text { for } x \in K_{1}, y \in K_{2} .
$$

Proof. Given $f \in C(K)$, we define $g, g_{1}, g_{2}, \cdots: K_{1} \rightarrow \mathbb{R}$ by

$$
g_{n}(x)=\|f(x, \cdot)\|_{L_{n}\left(\mu_{n}^{(2)}\right)}=\left(\int|f(x, y)|^{n} \mu_{n}^{(2)}(\mathrm{d} y)\right)^{1 / n}
$$

$$
g(x)=\sup _{K_{2}}\left(|f(x, \cdot)| \mathrm{e}^{-I_{2}}\right)=\sup _{y \in K_{2}}\left(|f(x, y)| \mathrm{e}^{-I_{2}(y)}\right) .
$$

Clearly, $g_{n} \rightarrow g$ pointwise. But moreover, $g_{n} \rightarrow g$ uniformly, due to uniform continuity:

$$
\begin{gathered}
\left|g_{n}\left(x_{1}\right)-g_{n}\left(x_{2}\right)\right| \leq \sup _{K_{2}}\left|f\left(x_{1}, \cdot\right)-f\left(x_{2}, \cdot\right)\right|, \\
\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right| \leq \sup _{K_{2}}\left|f\left(x_{1}, \cdot\right)-f\left(x_{2}, \cdot\right)\right| .
\end{gathered}
$$

We note that $\left\|g_{n}\right\|_{L_{n}\left(\mu_{n}^{(1)}\right)}=\|f\|_{L_{n}\left(\mu_{n}\right)},\left\|g_{n}-g\right\|_{L_{n}\left(\mu_{n}^{(1)}\right)} \leq \sup _{K_{1}}\left|g_{n}-g\right| \rightarrow 0$ and $\|g\|_{L_{n}\left(\mu_{n}^{(1)}\right)} \rightarrow \sup _{K_{1}}\left(|g| \mathrm{e}^{-I_{1}}\right)$, therefore

$$
\begin{aligned}
&\|f\|_{L_{n}\left(\mu_{n}\right)} \rightarrow \sup _{K_{1}}\left(|g| \mathrm{e}^{-I_{1}}\right)= \\
&=\sup _{x \in K_{1}}\left(\mathrm{e}^{-I_{1}(x)} \sup _{y \in K_{2}}\left(\mathrm{e}^{-I_{2}(y)}|f(x, y)|\right)\right)=\sup _{K}\left(|f| \mathrm{e}^{-I}\right)
\end{aligned}
$$

4d2 Exercise. $\left(\mu_{n}\right)_{n}$ is LD-convergent if and only if both $\left(\mu_{n}^{(1)}\right)_{n}$ and $\left(\mu_{n}^{(2)}\right)_{n}$ are LD-convergent.

Prove it.
Hint: use the contraction principle for 'only if'.

References

[1] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett publ., 1993.
[2] R.S. Ellis, The theory of large deviations and applications to statistical mechanics, 2006,
http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf
[3] J. Feng, T.G. Kurtz, Large deviations for stochastic processes, 2005, http://www.math.wisc.edu/~kurtz/feng/ldp.htm
[4] F. den Hollander, Large deviations, AMS, 2000.

Index

conditional measures, 25

$$
\begin{aligned}
& A_{-\varepsilon}, A_{+\varepsilon}, 23 \\
& B(x, r-), B(x, r+), 24
\end{aligned}
$$

