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4a Every LD-convergent sequence satisfies LDP

Here we prove Prop. 2a11 for every seminorm ‖ · ‖ on C(K) that satisfies
(2a1), (2a2) and (2a6).

First, let f ∈ C(K) satisfy ‖f‖ ≤ 1; we have to prove that max(|f |Π) ≤ 1,
that is, |f(x)|Π(x) ≤ 1 for all x. However, 1/Π(x) ≥ |f(x)| by (2a7).

Second, let f ∈ C(K) satisfy max(|f |Π) ≤ 1; we have to prove that
‖f‖ ≤ 1. By (2a7),

|f(x)| ≤
1

Π(x)
= sup{g(x) : ‖g‖ ≤ 1}

for every x ∈ K.
Let ε > 0 be given. For every x ∈ K there exists g ∈ C(K) such

that ‖g‖ ≤ 1 and g(x) > |f(x)| − ε. The inequality still holds on some
neighborhood of x. By compactness we may cover K by a finite number
of such neighborhoods. In other words, we have g1, . . . , gn ∈ C(K) such
that ‖g1‖ ≤ 1, . . . , ‖gn‖ ≤ 1 and g1 ∨ · · · ∨ gn > |f | − ε on K. By (2a6),
‖g1 ∨ · · · ∨ gn‖ ≤ ‖g1‖ ∨ · · · ∨ ‖gn‖ ≤ 1. By (2a1) and (2a2), ‖f‖ ≤ 1 + ε for
every ε > 0, which completes the proof.

4b The probability decay rate

We deal with a compact metrizable space K and probability measures µn on
K satisfying LDP with a rate function I. However, our first lemma does not
use µn (and its first item does not use the topology of K).

4b1 Lemma. (a) Let ϕn, ϕ : K → R, ϕn ↑ ϕ pointwise; then (supK ϕn) ↑
(supK ϕ) as n → ∞.

(b) Let ϕn, ϕ : K → R be upper semicontinuous, and ϕn ↓ ϕ pointwise;
then (maxK ϕn) ↓ (maxK ϕ) as n → ∞.
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Proof. (a) For every ε > 0 we take x ∈ K such that ϕ(x) > (supK ϕ)−ε and
n such that ϕn(x) > (supK ϕ) − ε; then (supK ϕn) > (supK ϕ) − ε.

(b) We have (maxK ϕn) ↓ c for some c ∈ R. For every ε > 0 the sets
{x ∈ K : ϕn(x) ≥ c − ε} are a decreasing sequence of nonempty closed sets.
By compactness, some x belongs to all these sets. Thus, ϕ(x) = limn ϕn(x) ≥
c − ε and maxK ϕ ≥ c − ε.

4b2 Exercise. Without the semicontinuity 4b1(b) need not hold.
Find a counterexample.

4b3 Lemma. Let f : K → R.
(a) If |f | is lower semicontinuous then

lim inf
n

‖f‖Ln(µn) ≥ sup
K

(|f |e−I) ;

(b) if |f | is upper semicontinuous then

lim sup
n

‖f‖Ln(µn) ≤ max
K

(|f |e−I) .

Proof. (a) We take fn ∈ C(K) such that 0 ≤ fn ↑ |f |. For every j,

lim inf
n

‖f‖Ln(µn) ≥ lim inf
n

‖fj‖Ln(µn) = max
K

(

fje
−I

)

;

however,
max

K

(

fje
−I

)

↑ sup
K

(

|f |e−I
)

as j → ∞

by 4b1(a).
(b): similar (but using semicontinuity).

4b4 Corollary.

lim inf
n

(

µn(G)
)

1/n ≥ exp(− inf
G

I) for every open G ⊂ K ,(a)

lim sup
n

(

µn(F )
)

1/n ≤ exp(−min
F

I) for every closed F ⊂ K .(b)

4b5 Exercise. Reconsider 2a18 and 2a20 in the light of 4b4.

4b6 Corollary. If an open set G ⊂ K satisfies

(a) inf
G

I = min
G

I

then

(b) lim
n

(

µn(G)
)

1/n = lim
n

(

µn(G)
)

1/n = exp
(

− inf
G

I
)

= exp
(

−min
G

I
)

,

that is,

(c) lim
n

1

n
ln µn(G) = lim

n

1

n
ln µn(G) = − inf

G
I = −min

G
I .
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4b7 Exercise. 4b6(a) does not imply µn(G) ∼ µn(G) as n → ∞.
Find a counterexample.
Hint: try K = [0, 1], G = (0, 1], combine µn from Lebesgue measure and

an atom at 0, and find appropriate coefficients.

Continuity of I is, of course, sufficient for 4b6(a). Here is a weaker suffi-
cient condition:

(4b8) lim sup
y→x,y∈G

I(y) ≤ I(x) for all x ∈ ∂G .

We may also consider µn(An) assuming that An converge to G in an
appropriate sense. To this end we choose a metric on K and, given a set
A ⊂ K, we introduce (for any ε > 0)

A+ε = {x ∈ K : dist(x, A) ≤ ε} ,(4b9)

A−ε = {x ∈ K : dist(x, ∁A) > ε} ;(4b10)

here dist(x, A) = infy∈A dist(x, y), and ∁A = {x ∈ K : x /∈ A}. Note that
A+ε is closed, A−ε is open, ∩εA+ε = A is the closure of A, and ∪εA−ε = A◦

is the interior of A.

4b11 Exercise. Let An ⊂ K be such that An is µn-measurable.
(a) Let G ⊂ K be an open set, and

An ⊃ G−εn
for some εn ↓ 0 .

Then
lim inf

n

(

µn(An)
)

1/n ≥ exp(− inf
G

I) .

(b) Let F ⊂ K be a closed set, and

An ⊂ F+εn
for some εn ↓ 0 .

Then
lim sup

n

(

µn(An)
)

1/n ≤ exp(−min
F

I) .

(c) Let G ⊂ K be an open set such that infG I = minG I, and

G−εn
⊂ An ⊂ G+εn

for some εn ↓ 0 .

Then
lim

n

(

µn(An)
)

1/n = exp(− inf
G

I) = exp(−min
G

I) .

Prove it.
Hint: (a) the argument of the proof of 4b3(a) works for appropriate fn,

say, fn(x) = (1/εn) dist(x, ∁G) − 1 if this number lies on [0, 1], otherwise
0 (if the number is negative) or 1 (if it exceeds 1); (b) similar (but using
semicontinuity), (c) follows from (a), (b).
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We can also describe the value I(x) of the rate function at a given point
x in terms of probabilities. To this end we choose (once again) a metric on
K and use open and closed balls,

B(x, r−) = {y ∈ K : dist(x, y) < r} , B(x, r+) = {y ∈ K : dist(x, y ≤ r} .

4b12 Proposition. For every x ∈ K there exists a function (0, 1) →
{1, 2, . . .}, r 7→ nr, such that

1

n
ln µn(B(x, r±)) → −I(x) as r → 0+

uniformly in n ≥ nr. (Here ‘±’ means that the claim holds for closed and
open balls.)

Proof. By 4b4,

lim inf
n

(

µn(B(x, r−))
)

1/n ≥ exp
(

− inf
B(x,r−)

I
)

,

lim sup
n

(

µn(B(x, r+))
)

1/n ≤ exp
(

− min
B(x,r+)

I
)

.

We choose nr such that
(

µn(B(x, r−))
)

1/n ≥ exp
(

− inf
B(x,r−)

I
)

− r ,

(

µn(B(x, r+))
)

1/n ≤ exp
(

− min
B(x,r+)

I
)

+ r

for all n ≥ nr. By lower semicontinuity of I,

inf
B(x,r±)

I ↑ I(x) as r → 0 + .

We have

exp
(

− inf
B(x,r−)

I
)

−r

**VVVVVVVVVVVVVVVVVVVV

≤
(

µn(B(x, r−))
) 1

n ≤
(

µn(B(x, r+))
) 1

n ≤ exp
(

−min
B(x,r+)

I
)

+r

sshhhhhhhhhhhhhhhhhhhhhh

e−I(x)

therefore
(

µn(B(x, r±))
)

1/n → e−I(x) as r → 0+

uniformly in n ≥ nr.

In fact, the (necessary) condition
(4b13)

lim
r→0+

lim inf
n

(

µn(B(x, r−))
)

1/n = lim
r→0+

lim sup
n

(

µn(B(x, r+))
)

1/n for x ∈ K

is also sufficient for LD-convergence of (µn)n. I give no proof. (See also [3,
Sect. 3.1, Remark 3.1(c)] and [1, Th. 4.1.11].)
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4c Restriction and conditioning

Any large deviation is done in the least

unlikely of all the unlikely ways!

den Hollander [4, p. 10]

Let probability measures µn on a compact metrizable space K satisfy LDP
with a rate function I. Assume that an open set G ⊂ K satisfies (4b8)
(which always holds if I is continuous).

4c1 Proposition. For every f ∈ C(K),

lim
n

(
∫

G

|f |n dµn

)1/n

= lim
n

(
∫

G

|f |n dµn

)1/n

= sup
G

(

|f |e−I
)

= max
G

(

|f |e−I
)

.

Proof. We may assume that f(·) ≥ 0, since only |f | is relevant. Moreover, we
may assume that f(·) > 0, since strictly positive functions are dense among
weakly positive functions. Thus, we assume that f = e−h, h ∈ C(K).

We define probability measures νn on K by

dνn

dµn
= cne−nh

and apply Theorem 2c1 (change of measure): (νn)n satisfies LDP with the
rate function J = I +h−a, a = limn

1
n

ln cn. Condition (4b8) is satisfied also
by J , thus 4b6 can be applied to (νn)n giving

lim
n

(

νn(G)
)

1/n = lim
n

(

νn(G)
)

1/n = exp
(

− inf
G

J
)

= exp
(

−min
G

J
)

.

However,
(

∫

G

fn dµn

)1/n

=

(
∫

G

e−nh dµn

)1/n

=
(

c−1
n νn(G)

)

1/n → e−a lim
n

(

νn(G)
)

1/n

as n → ∞; the same holds for G. Also,

sup
G

(

fe−I
)

= sup
G

e−(h+I) = sup
G

e−(J+a) = e−a exp
(

− inf
G

J
)

;

the same holds for G.

It may happen that I(x) = +∞ for all x ∈ G. Let us exclude this case.
Then µn(G) 6= 0 for all n large enough, and we may introduce conditional

measures, — probability measures νn on G such that

(4c2)

∫

f dνn =
1

µn(G)

∫

G

f dµn

for all bounded Borel functions f : G → R. The set G is another compact
metrizable space, and we may consider LDP on this space.
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4c3 Proposition. Let minG I 6= +∞, then the sequence (νn)n of conditional
measures on G satisfies LDP with the rate function J : G → [0,∞],

J(x) = I(x) − min
G

I for x ∈ G .

Proof. Let f ∈ C(G); we have to prove that
(∫

G
|f |n dνn

)

1/n →
maxG

(

|f |e−J
)

. By 4c1 (applied to any continuous extension of f),
(∫

G
|f |n dµn

)

1/n → maxG

(

|f |e−I
)

. Therefore

(
∫

G

|f |n dνn

)1/n

=

(

∫

G
|f |n dµn

µn(G)

)1/n

→
maxG

(

|f |e−I
)

maxG

(

e−I
) = max

G

(

|f |e−J
)

.

4c4 Exercise. Let I be continuous and minG I 6= +∞, then

µn

(

{x ∈ G : I(x) ≤ minG I + ε}
)

µn(G)
→ 1 as n → ∞

for all ε > 0.
Prove it.
Hint: use 4c3, and apply 2a20(a) to νn.

4c5 Exercise. A fair coin is tossed n times, giving Sn ‘heads’. Prove that

P
(

Sn ≤ 0.71n
∣

∣Sn ≥ 0.7n
)

→ 1 as n → ∞ .

Hint: 3a4 and 4c4.

4c6 Exercise. A fair die is throwed n times, giving the outcomes 1, . . . , 6
respectively S

(1)
n , . . . , S

(6)
n times. Prove that

P
(

0.15n ≤ S(2)
n , . . . , S(6)

n ≤ 0.17n
∣

∣S(1)
n ≥ 0.2n

)

→ 1 as n → ∞ .

Hint: 3b3 and 4c4.

4c7 Exercise. Let X1, . . . , Xn be independent, identically distributed ran-
dom variables, each taking on the three values −1, 0, 1 with equal probabili-
ties (1/3). Prove that

P

(

5

7
− ε ≤

X2
1 + · · ·+ X2

n

n
≤

5

7
+ ε

∣

∣

∣

∣

X1 + · · ·+ Xn

n
≥

3

7

)

→ 1 as n → ∞

for every ε > 0.
Hint: 3c, and 4c4.
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You may also think about the conditional distribution of the frequencies
k
−

n
, k0

n
, k+

n
(and the mean 1

n
(X1 + · · ·+ Xn) = k+

n
− k

−

n
), where

k− = #{j : Xj = −1} , k0 = #{j : Xj = 0} , k+ = #{j : Xj = 1}

(recall 3c), the condition being a large deviation of the frequencies from the
probabilities in the sense that

∣

∣

∣

∣

k−

n
−

1

3

∣

∣

∣

∣

2

+

∣

∣

∣

∣

k0

n
−

1

3

∣

∣

∣

∣

2

+

∣

∣

∣

∣

k+

n
−

1

3

∣

∣

∣

∣

2

≥ c .

In terms of the so-called χ2 statistics, χ2 = 3
n

((

k−− n
3

)

2 +
(

k0 −
n
3

)

2 +
(

k+ −
n
3

)

2
)

, it means χ2 ≥ 3cn.

b

b b

4c8 Exercise. Generalize 4c1, 4c3 and 4c4, replacing the single set G with
a sequence of sets An such that An is µn-measurable, and

G−εn
⊂ An ⊂ G+εn

for some εn ↓ 0 .

Hint: use 4b11(c).

See also [2, Sect. 4] and [1, Sect. 3.3].

4d LDP for product measures

Let K1, K2 be compact metrizable spaces, then their product K = K1 × K2

is also a compact metrizable space.
Let µ

(1)
n be probability measures on K1, and µ

(2)
n — on K2, then their

products µn = µ
(1)
n × µ

(2)
n are probability measures on K.

4d1 Proposition. If (µ
(1)
n )n satisfies LDP with a rate function I1 and (µ

(2)
n )n

— with I2, then (µn)n satisfies LDP with the rate function I defined by

I(x, y) = I1(x) + I2(y) for x ∈ K1, y ∈ K2 .

Proof. Given f ∈ C(K), we define g, g1, g2, · · · : K1 → R by

gn(x) = ‖f(x, ·)‖
Ln(µ

(2)
n )

=

(
∫

|f(x, y)|n µ(2)
n (dy)

)1/n

,
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g(x) = sup
K2

(

|f(x, ·)|e−I2
)

= sup
y∈K2

(

|f(x, y)|e−I2(y)
)

.

Clearly, gn → g pointwise. But moreover, gn → g uniformly, due to uniform
continuity:

|gn(x1) − gn(x2)| ≤ sup
K2

|f(x1, ·) − f(x2, ·)| ,

|g(x1) − g(x2)| ≤ sup
K2

|f(x1, ·) − f(x2, ·)| .

We note that ‖gn‖Ln(µ
(1)
n )

= ‖f‖Ln(µn), ‖gn−g‖
Ln(µ

(1)
n )

≤ supK1
|gn−g| → 0

and ‖g‖
Ln(µ

(1)
n )

→ supK1

(

|g|e−I1
)

, therefore

‖f‖Ln(µn) → sup
K1

(

|g|e−I1
)

=

= sup
x∈K1

(

e−I1(x) sup
y∈K2

(

e−I2(y)|f(x, y)|
)

)

= sup
K

(|f |e−I) .

4d2 Exercise. (µn)n is LD-convergent if and only if both (µ
(1)
n )n and (µ

(2)
n )n

are LD-convergent.
Prove it.
Hint: use the contraction principle for ‘only if’.
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