5 LDP in spaces of functions

5a The simplest case of Mogulskii's theorem 29
5b Infinite dimension as the limit of finite dimen- sions: the Dawson-Gärtner theorem 33
5c Proof for nice n 36
5d Measures coming together 37
5e Proof for all n 38

5a The simplest case of Mogulskii's theorem

Tossing a fair coin n times we get a random element of $\{0,1\}^{n}$. We embed all these spaces $\{0,1\}^{n}$ into a single metrizable compact space

$$
\begin{equation*}
K=\left\{\varphi \in L_{\infty}(0,1): \mathbf{0} \leq \varphi \leq \mathbf{1}\right\} \tag{5a1}
\end{equation*}
$$

as follows: given $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{0,1\}^{n}$, we define $\varphi_{\beta} \in K$ by

$$
\begin{equation*}
\varphi_{\beta}(t)=\beta_{k} \quad \text { for } t \in\left(\frac{k-1}{n}, \frac{k}{n}\right) . \tag{5a2}
\end{equation*}
$$

The relevant metrizable topology on K, well-known as the weak* topology, may be described as follows: for $\varphi, \varphi_{1}, \varphi_{2}, \cdots \in K$,

$$
\begin{equation*}
\varphi_{k} \rightarrow \varphi \quad \text { if and only if } \quad \forall \eta \in L_{1}(0,1) \int \varphi_{k} \eta \rightarrow \int \varphi \eta \tag{5a3}
\end{equation*}
$$

Here is an example of a metric that generates this topology:

$$
\begin{equation*}
\operatorname{dist}(\varphi, \psi)=\max _{k} \frac{1}{k}\left|\int \varphi \eta_{k}-\int \psi \eta_{k}\right| \tag{5a4}
\end{equation*}
$$

where $\eta_{1}, \eta_{2}, \ldots$ are a sequence dense in the unit ball of $L_{1}(0,1)$. The choice of $\eta_{1}, \eta_{2}, \ldots$ influences the metric but not the topology. Another metric (for the same topology):

$$
\begin{equation*}
\operatorname{dist}(\varphi, \psi)=\max _{t \in[0,1]}\left|\int_{0}^{t} \varphi-\int_{0}^{t} \psi\right| \tag{5a5}
\end{equation*}
$$

We consider the distribution μ_{n} of the random function φ_{β},

$$
\begin{equation*}
\mu_{n} \in P(K), \quad \int f \mathrm{~d} \mu_{n}=\frac{1}{2^{n}} \sum_{\beta \in\{0,1\}^{n}} f\left(\varphi_{\beta}\right) . \tag{5a6}
\end{equation*}
$$

5a7 Exercise. Assume that $\left(\mu_{n}\right)_{n}$ satisfies LDP with a rate function I. Then

$$
\min \left\{I(\varphi): \varphi \in K, \int \varphi=u\right\}=I_{0.5}(u)
$$

where $I_{0.5}(u)=u \ln \frac{u}{0.5}+(1-u) \ln \frac{1-u}{0.5}=u \ln u+(1-u) \ln (1-u)+\ln 2$ (recall (3a5) and (3a9)).

Prove it.
Hint: the contraction principle (Th. 2b1), and 3a4.
5a8 Exercise. Assume that $\left(\mu_{n}\right)_{n}$ satisfies LDP with a rate function I. Then

$$
I(\varphi)=\frac{I\left(\varphi_{\mathrm{left}}\right)+I\left(\varphi_{\mathrm{right}}\right)}{2}
$$

for all $\varphi \in K$; here $\varphi_{\text {left }}, \varphi_{\text {right }} \in K$ are defined by

$$
\varphi_{\mathrm{left}}(t)=\varphi(0.5 t), \varphi_{\mathrm{right}}(t)=\varphi(0.5+0.5 t) \quad \text { for } t \in(0,1)
$$

Prove it.
Hint: $K=K_{1} \times K_{2}, K_{1} \subset L_{\infty}(0,0.5), K_{2} \subset L_{\infty}(0.5,1) ; \mu_{2 n}=\mu_{n}^{(1)} \times \mu_{n}^{(2)}$; $2 I(\varphi)=I_{1}\left(\varphi_{1}\right)+I_{2}\left(\varphi_{2}\right)$ by $4 \mathrm{~d} 1,4 \mathrm{~d} 2$ and 2 a17. On the other hand, the natural one-to-one correspondence between K and K_{1} transforms μ_{n} to $\mu_{n}^{(1)}$, thus, I to I_{1}.

Applying the same formula to $I\left(\varphi_{\text {left }}\right)$ and $I\left(\varphi_{\text {right }}\right)$ we split $I(\varphi)$ into four terms. And so on.

Now you could guess the rate function!
5a9 Theorem. $\left(\mu_{n}\right)_{n}$ satisfies LDP with the rate function

$$
I(\varphi)=\int_{0}^{1} I_{0.5}(\varphi(t)) \mathrm{d} t
$$

See [1, Th. 5.1.2].
Note that I is far from being continuous. In fact,

$$
\liminf _{\psi \rightarrow \varphi} I(\psi)=I(\varphi) \quad \text { but } \quad \limsup _{\psi \rightarrow \varphi} I(\psi)=\ln 2
$$

for all $\varphi \in K$. Note also that

$$
\mu_{n}\{\varphi \in K: I(\varphi)=\ln 2\}=1 \quad \text { for all } n
$$

How could we prove the theorem? The approach of 3 a does not work here, since the number of atoms of μ_{n} is exponentially large. No binomial
coefficients, just 2^{n} atoms of probability 2^{-n} each. However, we may apply Sanov's theorem to $\int_{0}^{1} \varphi, \int_{0}^{0.5} \varphi, \int_{0.5}^{1} \varphi$ and so on. Doing so in the next section, we'll prove the theorem for $n \in\{1,2,4,8, \ldots\}$. Here we just discuss it.

The map $K \rightarrow C[0,1]$,

$$
\varphi \mapsto w, \quad w(t)=\int_{0}^{t} \varphi(s) \mathrm{d} s
$$

is continuous and one-to-one, therefore (by compactness) a homeomorphism. Thus, the LDP on K leads to LDP on the set of functions $w:[0,1] \rightarrow \mathbb{R}$ such that
(5a10) $0 \leq w(t)-w(s) \leq t-s \quad$ whenever $0 \leq s \leq t \leq 1, \quad$ and $\quad w(0)=0$
with the rate function

$$
\begin{equation*}
J(w)=\int_{0}^{1} I_{0.5}\left(w^{\prime}(t)\right) \mathrm{d} t \tag{5a11}
\end{equation*}
$$

(The derivative exists almost everywhere.) Note that the random function w_{β} (corresponding to φ_{β}) is piecewise linear, with the derivative $\beta_{k} \in\{0,1\}$ on $\left(\frac{k-1}{n}, \frac{k}{n}\right)$. It is a (rescaled) path of a random walk.

Do not hesitate to use Theorem 5a9 in the exercises below.
5a12 Exercise. A fair coin is tossed n times, giving $\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{0,1\}^{n}$.
Consider

Prove that

$$
\limsup _{n \rightarrow \infty}\left|\sqrt[n]{p_{n, \varepsilon}}-\frac{\sqrt{\mathrm{e}}}{2}\right| \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0+
$$

Hint: use 4b12.
5a13 Exercise. A fair coin is tossed n times, giving $\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{0,1\}^{n}$. Given $c \in[0,1]$, we consider

$$
p_{n}=\mathbb{P}\left(\forall k=1, \ldots, n \quad \frac{\beta_{1}+\cdots+\beta_{k}}{n} \geq c\left(\frac{k}{n}\right)^{2}\right) \cdot \xrightarrow{c}
$$

Prove that

$$
\begin{array}{lr}
\sqrt[n]{p_{n}} \rightarrow 1 & \text { for } 0 \leq c \leq 0.5 \\
\sqrt[n]{p_{n}} \rightarrow \frac{1}{2 c^{c}(1-c)^{1-c}} & \text { for } 0.5 \leq c \leq 1
\end{array}
$$

($0^{0}=1$, as before).
Hint: use 4b6; guess the extremal function; prove your guess, taking into account that $\int_{0}^{1} I_{0.5}(\varphi(t)) \mathrm{d} t \geq I_{0.5}\left(\int_{0}^{1} \varphi(t) \mathrm{d} t\right)$.
$5 a 14$ Exercise. In the situation of 5a13, formulate and prove a statement about the conditional distribution (in the spirit of 4 c 5).

Another example:

$$
p_{n}=\mathbb{P}\left(\forall k=1, \ldots, n \quad \frac{\beta_{1}+\cdots+\beta_{k}}{n} \geq \frac{k}{n}-\frac{1}{2}\left(\frac{k}{n}\right)^{2}\right) .
$$

It appears that

$$
\sqrt[n]{p_{n}} \rightarrow \frac{\mathrm{e}^{1 / 4}}{\sqrt{2}} \quad \text { as } n \rightarrow \infty
$$

The extremal function is

$$
w(t)= \begin{cases}t-0.5 t^{2} & \text { for } 0 \leq t \leq 0.5 \\ 0.5 t+0.125 & \text { for } 0.5 \leq t \leq 1\end{cases}
$$

In order to prove its extremality, the following lemma helps: $J(w \wedge v) \leq J(w)$ for every linear function $v:[0,1] \rightarrow \mathbb{R}$ such that $v(0) \geq 0$ and $v^{\prime}(\cdot) \geq 0.5$; here $w \wedge v$ is the pointwise minimum.

Two-dimensional random arrays are quite similar. The interval $(0,1)$ and the square $(0,1) \times(0,1)$ are isomorphic measure spaces, thus, $L_{\infty}(0,1)$ and $L_{\infty}((0,1) \times(0,1))$ are isomorphic. But moreover, the natural partition of the interval into $2^{2 n}$ parts corresponds to that of the square. And the natural correspondence between the compact sets K in dimensions 1 and 2 is a homeomorphism. Thus, Theorem 5a9 implies the corresponding result in two (and more) dimensions. Note also that the metric

$$
\operatorname{dist}(\varphi, \psi)=\max _{s, t \in[0,1]}\left|\iint_{(0, s) \times(0, t)}(\varphi-\psi)\right|
$$

generates the considered topology on the space K (over the square). Thus, we may consider two-dimensional 'paths', getting the rate function

$$
J(w)=\iint_{(0,1) \times(0,1)} I_{0.5}\left(\frac{\partial^{2}}{\partial s \partial t} w(s, t)\right) \mathrm{d} s \mathrm{~d} t .
$$

5 b Infinite dimension as the limit of finite dimensions: the Dawson-Gärtner theorem

We return for a while to the general situation: a compact metrizable space K and a sequence $\left(\mu_{n}\right)_{n}$ of probability measures on K.

Given $g \in C(K)$, we may consider the distribution ν_{n} of g w.r.t. μ_{n}, that is, the probability measure on \mathbb{R} defined by $\nu_{n}(B)=\mu_{n}(\{x: g(x) \in B\})=$ $\mu_{n}\left(g^{-1}(B)\right)$ for Borel sets $B \subset \mathbb{R}$; equivalently, $\int_{K} f_{1}(g(\cdot)) \mathrm{d} \mu_{n}=\int_{\mathbb{R}} f_{1} \mathrm{~d} \nu_{n}$ for all continuous (or bounded Borel) functions $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$. Clearly, ν_{n} are concentrated on the compact set $g(K) \subset \mathbb{R}$. If $\left(\mu_{n}\right)_{n}$ is LD-convergent (on K) then $\left(\nu_{n}\right)_{n}$ is also LD-convergent (on $g(K)$) by the contraction principle. The opposite is generally wrong.

5b1 Exercise. The sequence $\left(\nu_{n}\right)_{n}$ is LD-convergent if and only if the limit $\lim _{n}\|f\|_{L_{n}\left(\mu_{n}\right)}$ exists for all $f \in C(K)$ of the form $f(\cdot)=f_{1}(g(\cdot))$ for continuous $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$.

Prove it.
Hint: $\|f\|_{L_{n}\left(\mu_{n}\right)}=\left\|f_{1}\right\|_{L_{n}\left(\nu_{n}\right)}$.
Given $g, h \in C(K)$, we may consider the joint distribution ν_{n} of g, h w.r.t. μ_{n}, that is, the probability measure on \mathbb{R}^{2} defined by $\nu_{n}(B)=\mu_{n}(\{x$: $(g(x), h(x)) \in B\})$ for Borel sets $B \subset \mathbb{R}^{2}$. Similarly to 5b1, LD-convergence of $\left(\nu_{n}\right)_{n}$ means convergence of $\|f\|_{L_{n}\left(\mu_{n}\right)}$ for all $f \in C(K)$ of the form $f(\cdot)=$ $f_{2}(g(\cdot), h(\cdot))$ for continuous $f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Given $g_{1}, g_{2}, \cdots \in C(K)$, we may consider the joint distribution $\nu_{n}^{(j)}$ of g_{1}, \ldots, g_{j} w.r.t. μ_{n}. LD-convergence of $\left(\nu_{n}^{(j)}\right)_{n}$ for all j means convergence of $\|f\|_{L_{n}\left(\mu_{n}\right)}$ for all $f \in C(K)$ of the form $f(\cdot)=f_{j}\left(g_{1}(\cdot), \ldots, g_{j}(\cdot)\right)$, for all j. Are all such f dense in $C(K)$? They are a subalgebra of $C(K)$, thus, the answer is given by the Stone-Weierstrass theorem:

A subalgebra of $C(K)$ is dense if and only if it separates points of K.
5b2 Theorem. Let $g_{1}, g_{2}, \cdots \in C(K)$ separate points of K, and $\nu_{n}^{(j)}$ be the joint distribution of g_{1}, \ldots, g_{j} w.r.t. μ_{n}. Then
(a) If for each j the sequence $\left(\nu_{n}^{(j)}\right)_{n}$ is LD-convergent (on the image $K_{j} \subset \mathbb{R}^{j}$ of K under the map $\left.x \mapsto\left(g_{1}(x), \ldots, g_{j}(x)\right)\right)$, then the sequence $\left(\mu_{n}\right)_{n}$ is LD-convergent.
(b) If for each j the sequence $\left(\nu_{n}^{(j)}\right)_{n}$ satisfies LDP with a rate function I_{j} on K_{j} then the sequence $\left(\mu_{n}\right)_{n}$ satisfies LDP with the rate function

$$
I(x)=\sup _{j} I_{j}\left(g_{1}(x), \ldots, g_{j}(x)\right)
$$

(See also [1, Th. 4.6.1].)
Proof. By the Stone-Weierstrass theorem, functions $f \in C(K)$ of the form $f(\cdot)=f_{j}\left(g_{1}(\cdot), \ldots, g_{j}(\cdot)\right)$ are a dense set $D \subset C(K)$.
(a) Convergence of $\|\cdot\|_{L_{n}\left(\mu_{n}\right)}$ on D implies convergence on the whole $C(K)$, since

$$
\begin{aligned}
& \underset{n}{\lim \sup }\|f\|_{L_{n}\left(\mu_{n}\right)}-\underset{n}{\liminf }\|f\|_{L_{n}\left(\mu_{n}\right)} \leq \\
& \leq 2\|f-\tilde{f}\|_{C(K)}+\underset{n}{\limsup }\|\tilde{f}\|_{L_{n}\left(\mu_{n}\right)}-\liminf _{n}\|\tilde{f}\|_{L_{n}\left(\mu_{n}\right)}=2\|f-\tilde{f}\|_{C(K)}
\end{aligned}
$$

for $f \in C(K), \tilde{f} \in D$.
(b) We will prove that

$$
\mathrm{e}^{I(x)}=\sup \{f(x):\|f\| \leq 1\}
$$

where $\|f\|=\lim _{n}\|f\|_{L_{n}\left(\mu_{n}\right)}$. For each j it is given that

$$
\mathrm{e}^{I_{j}\left(y_{j}\right)}=\sup \left\{f_{j}\left(y_{j}\right):\left\|f_{j}\right\|_{j} \leq 1\right\}
$$

where $y_{j}=\left(g_{1}(x), \ldots, g_{j}(x)\right)$ and $\left\|f_{j}\right\|_{j}=\lim _{n}\left\|f_{j}\right\|_{L_{n}\left(\nu_{n}^{(j)}\right)}$. If $f(\cdot)=$ $f_{j}\left(g_{1}(\cdot), \ldots, g_{j}(\cdot)\right)$ then $\|f\|=\left\|f_{j}\right\|_{j}\left(\right.$ since $\left.\|f\|_{L_{n}\left(\mu_{n}\right)} \stackrel{L_{n}\left(\nu_{n}\right)}{\|}\left\|_{j}\right\|_{L_{n}\left(\nu_{n}^{(j)}\right)}\right)$ and $f(x)=f_{j}\left(y_{j}\right)$. Thus, $\sup \{f(x):\|f\| \leq 1\} \geq \sup \left\{f_{j}\left(y_{j}\right):\left\|f_{j}\right\| \leq 1\right\}=\mathrm{e}^{I_{j}\left(y_{j}\right)}$ for all j, therefore

$$
\sup \{f(x):\|f\| \leq 1\} \geq \sup _{j} \mathrm{e}^{I_{j}\left(y_{j}\right)}=\mathrm{e}^{I(x)}
$$

On the other hand, $f(x)=f_{j}\left(y_{j}\right) \leq \mathrm{e}^{I_{j}\left(y_{j}\right)} \leq \mathrm{e}^{I(x)}$ for $f \in D,\|f\| \leq 1$. More generally, $f(x) \leq\|f\| \mathrm{e}^{I(x)}$ for all $f \in D$. Given $\varepsilon>0$ and an arbitrary $f \in C(K)$ such that $\|f\| \leq 1$, we take $\tilde{f} \in D$ such that $\|f-\tilde{f}\|_{C(K)} \leq \varepsilon$, then $f(x) \leq \tilde{f}(x)+\varepsilon \leq\|\tilde{f}\| \mathrm{e}^{I(x)}+\varepsilon \leq(1+\varepsilon) \mathrm{e}^{I(x)}+\varepsilon$. Therefore $f(x) \leq \mathrm{e}^{I(x)}$, that is,

$$
\mathrm{e}^{I(x)} \geq \sup \{f(x):\|f\| \leq 1\}
$$

Note that

$$
I_{j}\left(y_{1}, \ldots, y_{j}\right)=\min _{y_{j+1}:\left(y_{1}, \ldots, y_{j+1}\right) \in K_{j+1}} I_{j+1}\left(y_{1}, \ldots, y_{j+1}\right) \quad \text { for }\left(y_{1}, \ldots, y_{j}\right) \in K_{j}
$$

by the contraction principle. Thus,

$$
\begin{equation*}
I_{j}\left(g_{1}(x), \ldots, g_{j}(x)\right) \uparrow I(x) \quad \text { as } j \rightarrow \infty \tag{5b3}
\end{equation*}
$$

It is easy to generalize Theorem 5b2 to the situation where j runs on a subsequence (say, $j \in\{2,4,8, \ldots\}$).

5b4 Exercise. Generalize 5b2 to continuous functions $g_{j}: K \rightarrow K_{0}$ (rather than $K \rightarrow \mathbb{R}$), where K_{0} is another compact metrizable space.
$5 \mathbf{b} 5$ Exercise. Let K be a compact metrizable space and $\left(\mu_{n}\right)_{n}$ a sequence of probability measures on K. Consider the compact metrizable space

$$
K^{\infty}=K \times K \times \ldots ;
$$

it may be metrized by

$$
\operatorname{dist}_{\infty}\left(\left(x_{1}, x_{2}, \ldots\right),\left(y_{1}, y_{2}, \ldots\right)\right)=\max _{k} \frac{1}{k} \operatorname{dist}\left(x_{k}, y_{k}\right) .
$$

On K^{∞} we consider product measures

$$
\mu_{n}^{\infty}=\mu_{n} \times \mu_{n} \times \ldots
$$

(a) The sequence $\left(\mu_{n}^{\infty}\right)_{n}$ is LD-convergent if and only if the sequence $\left(\mu_{n}\right)_{n}$ is LD-convergent.
(b) If $\left(\mu_{n}\right)_{n}$ satisfies LDP with a rate function $I: K \rightarrow[0, \infty]$, then $\left(\mu_{n}^{\infty}\right)_{n}$ satisfies LDP with the rate function $I_{\infty}: K^{\infty} \rightarrow[0, \infty]$,

$$
I_{\infty}\left(\left(x_{1}, x_{2}, \ldots\right)\right)=I\left(x_{1}\right)+I\left(x_{2}\right)+\ldots
$$

Prove it.
Hint: 4d1, 4d2 and 5b4
If K is defined by (5a1), (5a3), then (up to a natural isomorphism)

$$
K^{\infty}=\left\{\varphi \in L_{\infty}(0, \infty): \mathbf{0} \leq \varphi \leq \mathbf{1}\right\}
$$

$$
\begin{equation*}
\varphi_{k} \rightarrow \varphi \quad \text { if and only if } \quad \forall \eta \in L_{1}(0, \infty) \int \varphi_{k} \eta \rightarrow \int \varphi \eta \tag{5b6}
\end{equation*}
$$

for $\varphi, \varphi_{1}, \varphi_{2}, \cdots \in K^{\infty}$. It is straightforward to adapt (5a4) to K^{∞}. However, (5a5) needs a modification, say,

$$
\operatorname{dist}(\varphi, \psi)=\max _{t \in[0, \infty)} \frac{1}{t^{2}+1}\left|\int_{0}^{t} \varphi-\int_{0}^{t} \psi\right| .
$$

Now we toss a coin endlessly, getting $\beta=\left(\beta_{1}, \beta_{2}, \ldots\right) \in\{0,1\}^{\infty}$, define $\varphi_{\beta} \in K^{\infty}$ by (5a2) (waiving the restriction $k \leq n$) and observe that this φ_{β} is distributed $\mu_{n}^{\infty}\left(\mu_{n}\right.$ being defined by (5a6i). By 5b5 and Theorem 5a9 (not proved yet), $\left(\mu_{n}^{\infty}\right)_{n}$ satisfies LDP with the rate function $I_{\infty}: K^{\infty} \rightarrow[0, \infty]$,

$$
\begin{equation*}
I_{\infty}(\varphi)=\int_{0}^{\infty} I_{0.5}(\varphi(t)) \mathrm{d} t \tag{5b7}
\end{equation*}
$$

This time,

$$
\liminf _{\psi \rightarrow \varphi} I(\psi)=I(\varphi) \quad \text { but } \quad \limsup _{\psi \rightarrow \varphi} I(\psi)=\infty
$$

for all $\varphi \in K^{\infty}$. Also

$$
\mu_{n}\left\{\varphi \in K^{\infty}: I(\varphi)=+\infty\right\}=1 \quad \text { for all } n
$$

5c Proof for nice n

We return to Theorem 5a9, It states LDP, namely, that $\|f\|_{L_{n}\left(\mu_{n}\right)} \rightarrow$ $\max \left(|f| \mathrm{e}^{-I}\right)$ as $n \rightarrow \infty$ for all $f \in C(K)$. Here we prove a weaker statement (LDP along a subsequence):

$$
\|f\|_{L_{2} m\left(\mu_{2} m\right)} \rightarrow \max \left(|f| \mathrm{e}^{-I}\right) \quad \text { as } m \rightarrow \infty
$$

In order to use 5b, we define $g_{2}, g_{3}, \cdots \in C(K)$ by 1

$$
g_{j}(\varphi)=\frac{1}{\operatorname{mes} I_{j}} \int_{I_{j}} \varphi
$$

where

$$
\left(I_{2}, I_{3}, I_{4}, I_{5} \ldots\right)=((0,1),(0,0.5),(0.5,1),(0,0.25), \ldots)
$$

is the sequence of all dyadic intervals. Clearly, g_{j} separate points of K. We introduce $\nu_{n}^{(j)}$ on K_{j} as in 5b2, but we restrict ourselves to

$$
j \in\{2,4,8, \ldots\}, \quad n \in\{2,4,8, \ldots\}, \quad n \geq j
$$

The set

$$
K_{2 j}=\left\{\left(g_{2}(\varphi), \ldots, g_{2 j}(\varphi)\right): \varphi \in K\right\}
$$

lies in $\mathbb{R}^{2 j-1}$, but only the last j coordinates $g_{j+1}, \ldots, g_{2 j}$ are really needed; they determine g_{2}, \ldots, g_{j} uniquely. (For example, $g_{2}(\cdot)=\frac{1}{2}\left(g_{3}(\cdot)+g_{4}(\cdot)\right)$.)

If φ is distributed μ_{n} then $g_{j+1}(\varphi), \ldots, g_{2 j}(\varphi)$ are independent, identically distributed; namely, each of them is distributed $\mu_{n / j}^{3 \mathrm{a}}$, where $\mu^{3 \mathrm{a}}$ means ' μ of Sect. 3a'. By 3a4, $\left(\mu_{k}^{3 \mathrm{a}}\right)_{k}$ satisfies LDP with the rate function $I_{0.5}$. Thus (similarly to 2a17), for $k=j+1, \ldots, 2 j$,

$$
\begin{aligned}
&\left\|f\left(g_{k}(\cdot)\right)\right\|_{L_{n}\left(\mu_{n}\right)}=\|f\|_{L_{n}\left(\mu_{n / j}^{3 a}\right)}=\left\|f^{j}\right\|_{L_{n / j}\left(\mu_{n / j}^{3 a}\right)}^{1 / j} \xrightarrow[n \rightarrow \infty]{ } \\
& \xrightarrow[n \rightarrow \infty]{ }\left(\max \left(\left|f^{j}\right| \mathrm{e}^{-I_{0.5}}\right)\right)^{1 / j}=\max \left(|f| \mathrm{e}^{-I_{0.5} / j}\right),
\end{aligned}
$$

[^0]that is, $I_{0.5} / j$ is the rate function for $g_{k}(\cdot)$ (along the subsequence, $n \in$ $\{j, 2 j, 3 j, \ldots\} \supset\{j, 2 j, 4 j, \ldots\})$.

Prop. 4d1 (or rather, its evident generalization to the product of j measures, and n restricted to a subsequence) gives us the rate function $\left(y_{j+1}, \ldots, y_{2 j}\right) \mapsto$ $\frac{1}{j}\left(I_{0.5}\left(y_{j+1}\right)+\cdots+I_{0.5}\left(y_{2 j}\right)\right)$ for $\left(g_{j+1}, \ldots, g_{2 j}\right)$, therefore, the rate function $I_{2 j}$ on $K_{2 j}$,

$$
\begin{equation*}
I_{2 j}\left(y_{2}, \ldots, y_{2 j}\right)=\frac{1}{j}\left(I_{0.5}\left(y_{j+1}\right)+\cdots+I_{0.5}\left(y_{2 j}\right)\right) \tag{5c1}
\end{equation*}
$$

for distributions $\nu_{n}^{(2 j)}$ of $g_{2}, \ldots, g_{2 j}$ (along the subsequence, still).
The Dawson-Gärtner theorem 5b2 (or rather, its evident generalization to subsequences) gives us LDP for $\left(\mu_{n}\right)_{n}$ with the rate function

$$
I(\varphi)=\lim _{j} 2^{-j} \sum_{k=1}^{2^{j}} I_{0.5}\left(2^{j} \int_{(k-1) 2^{-j}}^{k \cdot 2^{-j}} \varphi\right)
$$

(recall 5b33). That is, $I(\varphi)=\lim _{j} \int I_{0.5}\left(\varphi_{j}\right)$, where φ_{j} is the orthogonal projection of φ to the 2^{j}-dimensional space of step functions. However, $\varphi_{j} \rightarrow$ φ in measure (in fact, almost everywhere), therefore $I_{0.5}\left(\varphi_{j}\right) \rightarrow I_{0.5}(\varphi)$ in measure, therefore (using boundedness), $\int I_{0.5}\left(\varphi_{j}\right) \rightarrow \int I_{0.5}(\varphi)$.

5d Measures coming together

A general situation, again: $\left(\mu_{n}\right)_{n}$ and $\left(\nu_{n}\right)_{n}$ be two sequences of probability measures on a compact metrizable space K. We say that they come together, if there exist probability measures λ_{n} on $K \times K$ satisfying two conditions.

First, μ_{n} and ν_{n} are the marginals of λ_{n} (for every n). That is, $\lambda_{n}(B \times$ $K)=\mu_{n}(B)$ and $\lambda_{n}(K \times B)=\nu_{n}(B)$ for every Borel set $B \subset K$. Or equivalently, $\int_{K \times K} f(x) \lambda_{n}(\mathrm{~d} x \mathrm{~d} y)=\int_{K} f \mathrm{~d} \mu$ and $\int_{K \times K} f(y) \lambda_{n}(\mathrm{~d} x \mathrm{~d} y)=\int_{K} f \mathrm{~d} \nu$ for all $f \in C(K)$. (Every such λ_{n} is called a joining of μ_{n} and ν_{n}.)

Second, there exist $\varepsilon_{n} \rightarrow 0$ such that $\lambda_{n}\left(\left\{(x, y): \operatorname{dist}(x, y) \leq \varepsilon_{n}\right\}\right)=1$ for all n. (The choice of the metric affects the choice of ε_{n}, but the condition is invariant.)

An equivalent definition without joinings exists (but will not be used). Namely, $\left(\mu_{n}\right)_{n}$ and $\left(\nu_{n}\right)_{n}$ come together, if there exist $\varepsilon_{n} \rightarrow 0$ such that (recall (4b9), (4b10)) $\mu_{n}(F) \leq \nu_{n}\left(F_{+\varepsilon_{n}}\right)$ and $\nu_{n}(F) \leq \mu_{n}\left(F_{+\varepsilon_{n}}\right)$ for all closed sets $F \subset K$. (The same $\left(\varepsilon_{n}\right)_{n}$ for all F, of course.)

5d1 Proposition. If $\left(\mu_{n}\right)_{n}$ and $\left(\nu_{n}\right)_{n}$ come together, then
(a) $\left(\mu_{n}\right)_{n}$ is LD-convergent if and only if $\left(\nu_{n}\right)_{n}$ is LD-convergent;
(b) if $\left(\mu_{n}\right)_{n}$ satisfies LDP with a rate function I, then $\left(\nu_{n}\right)_{n}$ satisfies LDP with the same rate function I.

Proof. Given $f \in C(K)$, we introduce $f_{1}, f_{2} \in C(K \times K)$ by $f_{1}(x, y)=f(x)$ and $f_{2}(x, y)=f(y)$. Then $\|f\|_{L_{n}\left(\mu_{n}\right)}=\left\|f_{1}\right\|_{L_{n}\left(\lambda_{n}\right)}$ and $\|f\|_{L_{n}\left(\nu_{n}\right)}=\left\|f_{2}\right\|_{L_{n}\left(\lambda_{n}\right)}$. However,

$$
\max _{\operatorname{dist}(x, y) \leq \varepsilon_{n}}\left|f_{1}(x, y)-f_{2}(x, y)\right|=\max _{\operatorname{dist}(x, y) \leq \varepsilon_{n}}|f(x)-f(y)| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

since f is uniformly continuous (due to compactness). Thus, $\left\|f_{1}-f_{2}\right\|_{L_{n}\left(\lambda_{n}\right)} \rightarrow$ 0 , therefore

$$
\|f\|_{L_{n}\left(\mu_{n}\right)}-\|f\|_{L_{n}\left(\nu_{n}\right)}=\left\|f_{1}\right\|_{L_{n}\left(\lambda_{n}\right)}-\left\|f_{2}\right\|_{L_{n}\left(\lambda_{n}\right)} \rightarrow 0
$$

as $n \rightarrow \infty$; (a) and (b) follow immediately.
See also [1, Th. 4.2.13].

5e Proof for all n

Here we finish the proof of Theorem 5a9 by generalizing the argument of 5c from $n \in\{2,4,8, \ldots\}$ to $n \in\{1,2,3, \ldots\}$.

We consider the distribution $\nu_{n}^{(j)}$ on K_{j}; still, $j \in\{2,4,8, \ldots\}$, but now $n \in\{1,2,3, \ldots\}$. It is sufficient to prove that $\left(\nu_{n}^{(j)}\right)_{n}$ satisfies LDP with the rate function I_{j} (recall (5c1)), that is,

$$
\begin{equation*}
\|f\|_{L_{n}\left(\nu_{n}^{(j)}\right)} \rightarrow \max _{K_{j}}\left(|f| \mathrm{e}^{-I_{j}}\right) \quad \text { as } n \rightarrow \infty \tag{5e1}
\end{equation*}
$$

for all $f \in K_{j}$ and all $j \in\{2,4,8, \ldots\}$. Recall that the argument of 50 gives us a weaker statement, namely,

$$
\|f\|_{L_{m j}\left(\nu_{m j}^{(2 j)}\right)} \rightarrow \max _{K_{j}}\left(|f| \mathrm{e}^{-I_{2 j}}\right) \quad \text { as } m \rightarrow \infty
$$

(Only $m \in\{1,2,4, \ldots\}$ are used there, but the argument works for all m.)
Let us start with $2 j=4$. The measure $\nu_{n}^{(4)}$ is basically the joint distribution of $g_{3}(\varphi)=2 \int_{0}^{0.5} \varphi$ and $g_{4}(\varphi)=2 \int_{0.5}^{1} \varphi$, when φ is distributed μ_{n}. These two are independent for even n, but not for odd n; this is the problem. The solution: $\nu_{2 m}^{(4)}$ and $\nu_{2 m+1}^{(4)}$ are close enough.

5e2 Lemma. $\left(\nu_{2 m}^{(4)}\right)_{m}$ and $\left(\nu_{2 m+1}^{(4)}\right)_{m}$ come together.
Proof. Basically, $\nu_{2 m}^{(4)}$ is the joint distribution of $\left(\beta_{1}+\cdots+\beta_{m}\right) / m$ and $\left(\beta_{m+1}+\cdots+\beta_{2 m}\right) / m$, where $\left(\beta_{1}, \ldots, \beta_{2 m}\right) \in\{0,1\}^{2 m}$ is distributed uniformly. Similarly, $\nu_{2 m+1}^{(4)}$ is the joint distribution of $\left(\beta_{1}+\cdots+\beta_{m}+0.5 \beta_{m+1}\right) /(m+0.5)$
and $\left(0.5 \beta_{m+1}+\beta_{m+2}+\cdots+\beta_{2 m+1}\right) /(m+0.5)$. We construct a joining λ_{m} of $\nu_{2 m}^{(4)}$ and $\nu_{2 m+1}^{(4)}$ as the joint distribution of two pairs,

$$
\left.\begin{array}{l}
\left(\frac{\beta_{1}+\cdots+\beta_{m}}{m}, \frac{\beta_{m+2}+\cdots+\beta_{2 m+1}}{m}\right)
\end{array}\right) \text { and } 1
$$

of course, $\left(\beta_{1}, \ldots, \beta_{2 m+1}\right)$ is distributed uniformly on $\{0,1\}^{2 m+1}$. We estimate the distance between the two pairs:

$$
\begin{aligned}
&\left|\frac{\beta_{1}+\cdots+\beta_{m}}{m}-\frac{\beta_{1}+\cdots+\beta_{m}+0.5 \beta_{m+1}}{m+0.5}\right| \leq \\
& \leq m\left(\frac{1}{m}-\frac{1}{m+0.5}\right)+\frac{0.5}{m+0.5}=\frac{1}{m+0.5} \rightarrow 0
\end{aligned}
$$

the same holds for the second coordinate.
By 5d1 $\|f\|_{L_{2 m}\left(\nu_{2 m+1}^{(4)}\right)}$ behaves similarly to $\|f\|_{L_{2 m}\left(\nu_{2 m}^{(4)}\right)}$, namely, converges to $\max \left(|f| \mathrm{e}^{-I_{4}}\right)$. The same holds for $\|f\|_{L_{2 m+1}\left(\nu_{2 m+1}^{(4)}\right)}$, since $\frac{2 m+1}{2 m} \rightarrow 1$ (recall the argument of 2a17). Thus, $\|f\|_{L_{n}\left(\nu_{n}^{(4)}\right)} \rightarrow \max \left(|f| \mathrm{e}^{-I_{4}}\right)$.

Similarly, for every $j \in\{2,4,8, \ldots\}$ and every $k \in\{0,1, \ldots, j-1\}$, $\left(\nu_{j m+k}^{(2 j)}\right)_{m}$ and $\left(\nu_{j(m-1)}^{(2 j)}\right)_{m}$ come together, which implies (5e1) and completes the proof of Theorem 5a9,

References

[1] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett publ., 1993.

[^0]: ${ }^{1}$ The numbers start from 2 for convenience; the natural blocks finish at $j=2^{k}$.

