5 LDP in spaces of functions

5a	The simplest case of Mogulskii's theorem	29
5b	Infinite dimension as the limit of finite dimen- sions: the Dawson-Gärtner theorem	33
5c	Proof for nice n	36
5d	Measures coming together	37
5e	Proof for all n	38

5a The simplest case of Mogulskii's theorem

Tossing a fair coin n times we get a random element of $\{0, 1\}^n$. We embed all these spaces $\{0, 1\}^n$ into a single metrizable compact space

(5a1)
$$K = \{ \varphi \in L_{\infty}(0,1) : \mathbf{0} \le \varphi \le \mathbf{1} \}$$

as follows: given $\beta = (\beta_1, \ldots, \beta_n) \in \{0, 1\}^n$, we define $\varphi_\beta \in K$ by

(5a2)
$$\varphi_{\beta}(t) = \beta_k \text{ for } t \in \left(\frac{k-1}{n}, \frac{k}{n}\right).$$

The relevant metrizable topology on K, well-known as the weak^{*} topology, may be described as follows: for $\varphi, \varphi_1, \varphi_2, \dots \in K$,

(5a3)
$$\varphi_k \to \varphi$$
 if and only if $\forall \eta \in L_1(0,1) \int \varphi_k \eta \to \int \varphi \eta$.

Here is an example of a metric that generates this topology:

(5a4)
$$\operatorname{dist}(\varphi,\psi) = \max_{k} \frac{1}{k} \left| \int \varphi \eta_{k} - \int \psi \eta_{k} \right|,$$

where η_1, η_2, \ldots are a sequence dense in the unit ball of $L_1(0, 1)$. The choice of η_1, η_2, \ldots influences the metric but not the topology. Another metric (for the same topology):

(5a5)
$$\operatorname{dist}(\varphi,\psi) = \max_{t\in[0,1]} \left| \int_0^t \varphi - \int_0^t \psi \right|.$$

We consider the distribution μ_n of the random function φ_β ,

(5a6)
$$\mu_n \in P(K), \quad \int f \,\mathrm{d}\mu_n = \frac{1}{2^n} \sum_{\beta \in \{0,1\}^n} f(\varphi_\beta).$$

Large deviations

5a7 Exercise. Assume that $(\mu_n)_n$ satisfies LDP with a rate function *I*. Then

$$\min\{I(\varphi): \varphi \in K, \, \int \varphi = u\} = I_{0.5}(u) \,,$$

where $I_{0.5}(u) = u \ln \frac{u}{0.5} + (1-u) \ln \frac{1-u}{0.5} = u \ln u + (1-u) \ln(1-u) + \ln 2$ (recall (3a5) and (3a9)).

Prove it.

Hint: the contraction principle (Th. 2b1), and 3a4.

5a8 Exercise. Assume that $(\mu_n)_n$ satisfies LDP with a rate function *I*. Then

$$I(\varphi) = \frac{I(\varphi_{\text{left}}) + I(\varphi_{\text{right}})}{2}$$

for all $\varphi \in K$; here $\varphi_{\text{left}}, \varphi_{\text{right}} \in K$ are defined by

$$\varphi_{\text{left}}(t) = \varphi(0.5t), \ \varphi_{\text{right}}(t) = \varphi(0.5+0.5t) \text{ for } t \in (0,1).$$

Prove it.

Hint: $K = K_1 \times K_2$, $K_1 \subset L_{\infty}(0, 0.5)$, $K_2 \subset L_{\infty}(0.5, 1)$; $\mu_{2n} = \mu_n^{(1)} \times \mu_n^{(2)}$; $2I(\varphi) = I_1(\varphi_1) + I_2(\varphi_2)$ by 4d1, 4d2 and 2a17. On the other hand, the natural one-to-one correspondence between K and K_1 transforms μ_n to $\mu_n^{(1)}$, thus, I to I_1 .

Applying the same formula to $I(\varphi_{\text{left}})$ and $I(\varphi_{\text{right}})$ we split $I(\varphi)$ into four terms. And so on.

Now you could guess the rate function!

5a9 Theorem. $(\mu_n)_n$ satisfies LDP with the rate function

$$I(\varphi) = \int_0^1 I_{0.5}(\varphi(t)) \,\mathrm{d}t \,.$$

See [1, Th. 5.1.2].

Note that I is far from being continuous. In fact,

$$\liminf_{\psi \to \varphi} I(\psi) = I(\varphi) \quad \text{but} \quad \limsup_{\psi \to \varphi} I(\psi) = \ln 2$$

for all $\varphi \in K$. Note also that

$$\mu_n\{\varphi \in K : I(\varphi) = \ln 2\} = 1 \quad \text{for all } n.$$

How could we prove the theorem? The approach of 3a does not work here, since the number of atoms of μ_n is exponentially large. No binomial coefficients, just 2^n atoms of probability 2^{-n} each. However, we may apply Sanov's theorem to $\int_0^1 \varphi$, $\int_0^{0.5} \varphi$, $\int_{0.5}^1 \varphi$ and so on. Doing so in the next section, we'll prove the theorem for $n \in \{1, 2, 4, 8, ...\}$. Here we just discuss it.

The map $K \to C[0, 1]$,

$$\varphi \mapsto w\,, \quad w(t) = \int_0^t \varphi(s)\,\mathrm{d} s\,,$$

is continuous and one-to-one, therefore (by compactness) a homeomorphism. Thus, the LDP on K leads to LDP on the set of functions $w: [0,1] \to \mathbb{R}$ such that

(5a10)
$$0 \le w(t) - w(s) \le t - s$$
 whenever $0 \le s \le t \le 1$, and $w(0) = 0$

with the rate function

(5a11)
$$J(w) = \int_0^1 I_{0.5}(w'(t)) \, \mathrm{d}t \, .$$

(The derivative exists almost everywhere.) Note that the random function w_{β} (corresponding to φ_{β}) is piecewise linear, with the derivative $\beta_k \in \{0, 1\}$ on $\left(\frac{k-1}{n}, \frac{k}{n}\right)$. It is a (rescaled) path of a random walk. Do not hesitate to use Theorem 5a9 in the exercises below.

5a12 Exercise. A fair coin is tossed n times, giving $(\beta_1, \ldots, \beta_n) \in \{0, 1\}^n$. Consider

$$p_{n,\varepsilon} = \mathbb{P}\left(\forall k = 1, \dots, n \quad \left|\frac{\beta_1 + \dots + \beta_k}{n} - \frac{1}{2}\left(\frac{k}{n}\right)^2\right| \le \varepsilon\right).$$

Prove that

$$\limsup_{n \to \infty} \left| \sqrt[n]{p_{n,\varepsilon}} - \frac{\sqrt{e}}{2} \right| \to 0 \quad \text{as } \varepsilon \to 0 + .$$

Hint: use 4b12.

5a13 Exercise. A fair coin is tossed n times, giving $(\beta_1, \ldots, \beta_n) \in \{0, 1\}^n$. Given $c \in [0, 1]$, we consider

$$p_n = \mathbb{P}\left(\forall k = 1, \dots, n \quad \frac{\beta_1 + \dots + \beta_k}{n} \ge c\left(\frac{k}{n}\right)^2\right).$$

Large deviations

$$\sqrt[n]{p_n} \to 1 \qquad \text{for } 0 \le c \le 0.5 ,$$

$$\sqrt[n]{p_n} \to \frac{1}{2c^c(1-c)^{1-c}} \qquad \text{for } 0.5 \le c \le 1$$

 $(0^0 = 1, \text{ as before}).$

Hint: use 4b6; guess the extremal function; prove your guess, taking into account that $\int_0^1 I_{0.5}(\varphi(t)) dt \ge I_{0.5}(\int_0^1 \varphi(t) dt)$.

5a14 Exercise. In the situation of 5a13, formulate and prove a statement about the conditional distribution (in the spirit of 4c5).

Another example:

$$p_n = \mathbb{P}\left(\forall k = 1, \dots, n \quad \frac{\beta_1 + \dots + \beta_k}{n} \ge \frac{k}{n} - \frac{1}{2}\left(\frac{k}{n}\right)^2\right).$$

It appears that

$$\sqrt[n]{p_n} \to \frac{\mathrm{e}^{1/4}}{\sqrt{2}}$$
 as $n \to \infty$.

The extremal function is

$$w(t) = \begin{cases} t - 0.5t^2 & \text{for } 0 \le t \le 0.5, \\ 0.5t + 0.125 & \text{for } 0.5 \le t \le 1. \end{cases}$$

In order to prove its extremality, the following lemma helps: $J(w \wedge v) \leq J(w)$ for every *linear* function $v : [0,1] \to \mathbb{R}$ such that $v(0) \geq 0$ and $v'(\cdot) \geq 0.5$; here $w \wedge v$ is the pointwise minimum.

Two-dimensional random arrays are quite similar. The interval (0,1)and the square $(0,1) \times (0,1)$ are isomorphic measure spaces, thus, $L_{\infty}(0,1)$ and $L_{\infty}((0,1) \times (0,1))$ are isomorphic. But moreover, the natural partition of the interval into 2^{2n} parts corresponds to that of the square. And the natural correspondence between the compact sets K in dimensions 1 and 2 is a homeomorphism. Thus, Theorem 5a9 implies the corresponding result in two (and more) dimensions. Note also that the metric

$$\operatorname{dist}(\varphi, \psi) = \max_{s,t \in [0,1]} \left| \iint_{(0,s) \times (0,t)} (\varphi - \psi) \right|$$

generates the considered topology on the space K (over the square). Thus, we may consider two-dimensional 'paths', getting the rate function

$$J(w) = \iint_{(0,1)\times(0,1)} I_{0.5}\left(\frac{\partial^2}{\partial s \partial t}w(s,t)\right) \mathrm{d}s \mathrm{d}t \,.$$

Large deviations

5b Infinite dimension as the limit of finite dimensions: the Dawson-Gärtner theorem

We return for a while to the general situation: a compact metrizable space K and a sequence $(\mu_n)_n$ of probability measures on K.

Given $g \in C(K)$, we may consider the distribution ν_n of g w.r.t. μ_n , that is, the probability measure on \mathbb{R} defined by $\nu_n(B) = \mu_n(\{x : g(x) \in B\}) =$ $\mu_n(g^{-1}(B))$ for Borel sets $B \subset \mathbb{R}$; equivalently, $\int_K f_1(g(\cdot)) d\mu_n = \int_{\mathbb{R}} f_1 d\nu_n$ for all continuous (or bounded Borel) functions $f_1 : \mathbb{R} \to \mathbb{R}$. Clearly, ν_n are concentrated on the compact set $g(K) \subset \mathbb{R}$. If $(\mu_n)_n$ is LD-convergent (on K) then $(\nu_n)_n$ is also LD-convergent (on g(K)) by the contraction principle. The opposite is generally wrong.

5b1 Exercise. The sequence $(\nu_n)_n$ is LD-convergent if and only if the limit $\lim_n \|f\|_{L_n(\mu_n)}$ exists for all $f \in C(K)$ of the form $f(\cdot) = f_1(g(\cdot))$ for continuous $f_1 : \mathbb{R} \to \mathbb{R}$.

Prove it.

Hint: $||f||_{L_n(\mu_n)} = ||f_1||_{L_n(\nu_n)}$.

Given $g, h \in C(K)$, we may consider the joint distribution ν_n of g, hw.r.t. μ_n , that is, the probability measure on \mathbb{R}^2 defined by $\nu_n(B) = \mu_n(\{x : (g(x), h(x)) \in B\})$ for Borel sets $B \subset \mathbb{R}^2$. Similarly to 5b1, LD-convergence of $(\nu_n)_n$ means convergence of $||f||_{L_n(\mu_n)}$ for all $f \in C(K)$ of the form $f(\cdot) = f_2(g(\cdot), h(\cdot))$ for continuous $f_2 : \mathbb{R}^2 \to \mathbb{R}$.

Given $g_1, g_2, \dots \in C(K)$, we may consider the joint distribution $\nu_n^{(j)}$ of g_1, \dots, g_j w.r.t. μ_n . LD-convergence of $(\nu_n^{(j)})_n$ for all j means convergence of $||f||_{L_n(\mu_n)}$ for all $f \in C(K)$ of the form $f(\cdot) = f_j(g_1(\cdot), \dots, g_j(\cdot))$, for all j. Are all such f dense in C(K)? They are a subalgebra of C(K), thus, the answer is given by the Stone-Weierstrass theorem:

A subalgebra of C(K) is dense if and only if it separates points of K.

5b2 Theorem. Let $g_1, g_2, \dots \in C(K)$ separate points of K, and $\nu_n^{(j)}$ be the joint distribution of g_1, \dots, g_j w.r.t. μ_n . Then

(a) If for each j the sequence $(\nu_n^{(j)})_n$ is LD-convergent (on the image $K_j \subset \mathbb{R}^j$ of K under the map $x \mapsto (g_1(x), \ldots, g_j(x))$), then the sequence $(\mu_n)_n$ is LD-convergent.

(b) If for each j the sequence $(\nu_n^{(j)})_n$ satisfies LDP with a rate function I_j on K_j then the sequence $(\mu_n)_n$ satisfies LDP with the rate function

$$I(x) = \sup_{j} I_j(g_1(x), \dots, g_j(x)).$$

(See also [1, Th. 4.6.1].)

Proof. By the Stone-Weierstrass theorem, functions $f \in C(K)$ of the form $f(\cdot) = f_j(g_1(\cdot), \ldots, g_j(\cdot))$ are a dense set $D \subset C(K)$.

(a) Convergence of $\|\cdot\|_{L_n(\mu_n)}$ on D implies convergence on the whole C(K), since

$$\limsup_{n} \|f\|_{L_{n}(\mu_{n})} - \liminf_{n} \|f\|_{L_{n}(\mu_{n})} \leq \\ \leq 2\|f - \tilde{f}\|_{C(K)} + \limsup_{n} \|\tilde{f}\|_{L_{n}(\mu_{n})} - \liminf_{n} \|\tilde{f}\|_{L_{n}(\mu_{n})} = 2\|f - \tilde{f}\|_{C(K)}$$

for $f \in C(K)$, $\tilde{f} \in D$.

(b) We will prove that

$$e^{I(x)} = \sup\{f(x) : ||f|| \le 1\},\$$

where $||f|| = \lim_{n \to \infty} ||f||_{L_n(\mu_n)}$. For each j it is given that

$$e^{I_j(y_j)} = \sup\{f_j(y_j) : \|f_j\|_j \le 1\},\$$

where $y_j = (g_1(x), \ldots, g_j(x))$ and $||f_j||_j = \lim_n ||f_j||_{L_n(\nu_n^{(j)})}$. If $f(\cdot) = f_j(g_1(\cdot), \ldots, g_j(\cdot))$ then $||f|| = ||f_j||_j$ (since $||f||_{L_n(\mu_n)} = ||f_j||_{L_n(\nu_n^{(j)})}$) and $f(x) = f_j(y_j)$. Thus, $\sup\{f(x) : ||f|| \le 1\} \ge \sup\{f_j(y_j) : ||f_j|| \le 1\} = e^{I_j(y_j)}$ for all j, therefore

$$\sup\{f(x): ||f|| \le 1\} \ge \sup_{j} e^{I_{j}(y_{j})} = e^{I(x)}.$$

On the other hand, $f(x) = f_j(y_j) \leq e^{I_j(y_j)} \leq e^{I(x)}$ for $f \in D$, $||f|| \leq 1$. More generally, $f(x) \leq ||f|| e^{I(x)}$ for all $f \in D$. Given $\varepsilon > 0$ and an arbitrary $f \in C(K)$ such that $||f|| \leq 1$, we take $\tilde{f} \in D$ such that $||f - \tilde{f}||_{C(K)} \leq \varepsilon$, then $f(x) \leq \tilde{f}(x) + \varepsilon \leq ||\tilde{f}|| e^{I(x)} + \varepsilon \leq (1 + \varepsilon) e^{I(x)} + \varepsilon$. Therefore $f(x) \leq e^{I(x)}$, that is,

$$e^{I(x)} \ge \sup\{f(x) : \|f\| \le 1\}.$$

Note that

$$I_j(y_1, \dots, y_j) = \min_{y_{j+1}: (y_1, \dots, y_{j+1}) \in K_{j+1}} I_{j+1}(y_1, \dots, y_{j+1}) \quad \text{for } (y_1, \dots, y_j) \in K_j$$

by the contraction principle. Thus,

(5b3)
$$I_j(g_1(x), \dots, g_j(x)) \uparrow I(x) \text{ as } j \to \infty$$

It is easy to generalize Theorem 5b2 to the situation where j runs on a subsequence (say, $j \in \{2, 4, 8, ...\}$).

5b4 Exercise. Generalize 5b2 to continuous functions $g_j : K \to K_0$ (rather than $K \to \mathbb{R}$), where K_0 is another compact metrizable space.

5b5 Exercise. Let K be a compact metrizable space and $(\mu_n)_n$ a sequence of probability measures on K. Consider the compact metrizable space

$$K^{\infty} = K \times K \times \dots ;$$

it may be metrized by

$$\operatorname{dist}_{\infty}((x_1, x_2, \dots), (y_1, y_2, \dots)) = \max_k \frac{1}{k} \operatorname{dist}(x_k, y_k).$$

On K^{∞} we consider product measures

$$\mu_n^{\infty} = \mu_n \times \mu_n \times \dots$$

(a) The sequence $(\mu_n^{\infty})_n$ is LD-convergent if and only if the sequence $(\mu_n)_n$ is LD-convergent.

(b) If $(\mu_n)_n$ satisfies LDP with a rate function $I : K \to [0, \infty]$, then $(\mu_n^{\infty})_n$ satisfies LDP with the rate function $I_{\infty} : K^{\infty} \to [0, \infty]$,

$$I_{\infty}((x_1, x_2, \dots)) = I(x_1) + I(x_2) + \dots$$

Prove it.

Hint: 4d1, 4d2 and 5b4.

If K is defined by (5a1), (5a3), then (up to a natural isomorphism)

(5b6)
$$K^{\infty} = \{ \varphi \in L_{\infty}(0, \infty) : \mathbf{0} \le \varphi \le \mathbf{1} \},$$
$$\varphi_{k} \to \varphi \quad \text{if and only if} \quad \forall \eta \in L_{1}(0, \infty) \quad \int \varphi_{k} \eta \to \int \varphi \eta$$

for $\varphi, \varphi_1, \varphi_2, \dots \in K^{\infty}$. It is straightforward to adapt (5a4) to K^{∞} . However, (5a5) needs a modification, say,

$$\operatorname{dist}(\varphi,\psi) = \max_{t \in [0,\infty)} \frac{1}{t^2 + 1} \left| \int_0^t \varphi - \int_0^t \psi \right|.$$

Now we toss a coin endlessly, getting $\beta = (\beta_1, \beta_2, ...) \in \{0, 1\}^{\infty}$, define $\varphi_{\beta} \in K^{\infty}$ by (5a2) (waiving the restriction $k \leq n$) and observe that this φ_{β} is distributed μ_n^{∞} (μ_n being defined by (5a6)). By 5b5 and Theorem 5a9 (not proved yet), (μ_n^{∞})_n satisfies LDP with the rate function $I_{\infty} : K^{\infty} \to [0, \infty]$,

(5b7)
$$I_{\infty}(\varphi) = \int_0^{\infty} I_{0.5}(\varphi(t)) \,\mathrm{d}t \,.$$

Large deviations

This time,

$$\liminf_{\psi \to \varphi} I(\psi) = I(\varphi) \quad \text{but} \quad \limsup_{\psi \to \varphi} I(\psi) = \infty$$

for all $\varphi \in K^{\infty}$. Also

$$\mu_n \{ \varphi \in K^\infty : I(\varphi) = +\infty \} = 1$$
 for all n .

5c Proof for nice n

We return to Theorem 5a9. It states LDP, namely, that $||f||_{L_n(\mu_n)} \to \max(|f|e^{-I})$ as $n \to \infty$ for all $f \in C(K)$. Here we prove a weaker statement (LDP along a subsequence):

$$||f||_{L_{2^m}(\mu_{2^m})} \to \max(|f|e^{-I}) \text{ as } m \to \infty.$$

In order to use 5b, we define $g_2, g_3, \dots \in C(K)$ by¹

$$g_j(\varphi) = \frac{1}{\operatorname{mes} I_j} \int_{I_j} \varphi \,,$$

where

$$(I_2, I_3, I_4, I_5...) = ((0, 1), (0, 0.5), (0.5, 1), (0, 0.25), ...)$$

is the sequence of all dyadic intervals. Clearly, g_j separate points of K. We introduce $\nu_n^{(j)}$ on K_j as in 5b2, but we restrict ourselves to

 $j \in \{2, 4, 8, \dots\}, \quad n \in \{2, 4, 8, \dots\}, \quad n \ge j.$

The set

$$K_{2j} = \{(g_2(\varphi), \dots, g_{2j}(\varphi)) : \varphi \in K\}$$

lies in \mathbb{R}^{2j-1} , but only the last j coordinates g_{j+1}, \ldots, g_{2j} are really needed; they determine g_2, \ldots, g_j uniquely. (For example, $g_2(\cdot) = \frac{1}{2}(g_3(\cdot) + g_4(\cdot))$.)

If φ is distributed μ_n then $g_{j+1}(\varphi), \ldots, g_{2j}(\varphi)$ are independent, identically distributed; namely, each of them is distributed $\mu_{n/j}^{3a}$, where μ^{3a} means ' μ of Sect. 3a'. By 3a4, $(\mu_k^{3a})_k$ satisfies LDP with the rate function $I_{0.5}$. Thus (similarly to 2a17), for $k = j + 1, \ldots, 2j$,

$$\|f(g_k(\cdot))\|_{L_n(\mu_n)} = \|f\|_{L_n(\mu_{n/j}^{3a})} = \|f^j\|_{L_{n/j}(\mu_{n/j}^{3a})}^{1/j} \xrightarrow[n \to \infty]{} (\max(|f^j|e^{-I_{0.5}}))^{1/j} = \max(|f|e^{-I_{0.5}/j}),$$

¹The numbers start from 2 for convenience; the natural blocks finish at $j = 2^k$.

Large deviations

that is, $I_{0.5}/j$ is the rate function for $g_k(\cdot)$ (along the subsequence, $n \in \{j, 2j, 3j, \ldots\} \supset \{j, 2j, 4j, \ldots\}$).

Prop. 4d1 (or rather, its evident generalization to the product of j measures, and n restricted to a subsequence) gives us the rate function $(y_{j+1}, \ldots, y_{2j}) \mapsto \frac{1}{j} (I_{0.5}(y_{j+1}) + \cdots + I_{0.5}(y_{2j}))$ for $(g_{j+1}, \ldots, g_{2j})$, therefore, the rate function I_{2j} on K_{2j} ,

(5c1)
$$I_{2j}(y_2, \dots, y_{2j}) = \frac{1}{j} \left(I_{0.5}(y_{j+1}) + \dots + I_{0.5}(y_{2j}) \right)$$

for distributions $\nu_n^{(2j)}$ of g_2, \ldots, g_{2j} (along the subsequence, still).

The Dawson-Gärtner theorem 5b2 (or rather, its evident generalization to subsequences) gives us LDP for $(\mu_n)_n$ with the rate function

$$I(\varphi) = \lim_{j} 2^{-j} \sum_{k=1}^{2^{j}} I_{0.5} \left(2^{j} \int_{(k-1)2^{-j}}^{k \cdot 2^{-j}} \varphi \right)$$

(recall 5b3). That is, $I(\varphi) = \lim_{j} \int I_{0.5}(\varphi_j)$, where φ_j is the orthogonal projection of φ to the 2^j -dimensional space of step functions. However, $\varphi_j \rightarrow \varphi$ in measure (in fact, almost everywhere), therefore $I_{0.5}(\varphi_j) \rightarrow I_{0.5}(\varphi)$ in measure, therefore (using boundedness), $\int I_{0.5}(\varphi_j) \rightarrow \int I_{0.5}(\varphi)$.

5d Measures coming together

A general situation, again: $(\mu_n)_n$ and $(\nu_n)_n$ be two sequences of probability measures on a compact metrizable space K. We say that they *come together*, if there exist probability measures λ_n on $K \times K$ satisfying two conditions.

First, μ_n and ν_n are the marginals of λ_n (for every *n*). That is, $\lambda_n(B \times K) = \mu_n(B)$ and $\lambda_n(K \times B) = \nu_n(B)$ for every Borel set $B \subset K$. Or equivalently, $\int_{K \times K} f(x) \lambda_n(dxdy) = \int_K f d\mu$ and $\int_{K \times K} f(y) \lambda_n(dxdy) = \int_K f d\nu$ for all $f \in C(K)$. (Every such λ_n is called a joining of μ_n and ν_n .)

Second, there exist $\varepsilon_n \to 0$ such that $\lambda_n(\{(x, y) : \operatorname{dist}(x, y) \le \varepsilon_n\}) = 1$ for all n. (The choice of the metric affects the choice of ε_n , but the condition is invariant.)

An equivalent definition without joinings exists (but will not be used). Namely, $(\mu_n)_n$ and $(\nu_n)_n$ come together, if there exist $\varepsilon_n \to 0$ such that (recall (4b9), (4b10)) $\mu_n(F) \leq \nu_n(F_{+\varepsilon_n})$ and $\nu_n(F) \leq \mu_n(F_{+\varepsilon_n})$ for all closed sets $F \subset K$. (The same $(\varepsilon_n)_n$ for all F, of course.)

5d1 Proposition. If $(\mu_n)_n$ and $(\nu_n)_n$ come together, then

(a) $(\mu_n)_n$ is LD-convergent if and only if $(\nu_n)_n$ is LD-convergent;

(b) if $(\mu_n)_n$ satisfies LDP with a rate function I, then $(\nu_n)_n$ satisfies LDP with the same rate function I.

Proof. Given $f \in C(K)$, we introduce $f_1, f_2 \in C(K \times K)$ by $f_1(x, y) = f(x)$ and $f_2(x, y) = f(y)$. Then $||f||_{L_n(\mu_n)} = ||f_1||_{L_n(\lambda_n)}$ and $||f||_{L_n(\nu_n)} = ||f_2||_{L_n(\lambda_n)}$. However,

$$\max_{\operatorname{dist}(x,y) \le \varepsilon_n} |f_1(x,y) - f_2(x,y)| = \max_{\operatorname{dist}(x,y) \le \varepsilon_n} |f(x) - f(y)| \to 0 \quad \text{as } n \to \infty$$

since f is uniformly continuous (due to compactness). Thus, $||f_1 - f_2||_{L_n(\lambda_n)} \to 0$, therefore

$$||f||_{L_n(\mu_n)} - ||f||_{L_n(\nu_n)} = ||f_1||_{L_n(\lambda_n)} - ||f_2||_{L_n(\lambda_n)} \to 0$$

as $n \to \infty$; (a) and (b) follow immediately.

See also [1, Th. 4.2.13].

5e Proof for all n

Here we finish the proof of Theorem 5a9 by generalizing the argument of 5c from $n \in \{2, 4, 8, ...\}$ to $n \in \{1, 2, 3, ...\}$.

We consider the distribution $\nu_n^{(j)}$ on K_j ; still, $j \in \{2, 4, 8, ...\}$, but now $n \in \{1, 2, 3, ...\}$. It is sufficient to prove that $(\nu_n^{(j)})_n$ satisfies LDP with the rate function I_j (recall (5c1)), that is,

(5e1)
$$\|f\|_{L_n(\nu_n^{(j)})} \to \max_{K_j} \left(|f| \mathrm{e}^{-I_j}\right) \quad \text{as } n \to \infty$$

for all $f \in K_j$ and all $j \in \{2, 4, 8, ...\}$. Recall that the argument of 5c gives us a weaker statement, namely,

$$||f||_{L_{mj}(\nu_{mj}^{(2j)})} \to \max_{K_j} (|f| e^{-I_{2j}}) \text{ as } m \to \infty.$$

(Only $m \in \{1, 2, 4, ...\}$ are used there, but the argument works for all m.)

Let us start with 2j = 4. The measure $\nu_n^{(4)}$ is basically the joint distribution of $g_3(\varphi) = 2 \int_0^{0.5} \varphi$ and $g_4(\varphi) = 2 \int_{0.5}^1 \varphi$, when φ is distributed μ_n . These two are independent for even n, but not for odd n; this is the problem. The solution: $\nu_{2m}^{(4)}$ and $\nu_{2m+1}^{(4)}$ are close enough.

5e2 Lemma. $(\nu_{2m}^{(4)})_m$ and $(\nu_{2m+1}^{(4)})_m$ come together.

Proof. Basically, $\nu_{2m}^{(4)}$ is the joint distribution of $(\beta_1 + \cdots + \beta_m)/m$ and $(\beta_{m+1} + \cdots + \beta_{2m})/m$, where $(\beta_1, \ldots, \beta_{2m}) \in \{0, 1\}^{2m}$ is distributed uniformly. Similarly, $\nu_{2m+1}^{(4)}$ is the joint distribution of $(\beta_1 + \cdots + \beta_m + 0.5\beta_{m+1})/(m+0.5)$

and $(0.5\beta_{m+1} + \beta_{m+2} + \cdots + \beta_{2m+1})/(m+0.5)$. We construct a joining λ_m of $\nu_{2m}^{(4)}$ and $\nu_{2m+1}^{(4)}$ as the joint distribution of two pairs,

$$\left(\frac{\beta_1 + \dots + \beta_m}{m}, \frac{\beta_{m+2} + \dots + \beta_{2m+1}}{m}\right) \text{ and} \\ \left(\frac{\beta_1 + \dots + \beta_m + 0.5\beta_{m+1}}{m+0.5}, \frac{0.5\beta_{m+1} + \beta_{m+2} + \dots + \beta_{2m+1}}{m+0.5}\right);$$

of course, $(\beta_1, \ldots, \beta_{2m+1})$ is distributed uniformly on $\{0, 1\}^{2m+1}$. We estimate the distance between the two pairs:

$$\left|\frac{\beta_1 + \dots + \beta_m}{m} - \frac{\beta_1 + \dots + \beta_m + 0.5\beta_{m+1}}{m + 0.5}\right| \le \\ \le m \left(\frac{1}{m} - \frac{1}{m + 0.5}\right) + \frac{0.5}{m + 0.5} = \frac{1}{m + 0.5} \to 0;$$

the same holds for the second coordinate.

By 5d1, $||f||_{L_{2m}(\nu_{2m+1}^{(4)})}$ behaves similarly to $||f||_{L_{2m}(\nu_{2m}^{(4)})}$, namely, converges to $\max(|f|e^{-I_4})$. The same holds for $||f||_{L_{2m+1}(\nu_{2m+1}^{(4)})}$, since $\frac{2m+1}{2m} \to 1$ (recall the argument of 2a17). Thus, $||f||_{L_n(\nu_n^{(4)})} \to \max(|f|e^{-I_4})$. Similarly, for every $j \in \{2, 4, 8, ...\}$ and every $k \in \{0, 1, ..., j - 1\}$,

Similarly, for every $j \in \{2, 4, 8, ...\}$ and every $k \in \{0, 1, ..., j - 1\}$, $(\nu_{jm+k}^{(2j)})_m$ and $(\nu_{j(m-1)}^{(2j)})_m$ come together, which implies (5e1) and completes the proof of Theorem 5a9.

References

[1] A. Dembo, O. Zeitouni, *Large deviations techniques and applications*, Jones and Bartlett publ., 1993.