8 Blocks, Markov chains, Ising model

8a Introductory remarks 60
8b Pair frequencies: combinatorial approach 63
8c Markov chains 66
8d Ising model (one-dimensional) 68
8e Pair frequencies: linear algebra approach 69
8f Dimension two 70

8a Introductory remarks

The following three questions are related more closely than it may seem.
8a1 Question. 100 children stay in a ring, 40 boys and 60 girls. Among the 100 pairs of neighbors, 20 pairs are heterosexual (a girl and a boy); others are not. What about the number of all such configurations?

8a2 Question. A Markov chain with two states (0 and 1) is given via its 2×2-matrix of transition probabilities. What about the probability that the state 1 occurs 60 times among the first 100 ?

8a3 Question. (Ising model) A one-dimensional array of n spin- $1 / 2$ particles is described by the configuration space $\{-1,1\}^{n}$. Each configuration $\left(s_{1}, \ldots, s_{n}\right) \in\{-1,1\}^{n}$ has its energy

$$
H_{n}\left(s_{1}, \ldots, s_{n}\right)=-\frac{1}{2}\left(s_{1} s_{2}+\cdots+s_{n-1} s_{n}\right)-h\left(s_{1}+\cdots+s_{n}\right)
$$

here $h \in \mathbb{R}$ is a parameter. (It is the strength of an external magnetic field, while the strength of the nearest neighbor coupling is set to 1 .) What about the dependence of the energy and the mean spin $\left(s_{1}+\cdots+s_{n}\right) / n$ on h and the temperature?

Tossing a fair coin n times we get a random element $\left(\beta_{1}, \ldots, \beta_{n}\right)$ of $\{0,1\}^{n}$, and may consider the $n-1$ pairs $\left(\beta_{1}, \beta_{2}\right),\left(\beta_{2}, \beta_{3}\right), \ldots,\left(\beta_{n-1}, \beta_{n}\right)$. We introduce pair frequencies

$$
\begin{gathered}
\frac{K^{\prime}}{n-1}=\left(\frac{K_{00}^{\prime}}{n-1}, \frac{K_{01}^{\prime}}{n-1}, \frac{K_{10}^{\prime}}{n-1}, \frac{K_{11}^{\prime}}{n-1}\right) \in P\left(\{0,1\}^{2}\right), \\
K_{a b}^{\prime}=\#\left\{i=1, \ldots, n-1: \beta_{i}=a, \beta_{i+1}=b\right\},
\end{gathered}
$$

and their (joint) distribution

$$
\begin{gathered}
\mu_{n}^{\prime} \in P\left(P\left(\{0,1\}^{2}\right)\right), \\
\int f \mathrm{~d} \mu_{n}^{\prime}=\frac{1}{2^{n}} \sum_{\beta \in\{0,1\}^{n}} f\left(\frac{K_{00}^{\prime}}{n-1}, \frac{K_{01}^{\prime}}{n-1}, \frac{K_{10}^{\prime}}{n-1}, \frac{K_{11}^{\prime}}{n-1}\right) .
\end{gathered}
$$

Alternatively, we may consider n pairs $\left(\beta_{1}, \beta_{2}\right),\left(\beta_{2}, \beta_{3}\right), \ldots,\left(\beta_{n-1}, \beta_{n}\right),\left(\beta_{n}, \beta_{1}\right)$, the corresponding pair frequencies $\frac{K^{\prime \prime}}{n}=\left(\frac{K_{00}^{\prime \prime}}{n}, \frac{K_{01}^{\prime \prime}}{n}, \frac{K_{10}^{\prime \prime}}{n}, \frac{K_{11}^{\prime \prime}}{n}\right)$ and their (joint) distribution $\mu_{n}^{\prime \prime}$.

8a4 Exercise. LD-convergence of $\left(\mu_{n}^{\prime}\right)_{n}$ is equivalent to LD-convergence of $\left(\mu_{n}^{\prime \prime}\right)_{n}$, and their rate functions (if exist) are equal.

Prove it.
Hint: recall 5d.
You may say that what we call μ_{n}^{\prime} should be called μ_{n-1}^{\prime} instead; but it does not matter in the following sense.

8a5 Exercise. Let μ_{n} be probability measures on a compact metrizable space K. Then LD-convergence of $\left(\mu_{n}\right)_{n}$ is equivalent to LD-convergence of $\left(\mu_{n+1}\right)_{n}$, and their rate functions (if exist) are equal.

Prove it.
Hint: similar to 2a17.
8a6 Exercise. Explain, why LD-convergence of $\left(\mu_{n}^{\prime}\right)_{n}$ cannot be derived from Theorem 5a9 (Mogulskii's theorem) combined with Theorem 2b1 (the contraction principle).

8a7 Exercise. If the rate function I for $\left(\mu_{n}^{\prime}\right)_{n},\left(\mu_{n}^{\prime \prime}\right)_{n}$ exists then

$$
\min \left\{I\left(x_{00}, x_{01}, x_{10}, x_{11}\right): x_{01}+x_{10}=z\right\}=I_{0.5}(z)
$$

for all $z \in[0,1]$. (See (3a5) for $I_{0.5}$.)
Prove it.
Hint: consider the measure preserving map $\{0,1\}^{n} \rightarrow\{0,1\}^{n-1},\left(\beta_{1}, \ldots, \beta_{n}\right) \mapsto$ $\left(\beta_{1} \oplus \beta_{2}, \beta_{2} \oplus \beta_{3}, \ldots, \beta_{n-1} \oplus \beta_{n}\right)$; here ' \oplus ' stands for the sum mod 2 (called also XOR $=$ 'exclusive or').

We turn to Markov chains. Let a 2×2-matrix

$$
\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right)
$$

be given, $p_{a b} \in[0,1], p_{00}+p_{01}=1, p_{10}+p_{11}=1$. In addition, let $p_{0}, p_{1} \in[0,1]$ be given such that $p_{0}+p_{1}=1$. We define the probability of a history $\left(s_{0}, \ldots, s_{n}\right) \in\{0,1\}^{n+1}$ by

$$
P_{n}\left(s_{0}, \ldots, s_{n}\right)=p_{s_{0}} p_{s_{0}, s_{1}} p_{s_{1}, s_{2}} \ldots p_{s_{n-1}, s_{n}}
$$

clearly, we get a probability measure P_{n} on $\{0,1\}^{n+1}$. The pair frequencies K / n get their distribution ν_{n},

$$
\int f \mathrm{~d} \nu_{n}=\sum_{s \in\{0,1\}^{n+1}} f\left(\frac{K_{00}}{n}, \frac{K_{01}}{n}, \frac{K_{10}}{n}, \frac{K_{11}}{n}\right) P_{n}(s) .
$$

8a8 Exercise. LD-convergence of $\left(\nu_{n}\right)_{n}$ does not depend on p_{0}, p_{1} as long as $p_{0}, p_{1} \neq 0$. Also the rate function (if exists) does not depend.

Prove it.
Hint: use 8 a 9 below.
8a9 Exercise. Let μ_{n}, ν_{n} be probability measures on a compact metrizable space K. Assume that there exists $C \in(0, \infty)$ such that $\mu_{n} \leq C \nu_{n}$ and $\nu_{n} \leq$ $C \mu_{n}$ for all n. Then LD-convergence of $\left(\mu_{n}\right)_{n}$ is equivalent to LD-convergence of $\left(\nu_{n}\right)_{n}$, and their rate functions (if exist) are equal.

Prove it.
Hint: $C^{1 / n} \rightarrow 1$.
8a10 Exercise. Assuming that $p_{00}, p_{01}, p_{10}, p_{11}$ do not vanish, remove the restriction $p_{0}, p_{1} \neq 0$ in 8a8,

Hint: similarly to 8a4, the pair $\left(s_{0}, s_{1}\right)$ does not matter.
8a11 Exercise. LD-convergence of $\left(\nu_{n}\right)_{n}$ does not depend on $p_{00}, p_{01}, p_{10}, p_{11}$ as long as they do not vanish.

Prove it.
Hint: similarly to 3a, 3b use Theorem 2c1 (titled LDP).
The rate function (if exists) does not depend on the initial probabilities p_{a}, but does depend on the transition probabilities $p_{a b}$; namely, the rate function must contain (additively) the terms

$$
-x_{00} \ln p_{00}-x_{01} \ln p_{01}-x_{10} \ln p_{10}-x_{11} \ln p_{11} .
$$

It means that we may restrict ourselves to the simplest matrix

$$
\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right)=\left(\begin{array}{cc}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right),
$$

thus reducing 8a2 to 8a1,
We turn to the array of spin- $1 / 2$ particles. The energy $H_{n}\left(s_{1}, \ldots, s_{n}\right)$ depends on the spin configuration $\left(s_{1}, \ldots, s_{n}\right) \in\{-1,1\}^{n}$ only via pair frequencies,

$$
H_{n}\left(s_{1}, \ldots, s_{n}\right)=(n-1)\left(\frac{K_{+-}^{\prime}}{n-1}+\frac{K_{-+}^{\prime}}{n-1}-\frac{K_{++}^{\prime}}{n-1}-\frac{K_{--}^{\prime}}{n-1}\right) .
$$

Similarly to 3d, we have the uniform distribution U_{n} and the Gibbs measure G_{n} on $\{-1,1\}^{n} ; \mathrm{d} G_{n} / \mathrm{d} U_{n}=$ const $_{n} \cdot \mathrm{e}^{-\beta H_{n}}$. The distribution of $\frac{K^{\prime}}{n-1}$ w.r.t. U_{n} is μ_{n}^{\prime}; the distribution of $\frac{K^{\prime}}{n-1}$ w.r.t. G_{n} is $\nu_{n},{ }^{1}$

$$
\nu_{n}=\text { const }_{n} \cdot \exp \left(-\beta(n-1)\left(\frac{K_{+-}^{\prime}}{n-1}+\frac{K_{-+}^{\prime}}{n-1}-\frac{K_{++}^{\prime}}{n-1}-\frac{K_{--}^{\prime}}{n-1}\right)\right) \cdot \mu_{n}^{\prime}
$$

If $\left(\mu_{n}^{\prime}\right)_{n}$ satisfies LDP with a rate function I, then $\left(\nu_{n}\right)_{n}$ satisfies LDP with the rate function J,

$$
\begin{aligned}
& J\left(\frac{K_{++}^{\prime}}{n-1}, \frac{K_{+-}^{\prime}}{n-1}, \frac{K_{-+}^{\prime}}{n-1}, \frac{K_{--}^{\prime}}{n-1}\right)= \\
= & I\left(\frac{K_{++}^{\prime}}{n-1}, \frac{K_{+-}^{\prime}}{n-1}, \frac{K_{-+}^{\prime}}{n-1}, \frac{K_{--}^{\prime}}{n-1}\right)+\beta\left(\frac{K_{+-}^{\prime}}{n-1}+\frac{K_{-+}^{\prime}}{n-1}-\frac{K_{++}^{\prime}}{n-1}-\frac{K_{--}^{\prime}}{n-1}\right)+\mathrm{const}
\end{aligned}
$$

and we may proceed as in 3d, taking into account that

$$
\frac{s_{1}+\cdots+s_{n}}{n}=\frac{K_{++}^{\prime \prime}}{n}+\frac{K_{+-}^{\prime \prime}}{n}-\frac{K_{-+}^{\prime \prime}}{n}-\frac{K_{--}^{\prime \prime}}{n} \approx \frac{K_{++}^{\prime}}{n-1}+\frac{K_{+-}^{\prime}}{n-1}-\frac{K_{-+}^{\prime}}{n-1}-\frac{K_{--}^{\prime}}{n-1} .
$$

8b Pair frequencies: combinatorial approach

We consider the cyclic pair frequencies ${ }^{2} \frac{K}{n}$ for $\beta \in\{0,1\}^{n}$,

$$
K_{a b}(\beta)=\#\left\{i=1, \ldots, n: \beta_{i}=a, \beta_{i+1}=b\right\} \quad \text { for } a, b \in\{0,1\},
$$

where β_{n+1} is interpreted as β_{1}. Clearly, $K_{01}(\beta)=K_{10}(\beta)$ and $K_{00}(\beta)+$ $K_{01}(\beta)+K_{10}(\beta)+K_{11}(\beta)=n$; thus, $K_{01}(\beta)=K_{10}(\beta)=\frac{1}{2}\left(n-K_{00}(\beta)-\right.$ $\left.K_{11}(\beta)\right)$.

Let us denote by $N\left(k_{00}, k_{11}\right)$ the number of all $\beta \in\{0,1\}^{n}$ such that $K_{00}(\beta)=k_{00}$ and $K_{11}(\beta)=k_{11}$.

[^0]8b1 Lemma. Let $k_{00}, k_{11} \in\{0,1,2, \ldots\}$ satisfy $\frac{1}{2}\left(n-k_{00}-k_{11}\right) \in\{1,2, \ldots\}$, then

$$
1 \leq \frac{N\left(k_{00}, k_{11}\right)}{\left.\left.\binom{\frac{1}{2}\left(n+k_{00}-k_{11}\right)-1}{k_{00}}\right)^{\frac{1}{2}\left(n-k_{00}+k_{11}\right)-1} k_{11}\right)} \leq n .
$$

Proof. Define $k_{01}=k_{10}=\frac{1}{2}\left(n-k_{00}-k_{11}\right)$. There exist exactly $\binom{k_{00}+k_{01}-1}{k_{01}-1}=$ $\binom{k_{00}+k_{01}-1}{k_{00}}$ partitions of the number k_{00} into k_{01} nonnegative integral summands; and similarly, $\binom{k_{11}+k_{10}-1}{k_{11}}$ partitions of k_{11} into k_{10} summands. Having such partitions $k_{00}=i_{1}+\cdots+i_{k_{01}}, k_{11}=j_{1}+\cdots+j_{k_{10}}$, we construct $\beta \in\{0,1\}^{n}$ by concatenation:

$$
\beta=0^{i_{1}+1} 1^{j_{1}+1} 0^{i_{2}+1} 1^{j_{2}+1} \ldots 0^{i_{01}+1} 1^{j_{10}+1} .
$$

Clearly, $K_{00}(\beta)=k_{00}, K_{11}(\beta)=k_{11}$, and $i_{1}, \ldots, i_{k_{01}}, j_{1}, \ldots, j_{k_{10}}$ are uniquely determined by β. We see that the product $\binom{k_{00}+k_{01}-1}{k_{00}} \cdot\binom{k_{11}+k_{10}-1}{k_{11}}$ is the number of all $\beta \in\{0,1\}^{n}$ such that $K_{00}(\beta)=k_{00},{ }^{k_{00}} K_{11}(\beta)=k_{11}, \beta_{1}=0$ and $\beta_{n}=1$. The lemma follows.

The case $n-k_{00}-k_{11}=0$ is special but harmless (think, why), we put it aside. Denote

$$
\begin{aligned}
x=\frac{k_{00}}{n}, \quad y & =\frac{k_{11}}{n}, \quad z=1-x-y, \quad\left(=\frac{k_{01}+k_{10}}{n}\right) \\
u=x+\frac{z}{2} & =\frac{1+x-y}{2}, \quad \text { (the frequency of zeros) } \\
v & =y+\frac{z}{2}=\frac{1-x+y}{2}=1-u .
\end{aligned}
$$

Using 8b1.

$$
\begin{aligned}
&\left(N\left(k_{00}, k_{11}\right)\right)^{1 / n} \sim\binom{n u-1}{n x}^{1 / n}\binom{n v-1}{n y}^{1 / n} \sim \\
& \sim\binom{n u}{n x}^{1 / n}\binom{n v}{n y}^{1 / n}=\left(\frac{(n u)!(n v)!}{(n x)!(n y)!(n z / 2)!^{2}}\right)^{1 / n}
\end{aligned}
$$

as $n \rightarrow \infty$, uniformly in k_{00}, k_{11}. However, $(n a)!^{1 / n} \sim(n a / e)^{a}$ uniformly in $a \in[0,1]$ (recall the hint to 3a3). Thus,

$$
\left(N\left(k_{00}, k_{11}\right)\right)^{1 / n} \sim \frac{(n u / \mathrm{e})^{u}(n v / \mathrm{e})^{v}}{(n x / \mathrm{e})^{x}(n y / \mathrm{e})^{y}(n z /(2 \mathrm{e}))^{z}}=\frac{u^{u} v^{v}}{x^{x} y^{y}(z / 2)^{z}}
$$

Let β be distributed uniformly on $\{0,1\}^{n}$, then the pair frequencies are distributed $\mu_{n}^{\prime \prime}$ (recall 8a).

8b2 Exercise. $\left(\mu_{n}^{\prime \prime}\right)_{n}$ satisfies LDP with the rate function

$$
I\left(x_{00}, x_{01}, x_{10}, x_{11}\right)=x \ln x+y \ln y+z \ln z-u \ln u-v \ln v+(1-z) \ln 2,
$$

where

$$
\begin{gathered}
x=x_{00}, \quad y=x_{11}, \quad z=1-x-y=x_{01}+x_{10}, \\
u=x+\frac{z}{2}=\frac{1+x-y}{2}, \quad v=y+\frac{z}{2}=\frac{1-x+y}{2}=1-u
\end{gathered}
$$

and $x_{00}, x_{01}, x_{10}, x_{11} \in[0,1]$ satisfy $x_{00}+x_{01}+x_{10}+x_{11}=1$ and $x_{01}=x_{10}$.
Prove it.
Hint: similar to 3 a 4 .
We may write just

$$
\begin{align*}
& I(x, y)=x \ln x+y \ln y+(1-x-y) \ln (1-x-y)- \tag{8b3}\\
& \quad-\frac{1+x-y}{2} \ln \frac{1+x-y}{2}-\frac{1-x+y}{2} \ln \frac{1-x+y}{2}+(x+y) \ln 2 .
\end{align*}
$$

By 8a4, the same holds for $\left(\mu_{n}^{\prime}\right)_{n}$.
By the weak law of large numbers (and a simple trick...), μ_{n}^{\prime} concentrate near the point $x_{00}=x_{01}=x_{10}=x_{11}=0.25$. At this point $x=y=0.25$ and $z=u=v=0.5$, thus $I(0.25,0.25)=\frac{2}{4} \ln \frac{1}{4}-\frac{1}{2} \ln \frac{1}{2}+\frac{1}{2} \ln 2=0$, as it should be.

8b4 Exercise. Check by elementary calculation the equality of 8a7,

$$
\min _{x+y=1-z} I(x, y)=I_{0.5}(z) \quad \text { for } z \in[0,1] .
$$

Hint: $\frac{\partial}{\partial x} I(x, y)=\ln x-\ln z-\frac{1}{2} \ln u+\frac{1}{2} \ln v+\ln 2, \frac{\partial}{\partial y} I(x, y)=\ln y-\ln z+$ $\frac{1}{2} \ln u-\frac{1}{2} \ln v+\ln 2$; take the difference; show that the minimum is reached when $x=y$.

Think about the 'proportion'

$$
\frac{X}{8 b 2}=\frac{5 a 9}{3 a 4} ;
$$

could you find X (formulate, or even prove)?
See also [4, Sect. II.2] for more than two states.

8c Markov chains

We return to the Markov chain, assuming that the transition probabilities $p_{a b}$ do not vanish. The pair frequencies are distributed ν_{n}. Recall 8a8 8a11,
8c1 Exercise. $\left(\nu_{n}\right)_{n}$ satisfies LDP with the rate function

$$
\begin{aligned}
J\left(x_{00}, x_{01}, x_{10}, x_{11}\right) & =I\left(x_{00}, x_{01}, x_{10}, x_{11}\right)- \\
& -x_{00} \ln p_{00}-x_{01} \ln p_{01}-x_{10} \ln p_{10}-x_{11} \ln p_{11}-\ln 2,
\end{aligned}
$$

that is,

$$
J(x, y)=I(x, y)-x \ln p_{00}-y \ln p_{11}-\frac{1-x-y}{2}\left(\ln \left(1-p_{00}\right)+\ln \left(1-p_{11}\right)\right)-\ln 2,
$$

where I is given by (8b3).
Prove it.
Hint: in $2 \mathrm{c} 1, c_{n}=2^{n}\left(\right.$ since $p_{00}+p_{01}=1$ and $\left.p_{10}+p_{11}=1\right)$.
8c2 Exercise. For all $\varphi, \psi \in(0, \pi / 2)$,

$$
\min _{x, y \geq 0, x+y \leq 1}\left(I(x, y)+x \ln \frac{\sin \varphi \sin \psi}{\cos ^{2} \varphi}+y \ln \frac{\sin \varphi \sin \psi}{\cos ^{2} \psi}\right)=\ln (2 \sin \varphi \sin \psi) .
$$

Prove it.
Hint: $p_{00}=\cos ^{2} \varphi, p_{11}=\cos ^{2} \psi$; use 2a19.
An elementary derivation of 8 c 2 is possible but more tedious. First, we find the minimizer.

Let the function $(x, y) \mapsto I(x, y)+x \ln \frac{\sin \varphi \sin \psi}{\cos ^{2} \varphi}+y \ln \frac{\sin \varphi \sin \psi}{\cos ^{2} \psi}$ on the triangle $x, y \geq 0, x+y \leq 1$ have a local minimum at (x, y). As before, $z=1-x-y$, $u=(1+x-y) / 2, v=(1-x+y) / 2$.

8c3 Exercise. (x, y) is an interior point (that is, $x, y>0, x+y<1$), and

$$
\begin{aligned}
& 2 \tan \varphi \tan \psi \sqrt{x y}=z, \\
& x v \cos ^{2} \psi=y u \cos ^{2} \varphi .
\end{aligned}
$$

Prove it.
Hint: take the sum and the difference of $\frac{\partial}{\partial x} I(x, y), \frac{\partial}{\partial y} I(x, y)$ (used in 8b4).

8c4 Exercise. Prove that

$$
x=\frac{u(u-v) \cos ^{2} \varphi}{u \cos ^{2} \varphi-v \cos ^{2} \psi}, \quad y=\frac{v(u-v) \cos ^{2} \psi}{u \cos ^{2} \varphi-v \cos ^{2} \psi} .
$$

Hint: both $x-y$ and x / y can be expressed in terms of u, v.

8c5 Exercise. Prove that

$$
2(u-v) \sin \varphi \sin \psi=\sqrt{1-(u-v)^{2}}\left(\cos ^{2} \varphi-\cos ^{2} \psi\right) .
$$

Hint: substitute 8 c 4 into the first equation of 8 c 3 and note that $2 u=1+$ $(u-v), 2 v=1-(u-v)$.

8c6 Exercise. Prove that

$$
x=\frac{\cos ^{2} \varphi \sin ^{2} \psi}{\sin ^{2} \varphi+\sin ^{2} \psi}, \quad y=\frac{\sin ^{2} \varphi \cos ^{2} \psi}{\sin ^{2} \varphi+\sin ^{2} \psi}
$$

Hint: $u-v=\frac{\cos ^{2} \varphi-\cos ^{2} \psi}{\sin ^{2} \varphi+\sin ^{2} \psi}=\frac{\sin ^{2} \psi-\sin ^{2} \varphi}{\sin ^{2} \varphi+\sin ^{2} \psi}$.
The minimizer is found, and now we calculate the minimal value.
8c7 Exercise. Prove that

$$
I(x, y)+x \ln \frac{\sin \varphi \sin \psi}{\cos ^{2} \varphi}+y \ln \frac{\sin \varphi \sin \psi}{\cos ^{2} \psi}=\ln (2 \sin \varphi \sin \psi)
$$

Hint: the left-hand side is $x \ln \frac{x}{\cos ^{2} \varphi}+y \ln \frac{y}{\cos ^{2} \psi}+z \ln \frac{z}{2 \sin \varphi \sin \psi}-u \ln u-$ $v \ln v+\ln (2 \sin \varphi \sin \psi)$; also $z=\frac{2 \sin ^{2} \varphi \sin ^{2} \psi}{\sin ^{2} \varphi+\sin ^{2} \psi}$ and $u=\frac{\sin ^{2} \psi}{\sin ^{2} \varphi+\sin ^{2} \psi}$.

This was the elementary derivation of 8c2,
However, there exists a simple probabilistic way to the minimizer! The Markov chain has a unique stationary distribution (p_{0}, p_{1}),

$$
\begin{gathered}
\left\{\begin{array}{l}
p_{0} p_{00}+p_{1} p_{10}=p_{0}, \\
p_{0} p_{01}+p_{1} p_{11}=p_{1} ;
\end{array}\right. \\
p_{1} p_{10}=p_{0} p_{01} ; \\
p_{0}=\frac{p_{10}}{p_{01}+p_{10}}, \quad p_{1}=\frac{p_{01}}{p_{01}+p_{10}},
\end{gathered}
$$

and every initial distribution converges to the stationary distribution (exponentially fast, in fact). Thus, the measures ν_{n} converge to (an atom at) the point

$$
\left(x_{00}, x_{01}, x_{10}, x_{11}\right)=\left(p_{0} p_{00}, p_{0} p_{01}, p_{1} p_{10}, p_{1} p_{11}\right) .
$$

Substituting $p_{00}=\cos ^{2} \varphi, p_{11}=\cos ^{2} \psi$ we get

$$
x_{00}=\frac{\cos ^{2} \varphi \sin ^{2} \psi}{\sin ^{2} \varphi+\sin ^{2} \psi}, \quad x_{11}=\frac{\sin ^{2} \varphi \cos ^{2} \psi}{\sin ^{2} \varphi+\sin ^{2} \psi}
$$

just 8c6] . .
The rate functions examined above are of the form $(x, y) \mapsto I(x, y)+$ $A x+B y$ where I is given by (8b3) and $A, B \in \mathbb{R}$. However, did we cover all pairs $(A, B) \in \mathbb{R}^{2}$? Yes, we did, as is shown below.

8c8 Exercise. For every pair $(a, b) \in(0, \infty)^{2}$ there exists one and only one pair $(\varphi, \psi) \in(0, \pi / 2)^{2}$ such that

$$
\frac{\sin \varphi \sin \psi}{\cos ^{2} \varphi}=a, \quad \frac{\sin \varphi \sin \psi}{\cos ^{2} \psi}=b
$$

Prove it.
Hint: consider the curve $\frac{\cos \varphi}{\cos \psi}=\sqrt{b / a}$ in the square $(0, \pi / 2)^{2}$ and check that the equation $\tan \varphi \tan \psi=\sqrt{a b}$ is satisfied exactly once on the curve.
$8 \mathbf{c} 9$ Remark. Using the equality $\left(1+\tan ^{2} \varphi\right) \cos ^{2} \varphi=1$ (and the same for ψ) one can find φ, ψ explicitly. Namely, $\cos ^{2} \varphi$ satisfies a quadratic equation...

8d Ising model (one-dimensional)

As was noted in 8a, the Ising model ${ }^{1}$ is described by the Gibbs measure G_{n} on $\{-1,1\}^{n}, \mathrm{~d} G_{n} / \mathrm{d} U_{n}=$ const $_{n} \cdot \mathrm{e}^{-\beta H_{n}}$, and the corresponding distribution ν_{n} of pair frequencies. Also, LDP for $\left(\mu_{n}^{\prime}\right)_{n}$ implies LDP for $\left(\nu_{n}\right)_{n}$ with the rate function

$$
\begin{aligned}
J\left(x_{++}, x_{+-}, x_{-+}, x_{--}\right)=I\left(x_{++}, x_{+-}\right. & \left., x_{-+}, x_{--}\right)+ \\
& +\beta H\left(x_{++}, x_{+-}, x_{-+}, x_{--}\right)+\mathrm{const}
\end{aligned}
$$

where

$$
\begin{aligned}
& H\left(x_{++}, x_{+-}, x_{-+}, x_{--}\right)=-\frac{1}{2}\left(x_{++}\right. \\
&\left.+x_{--}-x_{+-}-x_{-+}\right)-h(u-v) \\
& u=x_{++}+x_{+-}=x_{++}+x_{-+} \\
& v=x_{-+}+x_{--}=x_{+-}+x_{--}
\end{aligned}
$$

That is,

$$
\begin{gathered}
J_{\beta, h}(x, y)=I(x, y)+\beta H(x, y)+\text { const } \\
H(x, y)=-\frac{1}{2}(1-2 z)-h(x-y)
\end{gathered}
$$

as before, $z=1-x-y$, and I is given by (8b3).
Clearly, $J_{\beta, h}$ is a rate function of the form $(x, y) \mapsto I(x, y)+A x+B y$ examined in 8c2 8c9. It has a single minimizer $\left(x_{\beta, h}, y_{\beta, h}\right)$, and ν_{n} converge to (the atom at) $\left(x_{\beta, h}, y_{\beta, h}\right)$. The minimizer can be written out explicitly

[^1]by solving a quadratic equation (recall 8c9). Having the minimizer one can calculate the energy $H\left(x_{\beta, h}, y_{\beta, h}\right)$ and the mean spin $x_{\beta, h}-y_{\beta, h}$.

The dependence of $x_{\beta, h}$ and $y_{\beta, h}$ on β, h is (real-) analytic everywhere, which means absence of phase transitions.

See also [5, Sect. 7.4.3].

8e Pair frequencies: linear algebra approach

Consider again the cyclic pair frequencies $K^{\prime \prime} / n=K^{\prime \prime}\left(\beta_{1}, \ldots, \beta_{n}\right) / n$ and their distribution $\mu_{n}^{\prime \prime}$ (introduced in 8a).

8e1 Exercise. For every matrix $A=\left(\begin{array}{ll}a_{00} & a_{01} \\ a_{10} & a_{11}\end{array}\right)$,

$$
\sum_{\beta_{1}, \ldots, \beta_{n}} a_{00}^{K_{00}} a_{01}^{K_{01}} a_{10}^{K_{10}} a_{11}^{K_{11}}=\operatorname{trace}\left(A^{n}\right) .
$$

Prove it.
Hint: straight from definitions (of matrix multiplication and trace).
Denote by λ_{1}, λ_{2} the eigenvalues of A, then $\lambda_{1}+\lambda_{2}=\operatorname{trace}(A)$, and $\lambda_{1}^{n}, \lambda_{2}^{n}$ are the eigenvalues of A^{n}, therefore

$$
\operatorname{trace}\left(A^{n}\right)=\lambda_{1}^{n}+\lambda_{2}^{n} .
$$

Assume that $a_{00}>0, a_{01}>0, a_{10}>0, a_{11}>0$, then $\lambda_{1}+\lambda_{2}>0$ and

$$
\left(\operatorname{trace}\left(A^{n}\right)\right)^{1 / n} \rightarrow \max \left(\lambda_{1}, \lambda_{2}\right) \quad \text { as } n \rightarrow \infty
$$

8e2 Exercise. If $\left(\mu_{n}^{\prime \prime}\right)_{n}$ satisfies LDP with a rate function I, then

$$
\begin{aligned}
& \min _{x}\left(I\left(x_{00}, x_{01}, x_{10}, x_{11}\right)-x_{00} \ln a_{00}-x_{01} \ln a_{01}-x_{10} \ln a_{10}-x_{11} \ln a_{11}\right)= \\
&=-\ln \frac{\max \left(\lambda_{1}, \lambda_{2}\right)}{2} .
\end{aligned}
$$

Prove it (not using 8b).
Hint: consider $\int f^{n} \mathrm{~d} \mu_{n}^{\prime \prime}$ for $f\left(x_{00}, x_{01}, x_{10}, x_{11}\right)=a_{00}^{x_{00}} a_{01}^{x_{01}} a_{10}^{x_{10}} a_{11}^{x_{11}}$.
Taking into account that $K_{01}=K_{10}$ and $K_{00}+K_{01}+K_{10}+K_{11}=n$ we may restrict ourselves to $x_{01}=x_{10}$ and $x_{00}+x_{01}+x_{10}+x_{11}=1$. Thus we take $x=x_{00}, y=x_{11}$ and get $x_{01}=x_{10}=z / 2$ where $z=1-x-y$. Using $I(x, y)$ instead of $I\left(x_{00}, x_{01}, x_{10}, x_{11}\right)$ we get

$$
\min _{x, y \geq 0, x+y \leq 1}\left(I(x, y)-x \ln a_{00}-y \ln a_{11}-z \ln \sqrt{a_{01} a_{10}}\right)=-\ln \frac{\max \left(\lambda_{1}, \lambda_{2}\right)}{2} .
$$

Compare it with 8c2, there, $\max \left(\lambda_{1}, \lambda_{2}\right)=1$.
We may restrict ourselves to matrices A such that $a_{01}=a_{10}$ and moreover, $a_{01}=a_{10}=1$. Let

$$
A=\left(\begin{array}{cc}
\mathrm{e}^{u} & 1 \\
1 & \mathrm{e}^{v}
\end{array}\right)
$$

then

$$
\begin{gathered}
\lambda_{1,2}=\frac{\mathrm{e}^{u}+\mathrm{e}^{v}}{2} \pm \sqrt{\left(\frac{\mathrm{e}^{u}+\mathrm{e}^{v}}{2}\right)^{2}-\mathrm{e}^{u} \mathrm{e}^{v}+1}=\frac{\mathrm{e}^{u}+\mathrm{e}^{v}}{2} \pm \sqrt{\left(\frac{\mathrm{e}^{u}-\mathrm{e}^{v}}{2}\right)^{2}+1} \\
\max \left(\lambda_{1}, \lambda_{2}\right)=\frac{\mathrm{e}^{u}+\mathrm{e}^{v}}{2}+\sqrt{\left(\frac{\mathrm{e}^{u}-\mathrm{e}^{v}}{2}\right)^{2}+1}
\end{gathered}
$$

Therefore

$$
\min _{x, y \geq 0, x+y \leq 1}(I(x, y)-u x-v y)=-\ln \left(\frac{\mathrm{e}^{u}+\mathrm{e}^{v}}{4}+\frac{1}{2} \sqrt{\left(\frac{\mathrm{e}^{u}-\mathrm{e}^{v}}{2}\right)^{2}+1}\right) .
$$

We get the so-called Legendre-Fenchel transform of the rate function. (See also (3c4).) Does it determine I uniquely? How to calculate I ? Can we use the transform in order to prove LD-convergence (rather than assume it, as in 8e2)? These questions will be answered later (in Sect. 10).

Now, what about $\{0,1,2\}^{n}$ (in place of $\left.\{0,1\}^{n}\right)$? This case is similar, but leads to matrices 3×3 and a qubic (rather than quadratic) equation for their eigenvalues. Any finite alphabet may be treated this way. Accordingly one can investigate finite Markov chains and nearest-neighbor chains of higher spins.

On the other hand, return to $\{0,1\}^{n}$ but consider triples $\left(\beta_{1}, \beta_{2}, \beta_{3}\right),\left(\beta_{2}, \beta_{3}, \beta_{4}\right), \ldots$ (rather than pairs $\left.\left(\beta_{1}, \beta_{2}\right), \ldots\right)$. Identifying a triple $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ with the pair of pairs $\left(\left(\beta_{1}, \beta_{2}\right),\left(\beta_{2}, \beta_{3}\right)\right)$ we get a (special) four-state Markov chain. Longer blocks may be treated similarly.

See also [2, Sect. 3.1], [3, Sect. I.5], [1, Sect. V].

8f Dimension two

We turn to two-dimensional arrays $s \in\{-1,1\}^{n \times n}, s=\left(s_{i, j}\right)_{i, j \in\{1, \ldots, n\}}$. Blocks of size 2×2 consist of 4 numbers,

$$
\left(\begin{array}{cc}
s_{i, j} & s_{i, j+1} \\
s_{i+1, j} & s_{i+1, j+1}
\end{array}\right) \text {. }
$$

Their frequencies belong to $P\left(\{-1,1\}^{2 \times 2}\right)$. The corresponding distributions on $P\left(\{-1,1\}^{2 \times 2}\right)$ are LD-convergent (I give no proof). Can we calculate
the rate function explicitly? I do not know. Probably, not. What kind of function it is? How smooth? Analytic, or not? Convex, or not? I do not know. Physically, it means a two-dimensional array of spins with a general shift-invariant four-spin interaction.

We may restrict ourselves to blocks of sizes 2×1 and 1×2,

$$
\left(\begin{array}{ll}
s_{i, j} & s_{i, j+1}
\end{array}\right) \quad \text { and } \quad\binom{s_{i, j}}{s_{i+1, j}} .
$$

These are pairs of nearest neighbours, in other words, edges of the graph \mathbb{Z}^{2}. Treating them equally, we count the number K_{++}of pairs $(+1,+1)$ (both horizontal and vertical); the same for K_{+-}, K_{-+}, K_{--}. (The boundary may be treated in two ways that are equivalent, similarly to 8a4.) The frequencies are $x_{++}=\frac{K_{++}}{2 n^{2}}, x_{+-}=\frac{K_{+-}}{2 n^{2}}, x_{-+}=\frac{K_{-+}}{2 n^{2}}, x_{--}=\frac{K_{--}}{2 n^{2}}$. Still, it is too difficult, to write down the rate function.

Interestingly, the combination

$$
H(s)=-\frac{1}{2}\left(K_{++}+K_{--}-K_{+-}-K_{-+}\right)
$$

is tractable. It is well-known as the energy of the two-dimensional Ising model 1 (without external magnetic field). You see, neighbour spins tend to agree.

A very clever two-dimensional counterpart of the linear-algebraic approach (of 8e) was found in 1944 by Lars Onsager. ${ }^{2}$ I just formulate his result, with no proof. It gives us the Legendre-Fenchel transform of the rate function I of $x=x_{++}+x_{--}-x_{+-}-x_{-+}$, defined by $\|f\|_{L_{2 n^{2}}}\left(\mu_{n}\right) \rightarrow \max \left(|f| \mathrm{e}^{-I}\right)$. Namely,

$$
\begin{aligned}
\min _{x}\left(I(x)-\frac{1}{2} \beta x\right) & =-\lim _{n \rightarrow \infty} \frac{1}{2 n^{2}} \ln \left(2^{-n^{2}} \sum_{s} \mathrm{e}^{-\beta H(s)}\right)= \\
& =-\frac{1}{4 \pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \ln \left(\cosh ^{2} \beta-(\cos u+\cos v) \sinh \beta\right) \mathrm{d} u \mathrm{~d} v
\end{aligned}
$$

Introducing ε by $\sinh \beta=1+\varepsilon$ we have $\cosh \beta=1+(1+\varepsilon)^{2}$. The integrand becomes

$$
\ln \left(\varepsilon^{2}+2(1+\varepsilon)\left(\sin ^{2} \frac{u}{2}+\sin ^{2} \frac{v}{2}\right)\right)
$$

we observe a singularity at $\varepsilon=0, u=0, v=0$. Still, the integral converges also for $\varepsilon=0$, that is, at the critical point $\beta=\beta_{c}=\ln (1+\sqrt{2})$. However,

[^2]the integral is not an analytic function of ε (or β). Namely, the function
$$
\Lambda(\beta)=-\min _{x}\left(I(x)-\frac{1}{2} \beta x\right)
$$
near the critical point β_{c} satisfies
$$
\Lambda\left(\beta_{c}+\Delta \beta\right)-\Lambda\left(\beta_{c}\right)=\frac{\Delta \beta}{2 \sqrt{2}}+\frac{1}{2 \pi}(\Delta \beta)^{2}|\ln | \Delta \beta| |+O\left((\Delta \beta)^{2}\right)
$$

Accordingly, the (even) rate function I has critical points $\pm x_{c}, x_{c}=1 / \sqrt{2}$, and near x_{c}

$$
I\left(x_{c}+\Delta x\right)-I\left(x_{c}\right)=\frac{1}{2} \beta_{c} \Delta x+\frac{\pi}{2} \frac{(\Delta x)^{2}}{|\ln | \Delta x| |}(1+o(1)) .
$$

Physically, it means a phase transition. The heat capacity diverges,

$$
\frac{\mathrm{d}(\text { energy })}{\mathrm{d}(\text { temperature })}+\infty
$$

at the critical temperature.
See also [5, Sect. 9.3].

References

[1] J.A. Bucklev, Large deviation techniques in decision, simulation, and estimation, Wiley, 1990.
[2] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Jones and Bartlett publ., 1993.
[3] R.S. Ellis, Entropy, large deviations, and statistical mechanics, Springer, 1985.
[4] F. den Hollander, Large deviations, AMS, 2000.
[5] D. Yoshioka, Statistical physics, Springer, 2007.

[^0]: ${ }^{1}$ This ν_{n} is not related to the Markov chain...
 ${ }^{2}$ These $\frac{K}{n}$ are $\frac{K^{\prime \prime}}{n}$ of 8 a.

[^1]: ${ }^{1}$ Developed in 1926 by Ernst Ising (in his PhD dissertation); the young German-Jewish scientist was barred from teaching when Hitler came to power.

[^2]: ${ }^{1}$ Physicists multiply it by a constant J, but anyway, we will consider βH for an arbitrary β.
 ${ }^{2} \mathrm{~A}$ Norwegian chemist, and later Nobel laureate.

