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8a Introductory remarks

The following three questions are related more closely than it may seem.

8a1 Question. 100 children stay in a ring, 40 boys and 60 girls. Among the
100 pairs of neighbors, 20 pairs are heterosexual (a girl and a boy); others
are not. What about the number of all such configurations?

8a2 Question. A Markov chain with two states (0 and 1) is given via its
2×2-matrix of transition probabilities. What about the probability that the
state 1 occurs 60 times among the first 100?

8a3 Question. (Ising model) A one-dimensional array of n spin-1/2 par-
ticles is described by the configuration space {−1, 1}n. Each configuration
(s1, . . . , sn) ∈ {−1, 1}n has its energy

Hn(s1, . . . , sn) = −1

2
(s1s2 + · · ·+ sn−1sn)− h(s1 + · · ·+ sn) ;

here h ∈ R is a parameter. (It is the strength of an external magnetic field,
while the strength of the nearest neighbor coupling is set to 1.) What about
the dependence of the energy and the mean spin (s1 + · · ·+ sn)/n on h and
the temperature?

Tossing a fair coin n times we get a random element (β1, . . . , βn) of {0, 1}n,
and may consider the n− 1 pairs (β1, β2), (β2, β3), . . . , (βn−1, βn). We intro-
duce pair frequencies

K ′

n− 1
=

( K ′
00

n− 1
,
K ′

01
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,
K ′

10

n− 1
,
K ′

11
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)

∈ P
(
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)

,

K ′
ab = #{i = 1, . . . , n− 1 : βi = a, βi+1 = b} ,



Tel Aviv University, 2007 Large deviations 61

and their (joint) distribution

µ′
n ∈ P

(

P ({0, 1}2)
)

,
∫

f dµ′
n =

1

2n

∑

β∈{0,1}n

f
( K ′
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K ′
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K ′
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)

.

Alternatively, we may consider n pairs (β1, β2), (β2, β3), . . . , (βn−1, βn), (βn, β1),

the corresponding pair frequencies K ′′

n
=

(K ′′

00

n
,
K ′′

01

n
,
K ′′

10

n
,
K ′′

11

n

)

and their (joint)
distribution µ′′

n.

8a4 Exercise. LD-convergence of (µ′
n)n is equivalent to LD-convergence of

(µ′′
n)n, and their rate functions (if exist) are equal.
Prove it.
Hint: recall 5d.

You may say that what we call µ′
n should be called µ′

n−1 instead; but it
does not matter in the following sense.

8a5 Exercise. Let µn be probability measures on a compact metrizable
space K. Then LD-convergence of (µn)n is equivalent to LD-convergence of
(µn+1)n, and their rate functions (if exist) are equal.

Prove it.
Hint: similar to 2a17.

8a6 Exercise. Explain, why LD-convergence of (µ′
n)n cannot be derived

from Theorem 5a9 (Mogulskii’s theorem) combined with Theorem 2b1 (the
contraction principle).

8a7 Exercise. If the rate function I for (µ′
n)n, (µ

′′
n)n exists then

min{I(x00, x01, x10, x11) : x01 + x10 = z} = I0.5(z)

for all z ∈ [0, 1]. (See (3a5) for I0.5.)
Prove it.
Hint: consider the measure preserving map {0, 1}n → {0, 1}n−1, (β1, . . . , βn) 7→

(β1 ⊕ β2, β2 ⊕ β3, . . . , βn−1 ⊕ βn); here ‘⊕’ stands for the sum mod 2 (called
also XOR = ‘exclusive or’).

We turn to Markov chains. Let a 2× 2-matrix
(

p00 p01
p10 p11

)
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be given, pab ∈ [0, 1], p00+p01 = 1, p10+p11 = 1. In addition, let p0, p1 ∈ [0, 1]
be given such that p0 + p1 = 1. We define the probability of a history
(s0, . . . , sn) ∈ {0, 1}n+1 by

Pn(s0, . . . , sn) = ps0ps0,s1ps1,s2 . . . psn−1,sn ;

clearly, we get a probability measure Pn on {0, 1}n+1. The pair frequencies
K/n get their distribution νn,

∫

f dνn =
∑

s∈{0,1}n+1

f
(K00

n
,
K01

n
,
K10

n
,
K11

n

)

Pn(s) .

8a8 Exercise. LD-convergence of (νn)n does not depend on p0, p1 as long
as p0, p1 6= 0. Also the rate function (if exists) does not depend.

Prove it.
Hint: use 8a9 below.

8a9 Exercise. Let µn, νn be probability measures on a compact metrizable
space K. Assume that there exists C ∈ (0,∞) such that µn ≤ Cνn and νn ≤
Cµn for all n. Then LD-convergence of (µn)n is equivalent to LD-convergence
of (νn)n, and their rate functions (if exist) are equal.

Prove it.
Hint: C1/n → 1.

8a10 Exercise. Assuming that p00, p01, p10, p11 do not vanish, remove the
restriction p0, p1 6= 0 in 8a8.

Hint: similarly to 8a4, the pair (s0, s1) does not matter.

8a11 Exercise. LD-convergence of (νn)n does not depend on p00, p01, p10, p11
as long as they do not vanish.

Prove it.
Hint: similarly to 3a, 3b use Theorem 2c1 (titled LDP).

The rate function (if exists) does not depend on the initial probabilities
pa, but does depend on the transition probabilities pab; namely, the rate
function must contain (additively) the terms

−x00 ln p00 − x01 ln p01 − x10 ln p10 − x11 ln p11 .

It means that we may restrict ourselves to the simplest matrix

(

p00 p01
p10 p11

)

=

(

0.5 0.5
0.5 0.5

)

,
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thus reducing 8a2 to 8a1.
We turn to the array of spin-1/2 particles. The energy Hn(s1, . . . , sn)

depends on the spin configuration (s1, . . . , sn) ∈ {−1, 1}n only via pair fre-
quencies,

Hn(s1, . . . , sn) = (n− 1)
( K ′

+−

n− 1
+
K ′

−+

n− 1
− K ′

++

n− 1
− K ′

−−

n− 1

)

.

Similarly to 3d, we have the uniform distribution Un and the Gibbs measure
Gn on {−1, 1}n; dGn/dUn = constn · e−βHn . The distribution of K ′

n−1
w.r.t.

Un is µ′
n; the distribution of K ′

n−1
w.r.t. Gn is νn,

1

νn = constn · exp
(

− β(n− 1)
( K ′

+−

n− 1
+
K ′

−+

n− 1
− K ′

++

n− 1
− K ′

−−

n− 1

)

)

· µ′
n .

If (µ′
n)n satisfies LDP with a rate function I, then (νn)n satisfies LDP with

the rate function J ,

J
( K ′
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)

+β
( K ′

+−

n− 1
+
K ′

−+
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− K ′
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n− 1
− K ′

−−

n− 1

)

+const ,

and we may proceed as in 3d, taking into account that

s1 + · · ·+ sn
n

=
K ′′

++

n
+
K ′′

+−

n
−K

′′
−+

n
−K

′′
−−

n
≈ K ′

++

n− 1
+
K ′

+−

n− 1
− K ′

−+

n− 1
− K ′

−−

n− 1
.

8b Pair frequencies: combinatorial approach

We consider the cyclic pair frequencies2 K
n
for β ∈ {0, 1}n,

Kab(β) = #{i = 1, . . . , n : βi = a, βi+1 = b} for a, b ∈ {0, 1} ,

where βn+1 is interpreted as β1. Clearly, K01(β) = K10(β) and K00(β) +
K01(β) + K10(β) + K11(β) = n; thus, K01(β) = K10(β) =

1
2

(

n − K00(β) −
K11(β)

)

.
Let us denote by N(k00, k11) the number of all β ∈ {0, 1}n such that

K00(β) = k00 and K11(β) = k11.

1This νn is not related to the Markov chain. . .
2These K

n
are K

′′

n
of 8a.
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8b1 Lemma. Let k00, k11 ∈ {0, 1, 2, . . . } satisfy 1
2
(n−k00−k11) ∈ {1, 2, . . . },

then

1 ≤ N(k00, k11)
( 1

2
(n+k00−k11)−1

k00

)( 1

2
(n−k00+k11)−1

k11

)

≤ n .

Proof. Define k01 = k10 =
1
2
(n− k00 − k11). There exist exactly

(

k00+k01−1
k01−1

)

=
(

k00+k01−1
k00

)

partitions of the number k00 into k01 nonnegative integral sum-

mands; and similarly,
(

k11+k10−1
k11

)

partitions of k11 into k10 summands. Hav-
ing such partitions k00 = i1 + · · · + ik01 , k11 = j1 + · · · + jk10 , we construct
β ∈ {0, 1}n by concatenation:

β = 0i1+11j1+10i2+11j2+1 . . . 0ik01+11jk10+1 .

Clearly, K00(β) = k00, K11(β) = k11, and i1, . . . , ik01 , j1, . . . , jk10 are uniquely
determined by β. We see that the product

(

k00+k01−1
k00

)

·
(

k11+k10−1
k11

)

is the
number of all β ∈ {0, 1}n such that K00(β) = k00, K11(β) = k11, β1 = 0 and
βn = 1. The lemma follows.

The case n − k00 − k11 = 0 is special but harmless (think, why), we put
it aside. Denote

x =
k00
n
, y =

k11
n
, z = 1− x− y ,

(

=
k01 + k10

n

)

u = x+
z

2
=

1 + x− y

2
, (the frequency of zeros)

v = y +
z

2
=

1− x+ y

2
= 1− u .

Using 8b1,

(

N(k00, k11)
)

1/n ∼
(

nu− 1

nx

)1/n(
nv − 1

ny

)1/n

∼

∼
(

nu

nx

)1/n(
nv

ny

)1/n

=

(

(nu)!(nv)!

(nx)!(ny)!(nz/2)!2
)1/n

as n → ∞, uniformly in k00, k11. However, (na)!1/n ∼ (na/e)a uniformly in
a ∈ [0, 1] (recall the hint to 3a3). Thus,

(

N(k00, k11)
)

1/n ∼ (nu/e)u(nv/e)v

(nx/e)x(ny/e)y(nz/(2e))z
=

uuvv

xxyy(z/2)z
.

Let β be distributed uniformly on {0, 1}n, then the pair frequencies are
distributed µ′′

n (recall 8a).
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8b2 Exercise. (µ′′
n)n satisfies LDP with the rate function

I(x00, x01, x10, x11) = x ln x+ y ln y + z ln z − u lnu− v ln v + (1− z) ln 2 ,

where

x = x00 , y = x11 , z = 1− x− y = x01 + x10 ,

u = x+
z

2
=

1 + x− y

2
, v = y +

z

2
=

1− x+ y

2
= 1− u ,

and x00, x01, x10, x11 ∈ [0, 1] satisfy x00 + x01 + x10 + x11 = 1 and x01 = x10.
Prove it.
Hint: similar to 3a4.

We may write just

(8b3) I(x, y) = x ln x+ y ln y + (1− x− y) ln(1− x− y)−

− 1 + x− y

2
ln

1 + x− y

2
− 1− x+ y

2
ln

1− x+ y

2
+ (x+ y) ln 2 .

By 8a4, the same holds for (µ′
n)n.

By the weak law of large numbers (and a simple trick. . . ), µ′
n concentrate

near the point x00 = x01 = x10 = x11 = 0.25. At this point x = y = 0.25 and
z = u = v = 0.5, thus I(0.25, 0.25) = 2

4
ln 1

4
− 1

2
ln 1

2
+ 1

2
ln 2 = 0, as it should

be.

8b4 Exercise. Check by elementary calculation the equality of 8a7,

min
x+y=1−z

I(x, y) = I0.5(z) for z ∈ [0, 1] .

Hint: ∂
∂x
I(x, y) = ln x− ln z − 1

2
ln u+ 1

2
ln v + ln 2, ∂

∂y
I(x, y) = ln y − ln z +

1
2
ln u − 1

2
ln v + ln 2; take the difference; show that the minimum is reached

when x = y.

Think about the ‘proportion’

X

8b2
=

5a9

3a4
;

could you find X (formulate, or even prove)?
See also [4, Sect. II.2] for more than two states.
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8c Markov chains

We return to the Markov chain, assuming that the transition probabilities
pab do not vanish. The pair frequencies are distributed νn. Recall 8a8–8a11.

8c1 Exercise. (νn)n satisfies LDP with the rate function

J(x00, x01, x10, x11) = I(x00, x01, x10, x11)−
− x00 ln p00 − x01 ln p01 − x10 ln p10 − x11 ln p11 − ln 2 ,

that is,

J(x, y) = I(x, y)−x ln p00−y ln p11−
1 − x− y

2

(

ln(1−p00)+ln(1−p11)
)

−ln 2 ,

where I is given by (8b3).
Prove it.
Hint: in 2c1, cn = 2n (since p00 + p01 = 1 and p10 + p11 = 1).

8c2 Exercise. For all ϕ, ψ ∈ (0, π/2),

min
x,y≥0,x+y≤1

(

I(x, y) + x ln
sinϕ sinψ

cos2 ϕ
+ y ln

sinϕ sinψ

cos2 ψ

)

= ln(2 sinϕ sinψ) .

Prove it.
Hint: p00 = cos2 ϕ, p11 = cos2 ψ; use 2a19.

An elementary derivation of 8c2 is possible but more tedious. First, we
find the minimizer.

Let the function (x, y) 7→ I(x, y)+x ln sinϕ sinψ
cos2 ϕ

+y ln sinϕ sinψ
cos2 ψ

on the trian-

gle x, y ≥ 0, x+y ≤ 1 have a local minimum at (x, y). As before, z = 1−x−y,
u = (1 + x− y)/2, v = (1− x+ y)/2.

8c3 Exercise. (x, y) is an interior point (that is, x, y > 0, x+ y < 1), and

2 tanϕ tanψ
√
xy = z ,

xv cos2 ψ = yu cos2 ϕ .

Prove it.
Hint: take the sum and the difference of ∂

∂x
I(x, y), ∂

∂y
I(x, y) (used in

8b4).

8c4 Exercise. Prove that

x =
u(u− v) cos2 ϕ

u cos2 ϕ− v cos2 ψ
, y =

v(u− v) cos2 ψ

u cos2 ϕ− v cos2 ψ
.

Hint: both x− y and x/y can be expressed in terms of u, v.
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8c5 Exercise. Prove that

2(u− v) sinϕ sinψ =
√

1− (u− v)2 (cos2 ϕ− cos2 ψ) .

Hint: substitute 8c4 into the first equation of 8c3 and note that 2u = 1 +
(u− v), 2v = 1− (u− v).

8c6 Exercise. Prove that

x =
cos2 ϕ sin2 ψ

sin2 ϕ+ sin2 ψ
, y =

sin2 ϕ cos2 ψ

sin2 ϕ+ sin2 ψ
.

Hint: u− v = cos2 ϕ−cos2 ψ
sin2 ϕ+sin2 ψ

= sin2 ψ−sin2 ϕ
sin2 ϕ+sin2 ψ

.

The minimizer is found, and now we calculate the minimal value.

8c7 Exercise. Prove that

I(x, y) + x ln
sinϕ sinψ

cos2 ϕ
+ y ln

sinϕ sinψ

cos2 ψ
= ln(2 sinϕ sinψ) .

Hint: the left-hand side is x ln x
cos2 ϕ

+ y ln y
cos2 ψ

+ z ln z
2 sinϕ sinψ

− u lnu −
v ln v + ln(2 sinϕ sinψ); also z = 2 sin2 ϕ sin2 ψ

sin2 ϕ+sin2 ψ
and u = sin2 ψ

sin2 ϕ+sin2 ψ
.

This was the elementary derivation of 8c2.
However, there exists a simple probabilistic way to the minimizer! The

Markov chain has a unique stationary distribution (p0, p1),
{

p0p00 + p1p10 = p0 ,

p0p01 + p1p11 = p1 ;

p1p10 = p0p01 ;

p0 =
p10

p01 + p10
, p1 =

p01
p01 + p10

,

and every initial distribution converges to the stationary distribution (expo-
nentially fast, in fact). Thus, the measures νn converge to (an atom at) the
point

(x00, x01, x10, x11) = (p0p00, p0p01, p1p10, p1p11) .

Substituting p00 = cos2 ϕ, p11 = cos2 ψ we get

x00 =
cos2 ϕ sin2 ψ

sin2 ϕ+ sin2 ψ
, x11 =

sin2 ϕ cos2 ψ

sin2 ϕ+ sin2 ψ
;

just 8c6. . .
The rate functions examined above are of the form (x, y) 7→ I(x, y) +

Ax+By where I is given by (8b3) and A,B ∈ R. However, did we cover all
pairs (A,B) ∈ R

2? Yes, we did, as is shown below.
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8c8 Exercise. For every pair (a, b) ∈ (0,∞)2 there exists one and only one
pair (ϕ, ψ) ∈ (0, π/2)2 such that

sinϕ sinψ

cos2 ϕ
= a ,

sinϕ sinψ

cos2 ψ
= b .

Prove it.
Hint: consider the curve cosϕ

cosψ
=

√

b/a in the square (0, π/2)2 and check

that the equation tanϕ tanψ =
√
ab is satisfied exactly once on the curve.

8c9 Remark. Using the equality (1+tan2 ϕ) cos2 ϕ = 1 (and the same for ψ)
one can find ϕ, ψ explicitly. Namely, cos2 ϕ satisfies a quadratic equation. . .

8d Ising model (one-dimensional)

As was noted in 8a, the Ising model1 is described by the Gibbs measure Gn

on {−1, 1}n, dGn/dUn = constn · e−βHn , and the corresponding distribution
νn of pair frequencies. Also, LDP for (µ′

n)n implies LDP for (νn)n with the
rate function

J(x++, x+−, x−+, x−−) = I(x++, x+−, x−+, x−−)+

+ βH(x++, x+−, x−+, x−−) + const ,

where

H(x++, x+−, x−+, x−−) = −1

2
(x++ + x−− − x+− − x−+)− h(u− v) ,

u = x++ + x+− = x++ + x−+ ,

v = x−+ + x−− = x+− + x−− .

That is,

Jβ,h(x, y) = I(x, y) + βH(x, y) + const ,

H(x, y) = −1

2
(1− 2z)− h(x− y) ;

as before, z = 1− x− y, and I is given by (8b3).
Clearly, Jβ,h is a rate function of the form (x, y) 7→ I(x, y) + Ax + By

examined in 8c2–8c9. It has a single minimizer (xβ,h, yβ,h), and νn converge
to (the atom at) (xβ,h, yβ,h). The minimizer can be written out explicitly

1Developed in 1926 by Ernst Ising (in his PhD dissertation); the young German-Jewish
scientist was barred from teaching when Hitler came to power.
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by solving a quadratic equation (recall 8c9). Having the minimizer one can
calculate the energy H(xβ,h, yβ,h) and the mean spin xβ,h − yβ,h.

The dependence of xβ,h and yβ,h on β, h is (real-) analytic everywhere,
which means absence of phase transitions.

See also [5, Sect. 7.4.3].

8e Pair frequencies: linear algebra approach

Consider again the cyclic pair frequencies K ′′/n = K ′′(β1, . . . , βn)/n and
their distribution µ′′

n (introduced in 8a).

8e1 Exercise. For every matrix A =

(

a00 a01
a10 a11

)

,

∑

β1,...,βn

aK00

00 aK01

01 aK10

10 aK11

11 = trace(An) .

Prove it.
Hint: straight from definitions (of matrix multiplication and trace).

Denote by λ1, λ2 the eigenvalues of A, then λ1+λ2 = trace(A), and λn1 , λ
n
2

are the eigenvalues of An, therefore

trace(An) = λn1 + λn2 .

Assume that a00 > 0, a01 > 0, a10 > 0, a11 > 0, then λ1 + λ2 > 0 and
(

trace(An)
)

1/n → max(λ1, λ2) as n→ ∞ .

8e2 Exercise. If (µ′′
n)n satisfies LDP with a rate function I, then

min
x

(

I(x00, x01, x10, x11)− x00 ln a00 − x01 ln a01 − x10 ln a10 − x11 ln a11
)

=

= − ln
max(λ1, λ2)

2
.

Prove it (not using 8b).
Hint: consider

∫

fn dµ′′
n for f(x00, x01, x10, x11) = ax0000 a

x01
01 a

x10
10 a

x11
11 .

Taking into account that K01 = K10 and K00 +K01 +K10 +K11 = n we
may restrict ourselves to x01 = x10 and x00 + x01 + x10 + x11 = 1. Thus we
take x = x00, y = x11 and get x01 = x10 = z/2 where z = 1 − x − y. Using
I(x, y) instead of I(x00, x01, x10, x11) we get

min
x,y≥0,x+y≤1

(

I(x, y)− x ln a00 − y ln a11 − z ln
√
a01a10

)

= − ln
max(λ1, λ2)

2
.
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Compare it with 8c2; there, max(λ1, λ2) = 1.
We may restrict ourselves to matrices A such that a01 = a10 and moreover,

a01 = a10 = 1. Let

A =

(

eu 1
1 ev

)

,

then

λ1,2 =
eu + ev

2
±
√

(eu + ev

2

)2

− euev + 1 =
eu + ev

2
±

√

(eu − ev

2

)2

+ 1 ;

max(λ1, λ2) =
eu + ev

2
+

√

(eu − ev

2

)2

+ 1 .

Therefore

min
x,y≥0,x+y≤1

(

I(x, y)− ux− vy
)

= − ln

(

eu + ev

4
+

1

2

√

(eu − ev

2

)2

+ 1

)

.

We get the so-called Legendre-Fenchel transform of the rate function. (See
also (3c4).) Does it determine I uniquely? How to calculate I? Can we use
the transform in order to prove LD-convergence (rather than assume it, as
in 8e2)? These questions will be answered later (in Sect. 10).

Now, what about {0, 1, 2}n (in place of {0, 1}n)? This case is similar, but
leads to matrices 3×3 and a qubic (rather than quadratic) equation for their
eigenvalues. Any finite alphabet may be treated this way. Accordingly one
can investigate finite Markov chains and nearest-neighbor chains of higher
spins.

On the other hand, return to {0, 1}n but consider triples
(β1, β2, β3), (β2, β3, β4), . . . (rather than pairs (β1, β2), . . . ). Identifying
a triple (β1, β2, β3) with the pair of pairs ((β1, β2), (β2, β3)) we get a (special)
four-state Markov chain. Longer blocks may be treated similarly.

See also [2, Sect. 3.1], [3, Sect. I.5], [1, Sect. V].

8f Dimension two

We turn to two-dimensional arrays s ∈ {−1, 1}n×n, s = (si,j)i,j∈{1,...,n}.
Blocks of size 2× 2 consist of 4 numbers,

(

si,j si,j+1

si+1,j si+1,j+1

)

.

Their frequencies belong to P
(

{−1, 1}2×2
)

. The corresponding distributions
on P

(

{−1, 1}2×2
)

are LD-convergent (I give no proof). Can we calculate
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the rate function explicitly? I do not know. Probably, not. What kind of
function it is? How smooth? Analytic, or not? Convex, or not? I do not
know. Physically, it means a two-dimensional array of spins with a general
shift-invariant four-spin interaction.

We may restrict ourselves to blocks of sizes 2× 1 and 1× 2,

(

si,j si,j+1

)

and

(

si,j
si+1,j

)

.

These are pairs of nearest neighbours, in other words, edges of the graph Z
2.

Treating them equally, we count the number K++ of pairs (+1,+1) (both
horizontal and vertical); the same for K+−, K−+, K−−. (The boundary may
be treated in two ways that are equivalent, similarly to 8a4.) The frequencies
are x++ = K++

2n2 , x+− = K+−

2n2 , x−+ = K−+

2n2 , x−− = K−−

2n2 . Still, it is too difficult,
to write down the rate function.

Interestingly, the combination

H(s) = −1

2
(K++ +K−− −K+− −K−+)

is tractable. It is well-known as the energy of the two-dimensional Ising
model1 (without external magnetic field). You see, neighbour spins tend to
agree.

A very clever two-dimensional counterpart of the linear-algebraic ap-
proach (of 8e) was found in 1944 by Lars Onsager.2 I just formulate his result,
with no proof. It gives us the Legendre-Fenchel transform of the rate func-
tion I of x = x+++x−−−x+−−x−+, defined by ‖f‖L

2n2
(µn) → max(|f |e−I).

Namely,

min
x

(

I(x)− 1

2
βx

)

= − lim
n→∞

1

2n2
ln
(

2−n
2
∑

s

e−βH(s)
)

=

= − 1

4π2

∫ π

0

∫ π

0

ln
(

cosh2 β − (cosu+ cos v) sinh β
)

dudv .

Introducing ε by sinh β = 1+ ε we have cosh β = 1+(1+ ε)2. The integrand
becomes

ln
(

ε2 + 2(1 + ε)(sin2 u
2
+ sin2 v

2
)
)

;

we observe a singularity at ε = 0, u = 0, v = 0. Still, the integral converges
also for ε = 0, that is, at the critical point β = βc = ln(1 +

√
2). However,

1Physicists multiply it by a constant J , but anyway, we will consider βH for an arbitrary
β.

2A Norwegian chemist, and later Nobel laureate.



Tel Aviv University, 2007 Large deviations 72

the integral is not an analytic function of ε (or β). Namely, the function

Λ(β) = −min
x

(

I(x)− 1

2
βx

)

near the critical point βc satisfies

Λ(βc +∆β)− Λ(βc) =
∆β

2
√
2
+

1

2π
(∆β)2

∣

∣ ln |∆β|
∣

∣+O
(

(∆β)2
)

.

Accordingly, the (even) rate function I has critical points ±xc, xc = 1/
√
2,

and near xc

I(xc +∆x)− I(xc) =
1

2
βc∆x+

π

2

(∆x)2
∣

∣ ln |∆x|
∣

∣

(

1 + o(1)
)

.

Physically, it means a phase transition. The heat capacity diverges,

d(energy)

d(temperature)
+∞

at the critical temperature.
See also [5, Sect. 9.3].
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