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A simple example of a non-compact space is R. Here is an instructive
example of a seminorm on the Banach space Cb(R) of all bounded continuous
functions on R;

‖f‖ = lim sup
|x|→∞

|f(x)| .

It satisfies (2a1), (2a2) and (2a6), however, it is not of the form sup(|f |Π).
We feel that it is situated at the points ±∞ of the extension [−∞,∞] of R,
not on R itself. We exclude such seminorms by requiring

fk ↓ 0 pointwise =⇒ ‖fk‖ → 0

for all f1, f2, · · · ∈ Cb(R).

9a Large deviations principle (LDP)

Let X be a Polish space, that is, a separable topological space metrizable by
a complete metric.

All bounded continuous functions X → R are a (generally, nonseparable)
Banach space Cb(X ).

All (Borel) probability measures on X are a set P (X ). Every µ ∈ P (X )
gives us a linear functional Cb(X ) → R,

f 7→
∫

f dµ .

The linear functional determines µ uniquely.
Let numbers p1, p2, · · · ∈ [1,∞) be given such that pn → ∞.
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9a1 Definition. (a) A sequence (µn)n of probability measures on a Polish
space X is LD-convergent with rate (pn)n, if the limit

‖f‖lim = lim
n→∞

(
∫

|f |pn dµn

)1/pn

exists for all f ∈ Cb(X ), and

(9a2) fk ↓ 0 pointwise =⇒ ‖fk‖lim → 0

for all fk ∈ Cb(X ).
(b) The sequence (µn)n satisfies LDP with rate (pn)n and rate function I

(a function X → [0,∞] such that I−1([0, c]) is compact for every c < ∞), if

lim
n→∞

(
∫

|f |pn dµn

)1/pn

= max
x∈X

(

|f(x)|e−I(x)
)

for all f ∈ Cb(X ).

If X is compact then (9a2) is satisfied automatically (since it holds for
the sup-norm). If X is not compact then (9a2) is violated by the sup-norm
(see 9a4 below).

By a rate function (on X ) we mean just a function I : X → [0,∞] such
that I−1([0, c]) is compact for every c < ∞. A compact set being always
closed, a rate function is lower semicontinuous. (See also 9c1.)

On R (or R
d), a lower semicontinuous function I is a rate function if and

only if I(x) → ∞ as x → ±∞ (think, why).

9a3 Exercise. Let I be a rate function (on X ). Then
(a) I reaches its minimum on every closed set;
(b) the maximum of |f |e−I on X is reached for every f ∈ Cb(X );
(c) the seminorm ‖ · ‖I on Cb(X ) defined by

‖f‖I = max
X

(|f |e−I)

satisfies (2a1), (2a2), (2a6) and (9a2).
Prove it.

9a4 Exercise. Let I : X → [0,∞] be a lower semicontinuous function. If
the seminorm f 7→ supX (|f |e−I) satisfies (9a2) then I is a rate function.

Prove it.
Hint: otherwise, take ε and x1, x2, · · · ∈ X such that I(xk) ≤

ε and dist(xk, xl) ≥ 2ε whenever k 6= l; consider fn(x) =
(

1 −
1
ε
dist(x, {xn, xn+1, . . . })

)

+.
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9a5 Exercise. Let I1, I2 : X → [0,∞] be lower semicontinuous. If supX (|f |e−I1) =
supX (|f |e−I2) for all f ∈ Cb(X ) then I1 = I2.

Prove it.
Hint: similar to 2a12.

We generalize 2a11 and 2a14 as follows.

9a6 Proposition. Let a seminorm ‖ · ‖ on Cb(X ) satisfy (2a1), (2a2), (2a6)
and (9a2). Then the function I : X → [0,∞] defined by

eI(x) = sup{f(x) : ‖f‖ ≤ 1}
is a rate function, and

‖f‖ = max
X

(

|f |e−I
)

for all f ∈ Cb(X ) .

9a7 Exercise. Prove Proposition 9a6.
Hint: recall 4a. Given f and ε, find g1, g2, . . . such that ‖gk‖ ≤ 1 and

g1∨g2∨· · · > |f |−ε on X . Apply (9a2) to the functions (|f |−ε−g1∨· · ·∨gn)+.

9a8 Corollary. If (µn)n is LD-convergent (with rate (pn)n) then (µn)n sat-
isfies LDP (with rate (pn)n) with one and only one rate function I, namely,

eI(x) = sup{f(x) : lim
n→∞

‖f‖Lpn(µn) ≤ 1} .

9a9 Exercise. Prove Corollary 9a8.

Similarly to 2a19,

(9a10) min
x∈X

I(x) = 0 .

9b Contraction principle, and ‘tilted LDP’

Let X1,X2 be Polish spaces, F : X1 → X2 a continuous map, (µn)n a sequence
of probability measures on X1, and (νn)n its image on X2 (that is, νn(B) =
µn(F−1(B)) for Borel sets B ⊂ X2).

9b1 Theorem. (a) If (µn)n is LD-convergent (with rate (pn)n), then (νn)n

is LD-convergent (with rate (pn)n).
(b) If (µn)n satisfies LDP with rate (pn)n and rate function I1, then (νn)n

satisfies LDP with rate (pn)n and rate function I2 defined by

I2(y) = min{I1(x) : x ∈ X1, F (x) = y} .

If F−1({y}) = ∅ then the minimum is +∞ by definition. Otherwise, the
minimum is reached by 9a3(a).

9b2 Exercise. Prove Theorem 9b1.
Hint: similar to 2b2. And do not forget to prove that I2 is a rate function.

9b3 Exercise. Generalize Theorem 2c1 to Polish spaces.
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9c The probability decay rate

First, the notion of semicontinuity.

9c1 Exercise. Generalize 2a8, 2a9 to Polish spaces.
Hint: when proving (a)=⇒(d), enforce ϕ(·) > 0 by a transformation (say,

eϕ(·)), and then consider fn(x) = max{c : ∀y (dist(x, y) < c/n =⇒ ϕ(y) ≥
c) }. You get continuous (but generally unbounded) functions.

Let (µn)n satisfy LDP with rate (pn)n and rate function I.

9c2 Exercise. Let f : X → R.
(a) If |f | is lower semicontinuous then

lim inf
n

‖f‖Lpn(µn) ≥ sup
X

(|f |e−I) ;

(b) if |f | is bounded and upper semicontinuous then

lim sup
n

‖f‖Lpn(µn) ≤ max
X

(|f |e−I) .

Prove it.
Hints: (a): similar to 4b3(a);

(b): compactness is essential for 4b1(b), but the relation maxX (fje
−I) ↓

maxX (|f |e−I) holds provided that f1 is bounded.

9c3 Exercise. Generalize Corollaries 4b4 and 4b6 to Polish spaces.

9d Exponential tightness

First, the usual tightness.

9d1 Exercise. Let µ be a probability measure on X . Then for every ε > 0
there exists a finite set S ⊂ X such that µ(S+ε) ≥ 1 − ε. (Recall (4b9).)

Prove it.
Hint: take x1, x2, . . . dense in X and observe that µ

(

{x1, . . . , xn}+ε

)

→ 1
as n → ∞.

9d2 Exercise. Let µ be a probability measure on X . Then for every ε > 0
there exists a compact set K ⊂ X such that µ(K) ≥ 1 − ε.

Prove it.
Hint: take finite sets Sn such that

∑

n

(

1−µ
(

(Sn)+1/n

))

≤ ε and consider
K = ∩n(Sn)+1/n.
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9d3 Exercise. The following three conditions on probability measures µ1, µ2, . . .
on X are equivalent:

(a) for every ε > 0 there exists a compact set K ⊂ X such that

sup
n

(

1 − µn(K)
)

≤ ε ;

(b) for every ε > 0 there exists a compact set K ⊂ X such that

lim sup
n→∞

(

1 − µn

(

K+ε

))

≤ ε ;

(c) for every ε > 0 there exists a finite set S ⊂ X such that

sup
n

(

1 − µn

(

S+ε

))

≤ ε .

Prove it.
Hint: the implications (c)=⇒(b) and (a)=⇒(b) are trivial; using 9d1 it is

not difficult to prove the implication (b)=⇒(c); for proving the implication
(c)=⇒(a), do in the spirit of 9d2: take finite sets Sk such that

∑

k supn

(

1 −
µn

(

(Sk)+1/k

))

≤ ε and consider K = ∩k(Sk)+1/k.

9d4 Definition. A sequence (µn)n of probability measures on X is tight, if
it satisfies the equivalent conditions 9d3(a)–(c).

You may add two more conditions to (b), (c) by choosing independently
between lim sup and sup on one hand, and between K and S on the other
hand. You may also add one more condition to (a), replacing sup with
lim sup. This way you get 2 + 2 · 2 = 6 equivalent definitions of tightness!

The weak convergence of probability measures on X is defined by

µn → µ ⇐⇒ ∀f ∈ Cb(X )

∫

f dµn →
∫

f dµ

for µ, µn ∈ P (X ).

9d5 Proposition. Every tight sequence contains a (weakly) convergent sub-
sequence.

Proof. (sketch) If X is compact then Cb(X ) is separable, and the diago-
nal argument works. In general, we take compact sets Ki ⊂ X such that
µn(Ki) ≥ 1/i for all n and i, and apply the said above to each Ki. Using the
diagonal argument again we get a subsequence (µnk

)k such that the limit

lim
k→∞

∫

Ki

f dµnk
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exists for every f ∈ Cb(X ) and every i. However,
∫

Ki

f dµnk
→

∫

X
f dµnk

as i → ∞

uniformly in k.

In fact, a subset of P (X ) is tight if and only if its closure is (weakly)
compact (Prohorov’s theorem), but we do not need it.

Now we turn to exponential tightness.

9d6 Exercise. The following three conditions on probability measures µ1, µ2, . . .
on X are equivalent:

(a) for every ε > 0 there exists a compact set K ⊂ X such that

sup
n

(

1 − µn(K)
)

1/pn ≤ ε ;

(b) for every ε > 0 there exists a compact set K ⊂ X such that

lim sup
n→∞

(

1 − µn

(

K+ε

))

1/pn ≤ ε ;

(c) for every ε > 0 there exists a finite set S ⊂ X such that

sup
n

(

1 − µn

(

S+ε

))

1/pn ≤ ε .

Prove it.
Hint: similar to 9d3; (c)=⇒(a):

(

1−µn(K)
)

1/pn ≤
(
∑

k

(

1−µn((Sk)+1/k)
))

1/pn ≤
∑

k

(

1 − µn((Sk)+1/k)
)

1/pn .

9d7 Definition. A sequence (µn)n of probability measures on X is exponen-

tially tight with rate (pn)n, if it satisfies the equivalent conditions 9d6(a)–(c).

Once again, you may get 6 equivalent definitions. . .

9d8 Exercise. Every LD-convergent (with rate (pn)n) sequence is exponen-
tially tight (with rate (pn)n).

Prove it.
Hint: 9d6(b), and 4b4(b) via 9c3.

9d9 Exercise. Let (µn)n be exponentially tight (with rate (pn)n), and the
limit ‖f‖lim = limn→∞ ‖f‖Lpn(µn) exists for all f ∈ Cb(X ). Then ‖f‖lim

satisfies (9a2), and therefore (µn)n ls LD-convergent (with rate (pn)n).
Prove it.
Hint:

∫

X |f |pn dµn =
∫

K
|f |pn dµn +

∫

X\K |f |pn dµn ≤
(

maxK |f |
)

pn +
(

ε maxX |f |
)

pn.
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9d10 Proposition. Let a sequence (µn)n be exponentially tight with rate
(pn)n. Then there exist n1 < n2 < . . . such that the sequence (µnk

)k is
LD-convergent with rate (pnk

)k.

9d11 Exercise. Prove Proposition 9d10.
Hint: similar to (the proof of) Proposition 9d5, but consider ‖f‖Lpn(µn)

rather than
∫

f dµn. And use 9d9.

9e Inverse contraction principle

Let X1,X2 be Polish spaces, F : X1 → X2 a continuous map, (µn)n a sequence
of probability measures on X1, and (νn)n its image on X2 (that is, νn(B) =
µn(F−1(B)) for Borel sets B ⊂ X2).

9e1 Theorem. Assume that F is one-to-one and (µn)n is exponentially tight
(with rate (pn)n), then

(a) if (νn)n is LD-convergent (with rate (pn)n), then (µn)n is LD-convergent
(with rate (pn)n);

(b) if (νn)n satisfies LDP with rate (pn)n and rate function I2, then (µn)n

satisfies LDP with rate (pn)n and rate function I1 defined by

I1(x) = I2(F (x)) for x ∈ X1 .

Proof. (a) Assume the contrary: (µn)n is not LD-convergent. Using 9d9 we
find f ∈ Cb(X1) such that ‖f‖Lpn(µn) does not converge (as n → ∞). We
choose n1 < n2 < . . . and n′

1 < n′
2 < . . . such that

lim
k

‖f‖Lpnk
(µnk

) 6= lim
k

‖f‖Lp
n′

k

(µn′

k
)

(both limits exist, but differ). Using 9d10 we may assume that (µnk
)k is

LD-convergent with rate (pnk
)k, and (µn′

k
)k is LD-convergent with rate (pn′

k
)k.

The corresponding rate functions I1, I
′
1 on X1 differ, since maxX

(

|f |e−I1
)

6=
maxX

(

|f |e−I′
1

)

. By Theorem 9b1, I1 satisfies I2(y) = min{I1(x) : F (x) = y},
thus, I2(F (x)) = I1(x) for all x. Similarly, I2(F (x)) = I ′

1(x) for all x,
therefore I1 = I2; a contradiction.

(b) The relation I1(·) = I2(F (·)) was verified when proving (a).

See also [1, Th. 4.2.4, p. 111]; [2, Lemma 3.12, p. 48].
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9f Example: endless random walk

We return to the situation of 7a,

Xn

(k

n

)

=
s1 + · · · + sk

n
+ v

k

n
, P

(

sk = −1
)

= P
(

sk = +1
)

=
1

2
,

v ∈ (0, 1). The events

An : ∃k Xn

(k

n

)

≤ −1

cannot be treated via 4b6, since the open set

{w : inf
t

w(t) < −1}

is dense in the corresponding compact space (recall 7a, after (7a1)). Indeed,
any change of w after a large t is a small change. This is the product topology
(recall (5b6)).

In terms of the process

Yn

(k

n

)

=
s1 + · · ·+ sk

n
,

related to Xn by Xn(t) = Yn(t) + vt, we deal with the dense open set

{w : inf
t

(w(t) + vt) < −1} = {w : ∃t w(t) < −vt − 1}

in the compact space denoted in 7e by Lip(1).
Given a continuous function h : [0,∞) → (0,∞) such that 1 ≪ h(t) ≪ t

for large t (that is, h(t) → ∞ and h(t)/t → 0 as t → ∞), we introduce the
set

Xh = {w ∈ Lip(1) : w(·) = o(h(·))}
(that is, w(t)/h(t) → 0 as t → ∞) and equip it with the metric

dist(w, w′) = max
t

|w(t) − w′(t)|
h(t)

.

9f1 Exercise. Xh is a Polish space.
Prove it.
Hint: Xh is isometric to a closed subet of C[0,∞] (not just C[0,∞)).
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9f2 Exercise. The closure of the open set

G = {w ∈ Xh : min
t

(w(t) + vt) < −1}

in Xh is
G = {w ∈ Xh : min

t
(w(t) + vt) ≤ −1} .

Prove it.
Hint: first, explain why the minimum is reached.

As before, we endow Lip(1) with the topology of locally iniform conver-
gence.

9f3 Exercise. The embedding Xh → Lip(1) is continuous.
Prove it.

The distribution µn of the process Yn is a probability measure on Lip(1).
We want to choose h such that µn(Xh) = 1 and moreover, (µn)n is exponen-
tially tight in Xh (not just in Lip(1)).

9f4 Exercise. For every n and c > 0,

P

(s1 + · · ·+ sn√
n

≥ c
)

≤ exp(−c2/2) .

Prove it.
Hint:

P
(

s1 + · · ·+ sn ≥ c
√

n
)

≤ E exp
(

λ(s1 + · · ·+ sn)
)

exp(λc
√

n)
≤ exp

(nλ2

2
− λc

√
n
)

for λ > 0; choose the optimal λ.

9f5 Exercise. Prove that1

lim sup
n→∞

s1 + · · ·+ sn√
2n ln n

≤ 1 a.s.

Hint:
∑

n P
(

s1 + · · ·+ sn ≥ c
√

2n ln n
)

< ∞ for c > 1.

1In fact, by the law of the iterated logarithm,

lim sup
n→∞

s1 + · · · + sn√
2n ln lnn

= 1 a.s.,

but we do not need it.



Tel Aviv University, 2007 Large deviations 82

We get µn(Xh) = 1 provided that
√

t ln t = o(h(t)), that is, h(t)√
t ln t

→ ∞
as t → ∞.

9f6 Exercise. For every n and c > 0,

P
(

∃t Yn(t) ≥ c
√

(t + 1) ln(t + 2)
)

≤ 2−nc2/2

1 − 2−c2/2
.

Prove it.
Hint:

∞
∑

k=0

exp
(

− 1

2
c2(n + k) ln

(k

n
+ 2

))

≤ 2−nc2/2
∞

∑

k=0

2−kc2/2 .

9f7 Exercise. If h(t)√
t ln t

→ ∞ as t → ∞ then (µn)n is exponentially tight in
Xh.

Prove it.
Hint: {w ∈ Lip(1) : ∀t |w(t)| ≤ c

√

(t + 1) ln(t + 2)} is a compact set in
Xh.

Combining 9f7, 9f3 and Theorem 9e1 we conclude that (µn)n ls LD-convergent

in Xh provided that h(t)√
t ln t

→ ∞ as t → ∞. It satisfies LDP in Xh with the
rate function

J(w) =

∫ ∞

0

J0

(

w′(t)
)

dt .

Finally, combining 9f2, 4b6 and 7a we get

(

P
(

An

))

1/n → exp
(

− min
t>0

tJ0

(1

t
+ v

))

as n → ∞ .
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