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2a Typical sequences

We introduce a shift operator

T : {0, 1}∞ → {0, 1}∞ , (Tx)(k) = x(k + 1) .

It is continuous, onto, and not one-to-one (in fact, two-to-one). If f is a
continuous function {0, 1}∞ → R then f ◦ T is also a continuous function
{0, 1}∞ → R, but in addition it is insensitive to the first coordinate x(1)
of x ∈ {0, 1}∞. Likewise, f ◦ T n is insensitive to x(1), . . . , x(n). If F is
a closed subset of {0, 1}∞ then its inverse image T−1(F ) is also a closed
subset of {0, 1}∞, but insensitive to the first coordinate. Likewise, T−n(F )
is insensitive to x(1), . . . , x(n). The same holds for open sets.

Similarly, for every measurable A ⊂ {0, 1}∞ the set T−1(A) is also mea-
surable, and µ(T−1(A)) = µ(A). (Hint: T−1(A) = {0, 1} × A.) Thus,
µ(T−n(A)) = µ(A).

2a1 Exercise. If U ⊂ {0, 1}∞ is a nonempty open set then the set
lim supn T

−n(U) is comeager.
Prove it.

That is, T nx ∈ U infinitely often, for quasi all x.
It follows easily that the set {T nx : n = 1, 2, . . . } is dense in {0, 1}∞ for

quasi all x.
Similarly, if A ⊂ {0, 1}∞ is a measurable set of positive measure then the

set lim supn T
−n(U) is of full measure.1 That is, T nx ∈ A infinitely often, for

almost all x. The two approaches agree here. But. . .

1This fact follows from Kolmogorov’s 0–1 law. Moreover, 1
n

∑n
k=1 1lT−n(U) → µ(U)

almost surely by the ergodic theorem.
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2a2 Exercise. If Un ⊂ {0, 1}∞ are nonempty open sets then the set
lim supn T

−n(Un) is comeager.
Prove it.

In contrast, if An ⊂ {0, 1}∞ are measurable sets of positive measure such
that

∑
n µ(An) < ∞ then

∑
n µ(T−n(An)) < ∞, and by the Borel-Cantelli

lemma, lim supn T
−n(An) is a null set.

A wonder: many sets of the form lim supn T
−n(Un) are null sets, and

nevertheless, two such sets are never disjoint. Moreover, countably many
such sets always have nonempty intersection.

2a3 Exercise. If f : {0, 1}∞ → R is a continuous function then
lim supn f ◦T n = max f quasi-everywhere. (That is, the function lim supn f ◦
T n is quasi-everywhere equal to the number max f = maxx∈{0,1}∞ f(x).)

Prove it.

Similarly, lim supn f ◦ T n = ess sup f almost everywhere for every mea-
surable f : {0, 1}∞ → R. But. . .

2a4 Exercise. If fn : {0, 1}∞ → R are continuous functions then
lim supn fn ◦ T n = lim supn(max fn) quasi-everywhere.

Prove it.

2a5 Exercise. Assume that fn : {0, 1}∞ → R are measurable functions, and
pn ∈ (1,∞) satisfy pn

logn
→∞. Then

lim sup
n

fn ◦ T n ≤ lim sup
n
‖fn‖pn almost everywhere.

Here ‖fn‖pn =
(∫
|fn|pn

)
1/pn .

Prove it.

It can happen that lim supn ‖fn‖pn < lim supn(max fn) for continuous fn.
(Try indicators of small closed-and-open sets.)

2a6 Exercise. If fn : {0, 1}∞ → R and gn : {0, 1}∞ → R are contin-
uous functions such that fn ◦ T n − gn → 0 uniformly then lim supn gn =
lim supn(max gn) quasi-everywhere.

Prove it.

That holds also for fn ◦ T kn provided that kn →∞. In particular, recall
1e1(b):

gn(x) =
x(1) + · · ·+ x(n)

n
;
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choose kn →∞ such that kn
n
→ 0; note that max |gn − gn ◦ T kn| ≤ 2kn

n
→ 0;

now 1e1(b) follows.
Given a set A ⊂ {0, 1}∞, we define its projection to {0, 1}n:

A[1 : n] = {x[1 : n] : x ∈ A}

where
x[1 : n] = (x(1), . . . , x(n)) .

2a7 Exercise. If Un ⊂ {0, 1}∞ are open sets such that Un[1 : n] = {0, 1}n
then the set lim supn Un is comeager.

Prove it. Deduce 1e2(b) and 1e4(a) as special cases.

Consider the set {0, 1}∞ =
⋃∞

n=1{0, 1}n of all finite sequences. The
concatenation x · y ∈ {0, 1}∞ of two finite sequences x, y ∈ {0, 1}∞ is
(x1, . . . , xm, y1, . . . , yn) for x = (x1, . . . , xm) and y = (y1, . . . , yn). Given a
map f : {0, 1}∞ → {0, 1}∞, we introduce for every n a set Un ⊂ {0, 1}∞ of
all infinite sequences x that begin with the concatenation x[1 : n] ·f(x[1 : n]).
Clearly, Un is open (and closed), Un[1 : n] = {0, 1}n. By 2a7, the set
Af = lim supn Un is comeager. Note that f(x[1 : n]) may be much longer
than x[1 : n] (and the length of f(x[1 : n]) may depend on x[1 : n]).

The intersection of Af over all f is of course empty (think, why). How-
ever, for countably many functions f the intersection is still comeager. In
particular, all computable f are a countable set. Thus, a generic x ∈ {0, 1}∞
satisfies the following:

for every computable f : {0, 1}∞ → {0, 1}∞,

for infinitely many n,

x begins with x[1 : n] · f(x[1 : n]).

(Of course, the infinite set of n depends not only on x but also on f .)

We turn to products. Given n1, n2, · · · ∈ {1, 2, 3, . . . } we have

{0, 1}∞ = {0, 1}n1 × {0, 1}n2 × . . . ,
x =

(
x[1 : n1], x[n1 + 1 : n1 + n2], . . .

)
,

x[n : n+ k] =
(
x(n), . . . , x(n+ k)

)
.

Accordingly, given nonempty A1 ⊂ {0, 1}n1 , A2 ⊂ {0, 1}n2 , . . . we have
A1 × A2 × · · · ⊂ {0, 1}∞, and

µ(A1 × A2 × . . . ) = µn1(A1)µn2(A2) . . .
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be the infinite product convergent (to a positive number) or divergent (to
zero). Thus

µ(A1 × A2 × . . . ) > 0 ⇐⇒
∞∑
k=1

(
1− µnk

(Ak)
)
<∞ ,

which is closely related to the two Borel-Cantelli lemmas.
The product set A1×A2× . . . is closed; it is also nowhere dense provided

that Ak 6= {0, 1}nk for infinitely many k (otherwise it is closed-and-open).
Interestingly, every nowhere dense set is contained in some nowhere dense
product set (see below).

Consider

A[n :∞] = {x[n :∞] : x ∈ A} , x[n :∞] = (x(n), x(n+ 1), . . . ) .

2a8 Exercise. If A is nowhere dense then A[n :∞] is nowhere dense.
Prove it.

Given a nowhere dense A ⊂ {0, 1}∞, we take n1 and x1 ∈ {0, 1}n1 such
that x[1 : n1] 6= x1 for all x ∈ A. Then we take n2 and x2 ∈ {0, 1}n2 such that
x[1 : n2] 6= x2 for all x ∈ A[n1 + 1 : ∞], that is, x[n1 + 1 : n1 + n2] 6= x2 for
all x ∈ A. And so on. We get A ⊂ A1×A2× . . . where Ak = {0, 1}nk \ {xk}.

What if A is a closed null set? Then it is nowhere dense and therefore
contained in some nowhere dense product set. However, what about the
measure of this product set? Can we make it zero? Or at least, small? I do
not know.

2b Random walk and conditioning

Functions Sn : {0, 1}∞ → Z,

Sn(x) =
n∑

k=1

(2x(k)− 1)

are a random walk, — a random element of the set of all sequences (s0, s1, s2, . . . )
such that s0 = 0 and sn+1 − sn = ±1. By 1e1,

lim
n

Sn(x)

n
= 0 for almost all x,

but

lim inf
n

Sn(x)

n
= −1 , lim sup

n

Sn(x)

n
= +1 for quasi all x.
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The set
A = {x : ∀n Sn(x) ≥ 0}

is null and meager. A challenge: what happens to the random walk under
the condition x ∈ A?

The topological approach

The set A is closed in {0, 1}∞, therefore compact, and may be treated as
a compact metrizable space. Accordingly, meager and comeager subsets of
A are well-defined (even though they all are meager in {0, 1}∞).

The technique of Sect. 2a does not help, since the shift T fails to map A
to A. We turn to a more general technique.

We leave {0, 1}∞ and turn to the set X of all sequences (x0, x1, x2, . . . )
such that x0 = 0 and xn+1 − xn = ±1 for n = 0, 1, . . . . We transfer from
{0, 1}∞ to X the metrizable topology. The pointwise convergence in {0, 1}∞
(recall 1d2(b)) turns into the pointwise convergence in X (think, why):

xn −−−→
n→∞

x ⇐⇒ ∀k
(
xn(k) −−−→

n→∞
x(k)

)
.

Still, a neighborhood of x may be takes as {y : y(1) = x(1), . . . , y(n) = x(n)};
and 1d5 still applies. The same holds for X+ = {x ∈ X : ∀k x(k) ≥ 0}.

2b1 Lemma. Let X be a compact metrizable space, fn : X → R continuous
functions, and

c = inf
U,n

sup
x∈U,k

fn+k(x)

(be it finite or infinite) where U runs over all nonempty open sets in X. Then

lim sup
n

fn(x) ≥ c for quasi all x ∈ X .

Proof. It is sufficient to prove that for all ε > 0 and n the set

Aε,n = {x : sup
k
fn+k(x) ≤ c− ε}

is nowhere dense. Given a nonempty open set U we note that
supx∈U,k fn+k(x) ≥ c, take x ∈ U and k such that fn+k(x) > c − ε and
observe that the nonempty open subset V = {y ∈ U : fn+k(y) > c− ε} of U
does not intersect Aε,n.

2b2 Exercise. Deduce 2a4 from 2b1 as a special case.
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We apply 2b1 to functions fn on X+, fn(x) = x(n)/n, and get

lim sup
n

x(n)

n
= 1 for quasi all x ∈ X+ .

(It is not the same as the similar fact for X.) We also apply 2b1 to x 7→ −x(n)
and get

lim inf
n

x(n) = 0 for quasi all x ∈ X+ .

On the other hand,

n− x(n) −−−→
n→∞

∞ for quasi all x ∈ X+

(since it is increasing and cannot be bounded).

2b3 Exercise. Prove that

lim inf
n

n− x(n)

log log log n
= 0 for quasi all x ∈ X+ .

The probabilistic approach

Regretfully, no general definition of a conditional distribution on a null
set is available. Not even on a closed null set. However, reasonable ad hoc
definitions are available for many special cases, including our X+ ⊂ X.

We approximate the null set X+ with sets X+
n of positive probability,

X+
n = {x ∈ X : min(x(0), . . . , x(n)) ≥ 0} ;

X+
n ↓ X+ as n→∞ ,

and define conditional probabilities by the formula

(2b4) P
(
A
∣∣X+

)
= lim

n
P
(
A
∣∣X+

n

)
= lim

n

P
(
A ∩X+

n

)
P
(
X+

n

)
not for all measurable A (otherwise we would get P

(
X+
∣∣X+

)
= 0) but for

all “elementary sets” A ∈ F1 ∪ F2 ∪ . . . where Fn consists of all sets of the
form {x ∈ X : (x(0), . . . , x(n)) ∈ B} for arbitrary B ⊂ Zn+1. It appears that
the limit (2b4) exists for all these A, and extends uniquely to a probability
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measure on X+. In particular,1

P
(
x(0) = a0, . . . , x(n) = an

∣∣X+
)

=
an + 1

2n
=

=
a1 + 1

2(a0 + 1)
· a2 + 1

2(a1 + 1)
. . .

an + 1

2(an−1 + 1)

whenever a0 = 0, ak − ak−1 = ±1 and ak ≥ 0 for k = 1, . . . , n. Thus the
conditional random walk is a Markov chain:

0 1 2 3 4

2/2 3/4 4/6 5/8

1/4 2/6 3/8 4/10

Its asymptotic behavior is well-known2 and far from being trivial. Almost
all x ∈ X+ satisfy

lim inf
n

log x(n)√
n

log log n
= −1 , lim sup

n

x(n)√
n log log n

=
√

2 .

Thus, for every ε > 0 they satisfy

1

log1+ε n
≤ x(n)√

n
≤ (
√

2 + ε) log log n for all n > N(ε, x) .

2c Trees

The set {1, 2, 3, . . . } turns into the binary tree T2, being endowed with the
binary relation

(2c1) n ∈ {2m, 2m+ 1}

interpreted as “n is a child of m” (that is, “m is
the parent of n”). Thus, {0, 1}∞ may be thought
of as {0, 1}T2 . Every (infinite) branch of the tree
leads to a map {0, 1}T2 → {0, 1}∞. It means,

1

2 3

4 5 76

we choose a subsequence. For example, the leftmost branch corresponds

1P
(
x(0) = a0, . . . , x(n) = an, x(n + 1) ≥ 0, . . . , x(n + k) ≥ 0

)
=

2−nP
(
max(x(0), . . . , x(k)) ≤ an

)
= 2−nP

(
−an − 1 ≤ x(k) ≤ an

)
(using reflection);

P
(
−an − 1 ≤ x(k) ≤ an

)
∼ 2√

2πk
(an + 1) as k → ∞ (using the normal approximation);

in particular (for n = 0), P
(
X+
k

)
∼ 2√

2πk
; thus P

(
x(0) = a0, . . . , x(n) = an

∣∣X+
n+k

)
→

2−n(an + 1) as k →∞.
2B.M. Hambly, G. Kersting, A.E. Kyprianou (2003), “Law of the iterated logarithm

for oscillating random walks conditioned to stay non-negative”, Stochastic Processes and
their Applications 108 327–343.

http://www.sciencedirect.com/science/article/pii/S0304414903001030
http://www.sciencedirect.com/science/article/pii/S0304414903001030
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to the subsequence
(
x(1), x(2), x(4), . . .

)
=
(
x(2k−1)

)
k, while the rightmost

branch to
(
x(1), x(3), x(7), . . .

)
=
(
x(2k − 1)

)
k.

2c2 Exercise. Let S1 ⊂ S2 be countable sets. Prove that the restriction
map {0, 1}S2 → {0, 1}S1 is genericity preserving (in the sense of 1f3).

Informally, if a sequence is generic then its subsequence is also generic.
(This is about

(
x(n)

)
n and

(
x(nk)

)
k provided that (nk)k is not dependent on

x, of course.) We may apply it to countably many subsequences. However,
the binary tree has uncountably many branches. What about existence of an
atypical branch, say, a branch with

∑
k x(nk) <∞, or even

∑
k x(nk) = 0?

The probabilistic approach

We want to find the probability

(2c3) P
(
∃(nk)k ∀k x(nk) = 0

)
(where (nk)k runs over all branches). This is a reformulation of a well-
known question about the simple branching (or Galton-Watson) process. The
probability (2c3) is the non-extinction probability. The extinction probability
is the least root of the equation

θ2 + 1

2
= θ , 0 ≤ θ ≤ 1 ,

and is equal to 1. Thus, the probability (2c3) is 0.
It happens because the branching process is critical. Consider now the

ternary tree T3. Here the branching process is supercritical; the equation
becomes

θ3 + 1

2
= θ ; θ =

√
5− 1

2
;

the probability (2c3) is now 1 − θ = 3−
√
5

2
. Of course, for a given branch

(nk)k the event
∑

k x(nk) = 0 is of zero probability; however, existence of
such “atypical” branch is of positive probability.

The topological approach

Given A ⊂ {0, 1}∞, we introduce Ã ⊂ {0, 1}∞ by

Ã = {x : ∃(nk)k
(
x(nk)

)
k ∈ A}

(where (nk)k runs over all branches).
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2c4 Proposition. If A is meager then Ã is meager.

Proof (sketch). Clearly, if A = A1∪A2∪. . . then Ã = Ã1∪Ã2∪. . . ; thus we as-
sume that A is nowhere dense and prove that Ã is nowhere dense. We use 1d5.
Given an initial segment y of a function T2 →
{0, 1}, we seek its continuation z incompatible
with Ã. For every (finite, maximal) branch of y
we choose the corresponding portion of z to be a
function of the level number only. This is possible
since A is nowhere dense.

y

z

Clearly, the argument applies not only to T2 but also to T3. The topo-
logical approach is quite pessimistic: it claims that extinction is inevitable
in all cases! Likewise, percolation to infinity is impossible in all dimensions
(and even all locally finite graphs). Curiously enough, on the plane we get
infinitely many white and black contours around the origin that are exactly
square! The probabilistic theory of percolation is much more deep and com-
plicated.

Likewise, the topological approach claims that the random walk is recur-
rent in all dimensions; but probabilistically, it is recurrent in dimensions 1
and 2 but transient in dimensions 3, 4, . . . (Polya).

2d Graphs

A point x ∈ {0, 1}∞ may also be treated as a graph. To this end we fix a
countable set {v1, v2, . . . } of vertices and connect vn with vn+k by an edge if
and only if x

(
(2n − 1)2k−1) = 1; here 1 ≤ n < n + k < ∞. Alternatively

we may deal with {0, 1}S where S is the set of all unordered pairs of (dif-
ferent) vertices. Anyway, we get a random element of the set of all graphs
(undirected, with no loops and multiple edges) on the given countable set of
vertices. For each pair of vertices we decide whether they are connected by
edge or not, independently of other choices.

Is the random graph connected? Yes, it is, in both approaches (topological
and probabilistic). Moreover,

(2d1) the distance between two vertices never exceeds 2.

For example, dist(v1, v2) > 2 when

x(2)x(3) = x(4)x(6) = x(8)x(12) = x(16)x(24) = · · · = 0 ;

the set of such x is both null and meager, since it is the product with infinitely
many factors of probability 3/4.
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For a similar reason

(2d2) no vertex is on distance 1 from all other vertices.

Two graphs are called isomorphic if some permutation (bijection to itself)
of {v1, v2, . . . } transforms one graph to another.

The two properties (2d1), (2d2) fail to ensure isomorphism. For example,
here are two nonisomorphic graphs satisfying these properties:

(a) vn is connected by an edge with vn+k if and only if k > 1;

(b) vn is connected by an edge with vn+k if and only if n+1 divides n+k+1.

They are not isomorphic; in (a), in contrast to (b), each vertex is connected
by an edge with all but finitely many vertices.

A challenge: are all random graphs isomorphic? It means, (1) is there a
comeager equivalence class? (2) is there an equivalence class of full measure?
And if (1) and (2) hold, then we ask (3) is it the same equivalence class in
both cases?

Here is a far-reaching strengthening of (2d1), (2d2):

(2d3) For every pair (V1, V2) of disjoint finite sets of vertices

there exists a vertex outside V1 ∪ V2
connected by an edge with every vertex of V1 but no vertex of V2.

This property is satisfied almost everywhere and quasi-everywhere, since (as
before) it is violated only on a product set with infinitely many factors of the
same probability less than 1.

Therefore such graphs exist! (Do you see an example?)

2d4 Lemma. If two graphs satisfy (2d3) then they are isomorphic.

Proof (sketch). Given an isomorphism between their finite subgraphs, we can
extend it to an isomorphism between larger finite subgraphs. Moreover, we
can add to the first finite subgraph any point we want; and the same for the
second subgraph.

We see that the set of all graphs satisfying (2d3) is an equivalence class,
comeager and of full measure.1

Amazingly, we can take a different product measure on {0, 1}∞,
P
(
x(n) = 1

)
= p ∈ (0, 1), and get different random graphs in the same

equivalence class!

1See also Wikipedia, ”Rado graph”.

https://en.wikipedia.org/wiki/Rado_graph
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Hints to exercises

2a1: ∩kT
−(n+k)(F ) is nowhere dense (here F is the complement of U).

2a2: similar to 2a1.

2a3: U = {x : f(x) > max f − ε}.
2a4: similar to 2a3.

2a5: P
(
f ≥ a

)
≤ 1

ap

∫
|f |p.

2a6: use 2a4.

2a7: ∩kFn+k is nowhere dense (here Fn is the complement of Un).

2a8: A[2 :∞] is the union of two nowhere dense sets.

2b3: fn(x) = − n−x(n)
log log logn

.
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